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1. INTRODUCTION

1.1. What the course is about. This is a course about population models that
cannot be properly described or analysed in a purely deterministic way because of
the presence of noise. We consider two kinds of noise depending on its origin: The
noise may be exogenous, i.e., due to autonomous processes external to the popula-
tion itself and affecting it by causing population parameters to fluctuate in time.
The noise may also be endogenous, i.e., due to stochastic demographic fluctuations
in the number of births and deaths within any given interval of time.

The course addresses the following issues:

Basic notions in model formulation and analysis: the principle of mass-action;
growth and development; equilibria and local stability; elements of the theory of
Poincare and Bendixon.

The population as a filter of externally generated noise: ordinary differential equa-
tions and delay-differential equations; impulse response; frequency response; trans-
fer function; filter characteristics of the population model.

The population as the source of noise: single-type and multi-type birth-death
processes; demographic noise; stochastic processes and ergodicity; the Fokker-
Planck equation; stochastic differential equations; autocorrelation function and
spectral density.

1.2. Exponential population growth. Thomas R. Malthus (1766-1834) pro-
posed the following differential equation equation for population growth:
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where x denotes population density, ¢ the time and where a := b — d (the so-called
“Malthusian parameter”) is the difference between the per capita birth and death
rates. The solution of the differential equation is

(2) z(t) = zoe™

where z( is the population density at time ¢ = 0. If a > 0, the population
grows exponentially and without bounds. If a < 0, the population dies out. The
population stays constant if a = 0, i.e., if births and deaths exactly balance, which
is very unlikely to happen in reality. The case of unbounded population growth,
however, is also obviously absurd, while the case of the extinct population leaves
us without study object.

Malthus was aware of these problems, of course. He therefore proposed that the
population growth eventually has to slow down as crowding will increase compe-
tition and lead to disease and famine, which in turn will reduce the birth rate
and increase the death rate such that at sufficiently high population densities the
population growth may even be reverted to a population decline.

1.3. The logistic equation. Pierre F. Verhulst (1804-1849) proposed a simple
linear declining Malthusian parameter as a function of the population density, i.e.,
a=r(l-2z/K), so that

dx x
3 — =7z (1 — —)
Q -
where » > 0 is called the “intrinsic rate of increase” and K > 0 the “carrying
capacity”. Notice that the explicit relation to the separate birth and death rates
is no longer present. The equation is known under various names including the
“Verhulst equation” and the “logistic equation”.

The logistic equation can be solved, but we are not going to do that. Since most
ODEs (=ordinary differential equations) cannot be solved explicitly, we make it a
habit from the very start to see what information can be obtained directly from
the equation without actually solving it.

First, notice from Figure 1 that dx/dt = 0 for x = 0 and = K, which therefore
are equilibrium values, i.e., if we start there, the population will neither grow nor
decline, but simply stay at those values. Second, notice that dx/dt > 0 (population
growth) for 0 < z < K, and that dz/dt < 0 (population decline) for x > K. Hence,
x = 0 is an unstable equilibrium and z = K is a stable equilibrium. Third, dz/dt
is maximal for z = K/2, i.e., the population growth accelerates on 0 < x < K/2
and decelerates elsewhere. Without having to solve the ODE, we now nevertheless
know that the orbits (=solutions) for different initial conditions must look like as
depicted in Figure 2.
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FIGURE 1. Plot of dz/dt as a function of = in the logistic equation.
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FIGURE 2. Solutions of the logistic equation for different initial conditions.

1.4. Mechanistic population models. Now that we fully understand the qual-
itative behaviour of the logistic equation, we can “put noise on the system”. We
can do this by making r and K dependent on time. However, to do this in a
meaningful way, we have to understand more of the structure of the model.

We have already seen that in the logistic equation there is no explicit relation
between the population growth rate on the one hand and the separate birth and
death rates on the other, i.e., we know that a = r(1 — z/K), but we do not know
how to split this into a separate birth term (b) and a separate death term (d) such
that (1 —z/K) = b — d. This structure simply is not there, not explicitly at any
rate. There are infinitely many ways how to accomplish such a split. How we do
it matters for the question whether r and K can vary independently or whether
they are correlated in some specific way. How, then, do we make a choice?

A population is an ensemble of individuals, and its behaviour (i.e., change in
population size and structure over time and space) ultimately is a consequence of
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the behaviour of individuals. Therefore, when we make a population model, we
should first describe the behaviour of the individuals and from that derive a model
of the population. In this way all parameters as well as the structure of the model
have an interpretation in terms of individual behaviour. In particular, we will
know exactly how the individual birth and death rates enter the equations.

A population model that has an interpretation in terms of the behaviour of the
individuals is called a “mechanistic population model”. If such an interpretation
is not given (as for the logistic equation), then we speak of a “phenomenolog-
ical population model”. If it were possible to derive the logistic equation as a
mechanistic model (i.e., if we could find a mechanistic underpinning of the logistic
equation), then it would be immediately clear how the separate birth and death
rates enter the equation. As we shall see, the outcome is not unique and depends
on the particular underlying mechanism. Consequently, whether » and K can vary
independently or whether they are correlated in some specific way depends on the
particular underpinning.

1.5. The principle of mass-action. How to make a mechanistic population
model? There exist various modeling principles. One of the most useful (and cer-
tainly the most frequently used) is the “principle of mass-action” where individuals
are modeled as molecules in a well-mixed medium that can undergo reactions just
by themselves or by the interaction with other molecules.

Of course, there are many differences between real living individuals on the one
hand and inanimate molecules on the other, but there are also similarities, and that
is what we exploit. For example, compare the following ‘chemical reactions”:

(4) Hb + Oy = HbO,

describing a haemoglobin molecule in the blood binding to an oxygen molecule,
and

(5) prey + hungry predator I satiated predator

for a predator capturing and eating a prey. The first reaction happens after a
chance collision between an Hb molecule with an O, molecule. The rate at which
such collisions take place in a well-mixed medium is proportional to the Hb con-
centration as well as to the O, concentration. For the change in concentrations we
thus have

4[HE] = —a[HB][O,
(6) t|O2] = —a[HD][O,]

where « is a constant of proportionality (also called the reaction constant) and
where the square brackets denote the concentration. Notice that while Hb 4+ Oy —
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HbO, describes a process on the level of the individual molecules, the above system
of ODEs describes the behaviour of a population of molecules.

Applying the same formalism to the second “reaction” we get

%x = —fzy
(7) @y = —Bxy
%7 = +Bxy

where x denotes the population density (=concentration) of the prey, y the popu-
lation density of hungry predators and z that of satiated predators. Again, while
the reaction prey + hungry predator — satiated predator describes individual be-
haviour, the ODEs describe changes on the population level.

A predator typically does not meet a prey merely by chance, and they also usually
are not “well-mixed” but tend to live in groups, but when we apply the principle
of mass-action that is exactly what we assume. A model is never the real thing
but just an approximation. There are other modeling principles than mass-action
that are more suitable to capture population structure in space. For now we stick
to the mass-action principle only.

1.6. Bimolecular and monomolecular reactions. In chemistry there are two
kinds of elementary reactions: the monomolecular reaction in which a single mol-
ecule undergoes a reaction and changes into one or more other kinds of molecules
all by itself, and the bimolecular reaction in which two molecules react with one
another to produce one or more other kinds of molecules. Tri-molecular reactions
or reactions of an even higher order require a chance meeting of three or more
molecules at the same time. Such meetings are very improbable and hence must
be exceedingly rare.

Examples of bimolecular reactions have already been given. An example of a
monomolecular reaction is the release of oxygen into the blood by oxygenized
haemoglobin:

(8) HbO, — Hb + O,

This reaction happens with a constant probability per unit of time per HbO,
molecule. The rate of change in the concentration of HbOy molecules is therefore
proportional to the HbOs concentration itself:

gHb] = +9[HbO,]
(9) 71102] = +7[HDO,]
4[HbOy] = —~[HbO,)
And here is an example of a monomolecular reaction as a model for a predator
digesting its prey:

(10) satiated predator N hungry predator
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with corresponding population equations

d

sy = +0z
(11) 9

57 = —0z
Other examples of processes that can be modeled as a monomolecular reaction:
the binary fission of a cell, cell death, asexual reproduction, maturation, and di-

vorce.

1.7. Reaction networks. Different reactions can be combined into a so-called
reaction network:

(12) prey + hungry predator Py satiated predator
satiated predator BN hungry predator
The total effect of the reactions on the population densities is equal to the sum of

the effect of the individual reactions:

%x = —fzy
(13) @y = —fazy+0z

sz = +PBxy—dz

We now shall apply the principle of mass-action to derive the logistic equation.

1.8. A derivation of the logistic equation. Let X denote a single individual
and consider the reaction network

X % X+X (birth)
(14) X -4 (death)
X+X — X+1 (contest & death)

Let x denote the population density. Applying the principle of mass-action, the
population equation is

dx c
1 at 4 )
(15) o br — dx 23:
which we can rewrite as
dx T
1 & _ (1 - —)
(16) o rT %
where
(17) r = b—d

K = 2(b—d)/e

Returning to the question whether » and K can vary independently or whether
they are correlated in some specific way, we see that if we vary r by varying the
birth and death rates b and d, then K will vary in concert. However, if we vary K
by varying the contest rate ¢, then r remains unaffected.
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1.9. Another derivation of the logistic equation. Let P denote an individual
plant, S an individual seed and E an empty (i.e., unoccupied) site, and consider
the reaction network

P % S+ P (reproduction)
(18) S+E 2 p (germination & establishment)
P 5 E (plant death)

s 2§ (seed death)

Let p, s and e denote the densities of plants, seeds and empty sites. Applying the
principle of mass-action we get the following population equations:

%p = +ise —p
(19) @g = ap —fse —Is
e = —Bse +vp

Notice that dp/dt + de/dt = 0, i.e., p + e does not change, which makes a lot
of sense, because sites are either occupied (p) or empty (e) so that the total site
density eqg := p + e stays constant. We use this to eliminate the variable e from
the above system:
(20) %p - +63(60 - p) —Pp

7S5 = ap —Ps(eo—p) —ds
Now suppose that both the rate of seed production («) and the death rate (¢) of
seed are very high compared to the colonization rate (8) and the death rate ()
of plants. For many plant species this seems quite a realistic assumption. Then
changes in s are fast compared to changes in p. If the difference is big enough,
then s changes on a timescale where p stays virtually constant. Only retaining the
large terms ap and ds in the equation for s and ignoring the small term Gs(ey — p),
we have approximately

ds
21 = —ap—
(21) o = P Jds

where p can be treated as a constant.

Plotting ds/dt as a function of s gives Figure 3, from which it can be seen that
s = ap/d is a stable equilibrium. However, since p is not really constant but
changes (albeit on a much slower timescale) we call this not just an equilibrium
but a quasi-equilibrium.

Substituting s = ap/d into the equation of the slow variable p we get

dp ap

—(eo —p) —p

(22) )

which can be rewritten as

(23) a7 (-%)
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FIGURE 3. Plot of ds/dt as a function of s.

where

ro= ooy
(24)

K = e —;—g

Since all parameters occur in both the r and the K, we see that with the present
mechanistic underpinning they cannot be varied independently. Not only must
they vary together, they must do so in a specific way as they are both functions
of the same parameters.

1.10. Comparison of the two mechanisms. Figure 4 illustrates some differ-
ences in how r and K co-vary as a consequence of changes in the birth and death
rates for the mechanisms given in the two previous sections.

e e II
. I 8 110 1

<
-
o
-

FIGURE 4. Relation between K and r in the logistic model depend-
ing on changes in birth and death rates.

In the figure on the left, varying birth rate b in (17) gives line I and varying birth
rate a in (24) gives the curve II. In the figure on the right, varying death rate d
in (17) gives line I, varying death rate « (for established plants) in (24) gives line
IT and varying death rate § (for seeds) in (24) gives curve III.
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1.11. Conclusion. Someone once said that a model is an equation with an inter-
pretation. If this is true, then putting noise on the logistic equation by varying the
r and/or the K in an arbitrary way without accounting for the underlying mecha-
nisms has no interpretation, and so the logistic equation would stop to be a model
at all. How to vary r and/or K in a meaningful way depends, as we have seen, on
the underlying individual processes, i.e., on the underlying mechanism.



