
STOCHASTIC POPULATION MODELS

(SPRING 2011)

STEFAN GERITZ
DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF HELSINKI

11. Multi-type processes

11.1. The basic model. Suppose that there are several types of individuals such as
juveniles and adults, prey and predators, sick and heathy, hungry and satiated, and
so forth. The number of individuals of each type then may change not just by birth
and death, but also by maturation, infection, recovery, starvation, feeding and other
processes.

As an example, let’s only consider juveniles and adults where I(t) denotes the number
of juveniles and J(t) the number of adults at time t. Changes in population composition
are modeled as a stochastic process {(I(t), J(t))}t≥0 on the set N × N of ordered pairs
of the non-negative integers. Let further

(1) Pi,j(t) := Prob{I(t) = i and J(t) = j}

denote the probability that at time t there are i juveniles and j adults. Four kinds of
events may cause (i, j) to change over time, namely,

Event Change
birth of a juvenile (i, j) 7→ (i+ 1, j)
death of a juvenile (i, j) 7→ (i− 1, j)
death of an adult (i, j) 7→ (i, j − 1)
maturation of a juvenile (i, j) 7→ (i− 1, j + 1)

Assuming that birth, death and maturation are independent Poisson processes with rates

Bi,j , D
j
i,j , Mi,j and Da

i,j , we have (cf. section 8.1):

(2)

d
dtPi,j = + Bi−1,jPi−1,j − Bi,jPi,j ← birth of a juvenile

+ Dj
i+1,jPi+1,j − Dj

i,jPi,j ← death of a juvenile

+ Da
i,j+1Pi,j+1 − Da

i,jPi,j ← death of an adult

+ Mi+1,j−1Pi+1,j−1 −Mi,jPi,j ← maturation of a juvenile
↑ ↑

Flow into (i, j) Flow out of (i, j)
1
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11.2. Semi-large systems approximation. We use a similar change of variables as
in section 9.1, i.e.,

(3)



ε := Ω−1 (one over system size)
x := iε (juvenile population density)
y := jε (adult population density)

p(t, x, y) := Pi,j(t)/ε
2 (probability density)

b(x, y)/y := Bi,j/j (per capita birth rate)

dj(x, y)/x := Dj
i,j/i (per capita juvenile death rate)

da(x, y)/y := Da
i,j/j (per capita adult death rate)

m(x, y)/x := Mi,j/j (per capita maturation rate)

Rewriting equation (2) in terms of the new variables gives

(4)

ε ∂tp(x, y) = +b(x− ε, y) p(x− ε, y) −b(x, y) p(x, y)
+dj(x+ ε, y) p(x+ ε, y) −dj(x, y) p(x, y)
+da(x, y + ε) p(x, y + ε) −da(x, y) p(x, y)
+m(x+ ε, y − ε) p(x+ ε, y − ε) −m(x, y) p(x, y)

Second-order Taylor expansion of the right hand side leads to

(5)
∂tp = −∂x(b− dj −m)p− ∂y(−da +m)p

+ ε
2

(
∂2
x(b+ dj +m)p+ 2∂xy(−mp) + ∂2

y(da +m)p
)

which is a gives the Fokker-Plack equation. We shall now show that this can be written
more generally (i.e., independently of the particular processes that are involved) as

(6)

∂tp = −∂x
[
E{dx}
dt p

]
− ∂y

[
E{dy}
dt p

]
+1

2∂
2
x

[
E{dx2}
dt p

]
+ ∂xy

[
E{dxdy}

dt p
]

+ 1
2∂

2
y

[
E{dy2}
dt p

]
where E{dx}/dt and E{dy}/dt are the expected changes dx and dy per unit of time
in the population densities x and y, and E{dx2}/dt and E{dy2}/dt the variance of dx
and dy per unit of time, and E{dxdy}/dt the covariance between dx and dy per unit of
time.

To convince you that this is indeed so, consider the following table, which lists for each
kind of event the accompanying change ∆x and ∆y together with the probability for the
occurrence of each event within a ∆t time interval.

Event ∆x ∆y Probability
birth +ε 0 (b /ε)∆t+ O(∆t2)
juv. death −ε 0 (dj/ε)∆t+ O(∆t2)
adt. death 0 −ε (da/ε)∆t+ O(∆t2)
maturation −ε +ε (m/ε)∆t+ O(∆t2)

From this table we can calculate the expected values

(7)
E{∆x} = (b− dj −m)∆t +O(∆t2)
E{∆y} = (−da +m)∆t +O(∆t2)
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and the (co-)variances

(8)
E{∆x2} = ε(b+ dj +m)∆t +O(∆t2)
E{∆y2} = ε(da +m)∆t +O(∆t2)
E{∆x∆y} = −ε m ∆t +O(∆t2)

Division by ∆t and letting ∆t→ 0 gives expressions for expectations and (co-)variances
of the infinitesimal changes dx and dy per unit of time, which on substitution into
equation (6) give the Fokker-Planck equation (5).

The above can be generalized to any finite number of types of individuals with population
densities x1, . . . , xk and any number of processes as the Fokker-Plack equation

(9) ∂tp = −
k∑
i=1

∂xi

[
E{dxi}
dt

p

]
+

1

2

k∑
i,j=1

∂xi,xj

[
E{dxidxj}

dt
p

]
With x := (x1, . . . , xk) and

(10) µ(x) :=

(
E{dxi}
dt

)
i=1,...,k

(“drift vector”)

and

(11) σ2
ε(x) :=

(
E{dxidxj}

dt

)
i,j=1,...,k

(“covariance matrix”)

and W := (dW1, . . . , dWk) as a vector of independent Wiener processes, the above
Fokker-Planck equation corresponds to the multi-dimensional stochastic differential equa-
tion

(12) dx = µ(x) dt+ σε(x) dW (Ito)

where σε =
√
σ2
ε is the unique positive square root of the matrix σ2

ε , which exists, be-
cause σ2

ε is symmetric and positive definite.

11.3. Stationary distribution for semi-large systems. Consider the multi-dimensional
SDE

(13) dx = µ(x) dt+ σε(x) dW (Ito)

and suppose x̄ is a deterministic equilibrium, i.e.,

(14) µ(x̄) = 0

and suppose further that x̄ is deterministically stable, i.e., all eigenvalues of the Jacobi
matrix

(15) µ′(x̄) :=

(
∂xi
E{dxj}
dt

)
i,j=1,...,k

∣∣∣∣∣
x=x̄

have a strictly negative real part. We approximate the (generally) non-linear SDE (13)
with the linear SDE

(16) dx = µ′(x̄)(x− x̄) dt+ σε(x̄) dW
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which is the multi-dimensional Ornstein-Uhlenbeck process. Hence,

(17) lim
t→∞

x(t) ∼ N
(
x̄,Cx(0)

)
which is the multi-normal distribution with mean x̄ and covariance matrix Cx(0), i.e.,
the auto-covariance matrix Cx(τ) evaluated at τ = 0.

The auto-covariance matrix for two stationary vector-values processes {u(t)} and {v(t)}
with zero mean is defined as

(18) Cu,v(τ) = E{u(t+ τ)v(t)T}
If u = v, then we may also write

(19) Cu,u = Cu

From the definition of the auto-covariance matrix one readily shows that if w = Au + Bv
for given square matrices A and B, then

(20) Cw,w = ACu,uA
T + ACu,vB

T + BCv,uA
T + BCv,vB

T

and

Cu′,u′ = −C′′u(21)

Cu′,u = +C′u(22)

Cu ,u′ = −C′u(23)

Applying the above to the linear SDE

(24) dx− µ′(x̄)(x− x̄) dt = σε(x̄) dW

we get

(25) −C′′u −C′u µ
′(x̄)T + µ′(x̄)C′u + µ′(x̄)Cu µ

′(x̄)T = σ2
ε(x̄) δDiracI

where δDirac is the Dirac delta function and I is the identity matrix. Taking Fourier
transforms gives an equation for the spectral density matrix Su:

(26) −(iω)2Su − iωSu µ
′(x̄)T + iωµ′(x̄)Su + µ′(x̄)Su µ

′(x̄)T = σ2
ε(x̄)

which can be rewritten as

(27)
(
µ′(x̄)− iωI

)
Su

(
µ′(x̄) + iωI

)T
= σ2

ε(x̄)

and hence

(28) Su(ω) =
(
µ′(x̄)− iωI

)−1
σ2
ε(x̄)

(
µ′(x̄) + iωI

)−T

(Note that since all eigenvalues of µ′(x̄) are assumed to have a strictly negative real
part, the inverses in above equations exist.) The auto-covariance matrix is then found
by taking the component-wise inverse Fourier transform

(29) Cu(τ) =
1

2π

∫ ∞
−∞

Su(ω)eiωτdω

In particular, the covariance matrix of the stationary distribution (17) is given by

(30) Cx(0) = Cu(0) =
1

2π

∫ ∞
−∞

Su(ω)dω
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11.4. Example. Consider an insect or fish population where the adults cannibalize the
juveniles (or eggs) of their own species. Food is assumed to be not a limiting factor for
offspring productions, and so the cannibalism does not increase fecundity. Let X denote
a juvenile individual (or egg), and let Y denote an adult. The processes on the individual
level are given by the following “reactions”:

(31)

Y
α−→ Y + X (birth)

X
β−→ Y (maturation)

Y + X
γ−→ Y + † (death of juvenile by cannibalism)

X
µ−→ † (death of juvenile by other causes)

Y
ν−→ † (death of adult)

Applying the law of mass-action, the population equations are

(32)


dx
dt = b(x, y)− dj(x, y)−m(x, y) (juvenile)

dy
dt = m(x, y)− da(x, y) (adult)

where

(33)


b(x, y) = αy (birth rate)
dj(x, y) = γxy + µx (total juvenile death rate)
da(x, y) = νy (adult death rate)
m(x, y) = βx (maturation rate)

For the x-isocline we find

(34)
dx

dt
= 0⇐⇒ y =

(β + µ)x

α− γx
and for the y-isocline we have

(35)
dy

dt
= 0⇐⇒ y =

βx

ν

Depending on the relative size of the slopes of the isoclines near the origin, we distinguish
two qualitatively different cases:

Figure 1. example caption
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The case on the left ((β+µ)α ≥ β/ν) leads to rapid extinction and is not interesting for
us. We focus on the second case ((β + µ)α < β/ν) where there exists a globally stable
positive equilibrium

(36)

(
x̄
ȳ

)
=


αβ−(β+µ)ν

βγ

αβ−(β+µ)ν
γν


The non-linear stochastic differential equation (13) for semi-large systems is

(37) d

(
x
y

)
= µ(x, y) dt+ σε(x, y) d

(
W1

W2

)
where

(38) µ(x, y) =

(
b(x, y)− dj(x, y)−m(x, y)
−da(x, y) +m(x, y)

)
and

(39) σ2
ε(x, y) = ε

(
b(x, y) + dj(x, y) +m(x, y) −m(x, y)

−m(x, y) da(x, y) +m(x, y)

)
And so the linear approximation (16) near the deterministic equilibrium (x̄, ȳ) be-
comes

(40) d

(
x
y

)
= µ′(x̄, ȳ)

(
x− x̄
y − ȳ

)
dt+ σε(x̄, ȳ) d

(
W1

W2

)
where

(41) µ′(x̄, ȳ) =

(
−β − µ− γȳ α− γx̄

β −ν

)
is the Jacobi matrix (15) evaluated at the deterministic equilibrium (x̄, ȳ). System (40)
has a stationary bi-bvariate normal distribution

(42)

(
x
y

)
∼ N

((
x̄
ȳ

)
,C(0)

)
The covariance matrix C(0) is found by first calculating the spectral density S(ω) as in
equation (28). From that, by a (numerical) inverse Fourier transform, we calculate the
auto-covariance matrix C(τ) as in equation (29), which for τ = 0 gives us the covariance
matrix C(0) of the stationary distribution.

The following numerical results were obtained for parameter values

α = 10, β = 2, γ = 1, µ = 1 and ν = 1

These values give an equilibrium with

x̄ = 8.5 and ȳ = 17.0
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With a system size of ε−1 = 100 this corresponds to 850 juveniles and 1700 adults in
total. The autocovariance of the stationary distribution was found to be

C(0) = ε

(
8.5 2.1
2.1 20

)
This means that the number juveniles varies about 99% of the time between the values
ε−1(x̄ − 3

√
C11(0)) = 760 and ε−1(x̄ + 3

√
C11(0)) = 940. Likewise, the number of

adults varies about 99% of the time between the values ε−1(ȳ − 3
√
C22(0)) = 1570 and

ε−1(x̄+ 3
√
C22(0)) = 1830.

Figure 2. The figure on the left shows the phase plane with the popu-
lation density x of juveniles along the horizontal axis and the population
density of adults along the vertical axis. The deterministic equilibrium
lies at the positive intersection of the isoclines (solid lines). The ovals
are contour lines of the probability density of the stationary distribution
including 90, 99 and 99.9 percent of the probability mass. The figure on
the right shows the phase plane with a single sample path, i.e., a single
realization of the non-linear SDE (37).

Figure 3. The population density of juveniles (bottom) and adults (top)
from a single realization of the non-linear SDE (37) plotted as functions
of time. The difference in the kind of fluctuations can be understood
from the auto-covariance function (see next figure).
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Figure 4. The auto-covariance function C11(τ) for juveniles (left) and
the auto-covariance function C22(τ) for adults (right). It can be seen
that the correlation across time extends much further for adults than for
juveniles. This explains the faster, more erratic fluctuations for juveniles
than for adults as seen in the previous figure.


