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Consider a multi-type branching process with states 0, . . . , n, and where 0 corresponds to
the unique birth state, and let bj denote the birth rate and dj the death rate in state j,
and let tij be the transition rate from state j to state i. For the conservation of probability
mass we necessarily have

(1) tjj = −
∑
i 6=j

tij ∀j.

Let further pj [l] denote the probability that an individual presently in state j will produce l
offspring during the rest of its stay in the same state j, and let qj(k) denote the probability
that an individual presently in state j will produce k offspring during the rest of its life in
the present state and all other states it will visit thereafter. Then

(2) pj [l] =

(
bj

bj + dj − tjj

)l ( dj − tjj
bj + dj − tjj

)
(i.e., the probability that there are l birth-events followed by a single non-birth event which
terminates the the stay in state j either by a death event or a transition to another state),
and

(3) qj [k] = pj [k]
dj

dj − tjj
+

k∑
l=0

pj [l]
∑
i 6=j

(
qi[k − l]

tij
dj − tjj

)
(i.e., the probability of producing k offspring in state j followed by a death event plus the
probability of producing l offspring in state j and k − l offspring during the rest of the
individual’s life after a transition to another state).

Let fj(z) and gj(z) denote the probability generating functions of the distributions {pj [l]}l≥0
and {qj [k]}k≥0. Then

(4) fj(z) =
dj − tjj

(1− z)bj + dj − tjj
and after some pretty straightforward calculations, also involving equation (4),

(5) gj(z)
(
(1− z)bj + dj

)
= dj +

∑
∀i
gi(z)tij .
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Differentiation of equation (5) gives

(6) Rjdj − bj =
∑
∀i
Ritij

where we used that gj(1) = 1 and g′j(1) = Ej{k} = Rj , which is the reproduction ratio of
state j. Note that in particular R0 is the well-known basic reproduction ratio. Define

(7)

R :=


R0 . . . Rn

0 . . . 0
...

...
0 . . . 0

 , B :=


b0 . . . bn
0 . . . 0
...

...
0 . . . 0



D :=

 d0 . . . 0
...

. . .
...

0 . . . dn

 , T :=

 t00 . . . t0n
...

...
tn0 . . . tnn


Since there is only one birth state, R is equal to the so-called next generation matrix.
Equation (6) can be written in matrix notation as

(8) R(D−T) = B

or equivalently

(9) R = B(D−T)−1

which is possible because D − T is strictly diagonally dominant and thus can be in-
verted.

Next, let zj denote the probability of the eventual extinction of the branching process
starting in state j. Then, substitution of z = z0 in equation (5) gives

(10) zj
(
(1− z0)bj + dj

)
= dj +

∑
∀i
zitij

where we used that gj(z0) = zj for all j. Let πj = 1− zj denote the probability of invasion
starting from state j, then from equation (10) and equation (1) we get that

(11) πj(π0bj + dj) = π0bj +
∑
∀i
πitij .

Define

(12) Π :=


π0 . . . πn
0 . . . 0
...

...
0 . . . 0


then equation (11) can be rewritten as

(13) Π(π0B + D−T) = π0B.
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Right-multiplication with (D−T)−1, using equation (9), subsequently gives

(14) Π(π0R + I) = π0R

or equivalently,

(15) Π = π0R(π0R + I)−1

where I is the identity matrix. We can do this because π0R + I is the product of two
non-singular matrices, namely π0B + D − T, which is strictly diagonally dominant, and
(D−T)−1. Hence π0R + I is non-singular itself and can be inverted. Formal expansion of
the right hand side of equation (15) gives

(16) Π = π0R

∞∑
i=0

(−1)iπi0R
i

which converges whenever all eigenvalues of π0R lie inside the unit circle in the complex
plane, i.e., whenever π0R0 < 1. Writing out equation (18) for the upper leftmost element
(i.e., the only element that matters, really), we get

(17) π0 =
π0R0

1 + π0R0

i.e., π0 = 0 or

(18) π0 =
R0 − 1

R0

whenever the the latter is positive, i.e., whenever R0 > 1. If R0 ≤ 0, then π0 = 0 is the
only solution. Thus, in conclusion, we have shown that

(19) π0 =


0 if R0 ≤ 0

R0−1
R0

if R0 > 1.

I would like to emphasize that this result is exact.


