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11-S. MULTI-TYPE PROCESSES (SUPPLEMENT)

11.5. Example. Consider the SIS model defined by the following individual level Poisson
processes where S denotes a susceptible individual and I an infected individual:

S 2 S48 (birth)

s 5 1 (background death)

I % (background death)

I % i (disease-induced death)
S+1 2 141 (transmission)

I L S (recovery)

Writing s and 4 for the population densities of, respectively, susceptible and infected
individuals, the transmission process also can be represented by

7

S — 1 (transmission)
AN (transmission )

This representation is more convenient for setting up the table of changes in the numbers
S and I (italics!) of individuals at the population level:

event AS AT | rate
birth +1 0| AS
background death S -1 0|vS
background death I 0 —-1|vl
disease-induced death I 0 —1|al
transmission -1 +1]|giS
recovery +1 —1|~7

With © denoting system size and € = Q! the change in population density correspond-
ing to adding or removing a single individual, the above table can be re-written in terms
of changes in population densities:
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event As Ai | rate
birth +e  0eThs
background death S —  0lelus
background death I 0 —c|etvi
disease-induced death I | 0 —¢|etai
transmission —& +e | e 'pis
recovery +e —e e lyi

From the table we calculate the expected rate of change and the expected rate of change
squared:

ps(s,i) = E{%} = +(\—-v)s—Bsi+vi
pi(s,i) = E{4} = —(v+a)i+PBsi-
cogs(s,i) = E{8%8sl = 4e((A\—v)s+ Bsi+ i)
cosi(s,i) = E{838iL = —g(Bsi+ i)
cors(s,i) = E{ALl = —¢(Bsi+ i)

con(s,i) = E{AB = te((v+a)i+ Bsi+ i)

The Fokker-Plack equation for semi-large systems then becomes

o op = —0s(usp) — 9i(pp)
+ %(853 (USS P) + 651’(081 p) + ais(o'IS p) + 8ii(UII p))

with the corresponding stochastic differential equation

s o8s  OSI Ws
g o1) = (e ve (o 22) o)
where Wg and Wr are two independent Wiener processes. Large systems can be approxi-

mated by letting {2 — oo and correspondingly ¢ — 0, which gives the system of ordinary
differential equations

()-()»

In more traditionally notation this is

48 = (XN —v)s — Bsi + i

(4)
4 = —(v+ )i+ Bsi —

which has a unique and stable positive equilibrium id and only if A > v. The dynamics
of the deterministic system are summarised in the following figure.
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FIGURE 1. Dynamics of the deterministic SIS dynamics for A > v: thick black
lines represent the zero-clines; dashed lines are horizontal and vertical asymp-
totes of the zero-cline for s; this solid line is an example orbit.

We want to study the stochastic dynamics of the SDE (2) for small e when the quasi-
stationary distribution is concentrated around the deterministic equilibrium. That’s why
we first looked at the deterministic limit, i.e., to make sure that there is a positive and
stable equilibrium at all.

11.6. General case. First consider the more general multi-type SDE
(5) dX = p(X)dt + Veo?(X)dW

where X, ;v and W are vector-valued and where o2 is a matrix. Let T be a positive and
hyperbolically stable equilibrium of the corresponding deterministic system obtained
by taking ¢ — 0, i.e., u(T) = 0 (equilibrium condition) and the Jacobi matrix p/(T)
of partial derivatives evaluated at the equilibrium has only eigenvalues with a strictly
negative real part (stability condition). A matrix all eigenvalues of which have negative

real parts also is called hyperbolically stable.

Linearisation of (5) about the deterministic equilibrium Z gives the multi-type Ornstein-
Uhlenbeck process

(6) d(X —7) =4/ (7)(X —72)dt + \J/eo?(z) AW

To simplify notation, we write this as
(7) du = Audt + BdW

where u and W are vectors, A a hyperbolically stable square matrix, and B a symmetric
and positive semi-definite matrix (i.e., z¥ Bz > 0 for any vector x # 0). We already
have analysed the multi-type OU process in section 11.3, but here we present a more
direct and computationally friendly method.
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The solution of (7) with initial condition u(0) = ug is

t
(8) mw:emm+@“/}zm3dwu)
0

as can be verified by differentiation. Since A is hyperbolically stable, the first term on
the right hand side is transient and converges exponentially to zero. The second term
converges to the normal distribution with mean zero and covariance matrix ¥, i.e.,

(9) Jim u(t) ~ N (0, %)
where by definition
(10) ¥ = E{uul}.

Covariance: To calculate the covariance matrix ¥ we use Ito’s multiplication table for
independent Wiener increments dW; and dWj:

dt | AW, | AW
& 0] 0 | 0
AW, [0 | dt | 0
aw; [0 0 | dt

From this we get
d(uu?) = duut + udut + dudu?

(11)
= (AuuT +uuTAT —1—32) dt + BAW uT + wdW™'B

Taking expectations on both sides gives

(12) dS = (A + S AT + B%)dt
which at the stationary distribution becomes

(13) 0=AX+ % AT 4 B?

Note that this is only a linear equation in the entries of ¥ which is easily solved.

Cross-covariance: To calculate the cross-covariance matrix
(14) C(r)=E{u(t+T1) u(t)T}

consider the process {u(t + 7)},>0 for given fixed ¢ > 0, which satisfies the same SDE
as {u(t)}e>o0, ie.,

(15) du(t+7)=Au(t+7)dr+ BdW (t + 1)
Sincet > 0 is fixed, right-multiplication by u(t)T gives
(16) du(t + T)u®)t = Au(t + 7)u)t dr + BAW (t + 7)u(t)”

Taking expectations on both side then gives

(17) dC(r) = AC(r)dr
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from which we get
(18) C(r) =e*7C(0)

where C'(0) = ¥ from equation (13). We now return to the example.

11.7. Example. The following figure gives a stochastic orbit of the original non-
linearised SDE (2) of section 11.5 superimposed on the deterministic structures presented
in Figure 1.

FIGURE 2. Stochastic orbit.

We use the results of section 11.6 to describe the asymptotic stochastic dynamics. Close
to the deterministic equilibrium, the dynamics of the non-linear system (2) are ap-
proximated by the stationary Ornstein-Uhlenbeck process in (6). In particular, the
approximating quasi-stationary distribution is

() (()

where
(20) (5) i
20 =
A—v)(aty+v)
Blatv)

is the deterministic equilibrium for A > v. The covariance matrix ¥ is calculated from
(13) with

at+y+v

<. Ol

_ (=)
a+v

- —V
(21) A=
(A=) (aty+v) 0
a+v
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and
2(a+y+v) (ad+y(A—v)+Av) . (/\—1/)(a2+3a7+272+2au+37u+u2)
Blotv) Bla+v)
(22) B*=¢
(A—=v) (a2+3a’y+2'y2+2au+3’yu+u2) 2(A—v)(aty+v)?
B Blatv) Blatv)
which gives
(a+y+v) (0 +y(A—v)+rv(A+v)+a(A+2v)) atytv
By(A—v) B
(23) Y=c¢
_atytv (a+y+v)2(a+A+v)
E] By(a+v)

Stationary distribution: The following figure compares stochastic orbits of the non-
linear SDE (2) with the stationary distribution of the approximating Ornstein-Uhlenbeck
process. The latter is represented by the 50%, 95% and 99% quantiles of the approxi-
mating normal distribution.

FiGURE 3. Comparison of stochastic orbits of the non-linear SDE with
the stationary distribution of the approximating OU process for different
system sizes. From left to right: €2 = 20, 100, 1000 .

These quantiles are the contour lines of the probability density function that enclose
50%, 95% and 99% of the total probability mass, respectively. Formulated differently,
for an geodic process, an orbit will spend 50%, 95% and 99% of all time within the
corresponding quantile. It can be seen that as the system size increases, the fit becomes
better in the sense that fewer data points fall outside the 95% and 99% quantiles of the
approximating normal distribution.



STOCHASTIC POPULATION MODELS (SPRING 2015) 7

Cross-covariance: While the deterministic system converges to the equilibrium, the
stochastic orbits of the non-linear system (2) exhibit persistent quasi-periodic behaviour
as illustrated in the next figure. The quasi-periodicity is due to complex eigenvalues of

Jacobi matrix A.
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FIGURE 4. Quasi-periodic orbits of the non-linear SDE for susceptibles (left)
and infected (right).

The periodicity is also reflected in the cross-covariance function C(7) of the approxi-
mating Ornstein-Uhlenbeck process (6). The cross-covariance calculated in (18) exhibits
damped oscillations as shown in the next figure. The length of a full period is 27 /w,
where w is the absolute value of the imaginary part of the two eigenvalues.
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FIGURE 5. Cross-covariance of the approximating stationary Ornstein-
Uhlenbeck process .



