Measure and integral

Ilkka Holopainen

August 29, 2017



2 Measure and integral

These are lecture notes of the course Measure and integral (Mitta ja integraali).

0 Some background

0.1 Basic operations on sets

Let X be an arbitrary set. The power set of X is the set of all subsets of X,
P(X)={A: AcC X},
and any subset F C P(X) is called a family (or collection) of subsets of X. The union of a family
Fis
U A={r e X:x € A for some A € F}
AeF

and the intersection (of F) is
ﬂ A={reX:zecAforal Aec F}.
AeF

Let A be an index set (set of indices) and suppose that for every a € A there exists a unique
subset V,, C X. (In other words, a +— V,, is a mapping A — P(X).) Then the collection

F={Vy:a€ A}

is an indexed family of X.
The union of an indexed family is

UVa:{xeX:xGVaforsomeaeA}
acA

and the intersection of an indexed family is

ﬂV ={reX:zeV, foral a € A}.
acA

We denote also
U V, and ﬂ Va, if A is clear from the context.

Example. 1. Let F C P(X). We can interpret F as an indexed family by using F as the index
set. That is, if & € F (thus « is a subset of X), we write V,, = . Then F = {V,,: o € F}.

X = U {z}, {z} = a singleton.
zeX

If the index set is N = {1,2,3,...}, we denote

UV” or EOJV,L or UVn,

neN n

and

ﬂVn or ﬁVn or mV"'

neN n
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Sequences (of sets) are denoted by (V;,), (Vo)221, (Vi)nen, or Vi, Vo, .. ..
The difference of sets A, B C X is

A\B={ze X:xz € Aand z ¢ B}.

The complement of a set B C X (with respect to X) is

B°=X\B.
Remark.
A\ B=AnB".
4 )
X ANB¢=A\B

S J

Theorem 0.2. Let {V,,: o € A} be a family of X. Then the following de Morgan’s laws hold:
(0.3) (Uva) =V
and

(0.4) (va) =V

Let B C X. Then the following distributive laws for union and for intersection hold:

(0.5) Bn(Jva) =BV
and

(0.6) BU([Va) =[)(BUVa).
Proof. (0.3):

xe(UVa)c — a:gZUVa — VYa:z €V, < Va:z eV < xeﬂvg.
(0.4): Similarly.
(0.5):

:EGBO(UVQ) <— xEBand:EGUVa <= x € B and x € V, for some o € A

a

<~ z € BNV, for some a € A <— a:EU(BﬂVa).

67

(0.6): Similarly.
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The images and preimages of the union/intersection of a family.

Let X and Y be non-empty sets and f: X — Y a mapping.
The image of a set A C X under the mapping f is

fA) ={f(z): z€ A}. (CY)

We usually abbreviate fA.
The preimage of a set B C Y under the mapping f is

f7H(B)={re X: f(z) € B}).
We also abbreviate f~'B and denote
7 ) =y,
if y € Y. [Note: f need not have an inverse mapping.]

Theorem 0.7. Let f: X — Y be a mapping and let {Vy: a € A} be a family of X, and let
{Wg: € B} be a family of Y. Then

(0.8) FUva) = rva

(0.9) T Jwe) =
5 5

(0.10) O YWs) =) F'Ws.
5 5

Proof. (0.8):

yef(UVa) — y= f(z) andwEUVa < y = f(z) and z € V, for some a € A

«

<~ y € fV, for some a € A <— yEUfVa.

«

(0.9) and (0.10): Similarly. O

Remark. It is always true that

F(YVa) € () fVas

but the inclusion can be strict. The equality f(NaVa) = NafV, holds, for example, if f os an
injection.
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Countable and uncountable sets

Countability is a very important notion is measure theory!

Definition. A set A is countable if A = () or there exists an injection f: A =+ N ( < T a
surjection g: N — A).
A set A is uncountable if A is not countable.

Remark. 1. A countable <= A finite dérellinen (including () or countably infinite (when
there exists a bijection f: A — N).

2. A countable <= A = {z,,: n € N} (repetition allowed, so that A can be finite).
3. A countable, BC A = B countable.

Theorem 0.11. If the sets A, are countable VYn € N, then

U A,, is countable.
neN

(”countable union of countable sets is countable”.)

Proof. We may assume that A, # 0 V n € N. Since A, is countable, we may write A4, =
{m(n): m € N}. Define a mapping

9: NxN—=U,A,, g(n,m)=zn(n).

Then g is a surjection N x N — U, A,,. Hence it suffices to find a surjection h: N — N x N, because
then
goh: N — U An
neN

is surjective and therefore U, A,, is countable. An example of a surjection h: N — N x N is:

(1,1) (1,2) (1,3) (1,4) (1,5)
=h(1) =h(3) =h(6) =h(10) =h(15)
e e e a

(2,1) (2,2) (2,3) (2,4)
=h(2) =h(5) =h(9) =h(14)
s a a
(3,1) (3,2) (3,3)
=h(4) =h(8) =h(13)
a s
(4,1) (4,2)
=h(7) =h(12)
a
(5,1)
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Corollary. The set of all rational numbers
Q:{% | n,m € Z, n#0}
is countable. Reason: The set
A ={= I nym € Z, n#0, |m| <k |n| < k}

is finite (and hence countable) Vk € N. Theorem 0.11 = Q = UgenAy countable. O

Example. (Uncountable set). The interval [0, 1] (and hence R) is uncountable.
Idea: z € [0,1] = =z has a decimal expansion

z =0,a1a9a3 ...,

where a; € {0,1,2,...,9}.
Contrapositive: [0,1] is countable, so [0,1] = {x,,: n € N}. Points x,, have decimal expansions
z1 =0, agl)agl)aél) ..

z9 =0, agz)ag)ai(f) ..

z3 =0, ag?))ag?’)ags) ...

xn =0, agn)aén)agn) cal
On the ”diagonal” there is a sequence agl), aéz), a§3), e ,a&”), ..., Where a%n) is the nth decimal of

Zyn. Let x € [0,1] be defined by = = 0,b1bebs . .., where

(0.12)

, _ [a? 2 el e {0127},
" a,(qn)—Q, ifa,(qn)G{S,Q}.

The nth decimal of z satisfies |b, — a'| = 2 ¥n € N, and therefore x # x,, Vn € N. This is a
contradiction, because [0, 1] = {x,: n € N}. Hence [0, 1] is uncountable.

[Note: A decimal expansion need not be unique: for instance, 0,5999... = 0,6000.... However,

this makes no harm, because in (0.12) b, = al” + 2.]

Infinite sums.

Let A # () be an arbitrary index set and a, > 0 Va € A. Question: What does the sum

>

acA

mean?

Define
Z a, = supq Z aq | Ap C A finite}.

acA acAy
We will return to this a bit later.
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0.13 Euclidean space R"

n times

n_ T .
R" =R x --- xR Cartesian product

The elements are called points or wvectors.
reR" <= z=(r1,...,2n), ; €ER, j=1,...,n.

Algebraic structure.
The sum of points z,y € R™ is

r+y= ($1+y1""’$n+ym) c R™.
The product of a real number A € R and a point x € R” is
Ar = (Azq,..., \x,) € R™

Zero vector
0=0=1(0,...,0).

The inverse element (point) of x € R™ is
—r=(—Dzx=(—x1,...,—Tp).
The difference of z € R™ and y € R™ is
r—y=1a+(—y).

In R™ the addition and multiplication by a real number satisfy the axioms of a wvector space, for
example

z+y=y+z, z+0=0+z=uz,
Mz4+y)= X+ Ay, A+p)z=>Ar+pr etc
Vz,y e R", A\, p € R.

The inner product of x,y € R™ is
n
:Ey:ZnyZ c R.
i=1
Denote

n 1/2
|| =V -x = (Z :EZ:EZ> norm of x.
i=1

The Euclidean distance in R".

The distance between z,y € R" is

eyl = (Z(x —y,)?) "
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Often we write d(z,y) = |r — y|. Then d is a metric in R™, i.e. the mapping d: R" x R" — R
satisfies the axioms of a metric:

dz,y) >0 Vz,yeR"

dlz,y) =0 <= z=y

d(z,y) =d(y,z) Vr,yeR"

d(z,y) < d(x,z)+d(z,y) Vz,y,z € R" (triangle inequality, A-ie).

Open sets and closed sets in R".

The Euclidean metric d determines open and closed sets of R™ (and hence the topology of R™)
as follows:

Let x € R™ and r > 0. The set

B(z,r)={yeR": ly—z| <r}
is an open ball with the center z and radius r and

S(e,r) ={y e R": [y — x| =}
is the sphere (centered at x and with radius r. Similarly,

Bz,r)={y eR": [y —z| <r}

is a closed ball (centered at x with radius r).
A set V C R™is open if Vo € V 3 r = r(x) > 0 such that B(z,r) C V.
A set V C R™ is closed is R™ \ V' is open.

S(z,r)

\ r—lz—y/ >0

Example. 1. B(z,r) is open Vz € R™,r > 0 (A-ie, see the picture above).
2. A closed ball B(x,r) is a closed set.
3. R™ and () are both open and closed.
4. A half open interval, e.g. [0,1), is neither open nor closed.
Remark. The closure of a set A C R" is
A={r€R": x € Aorxis an accumulation (or a cluster) point of A}.

Recall that x € R™ is an accumulation point of A C R™ if Vr > 0 B(z,7) N (A\ {z}) # 0. In R™ it
holds that B(x,r) = B(z,r).

Remark. If (X, d) is a metric space, i.e. d: X x X — R satisfies the axioms of a metric, we can
define open and closed sets of X by using th emetric d as in the case of R™ by replacing |y — z|
with the metric d(x,y).
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The following result holds in general:

Theorem 0.14.

(0.15) Vo CR"™ open Ya € A (arbitrary index set) = U V. open;
acA
(0.16) Vo CR"™ closed Vo € A = ﬂ Vo closed;
acA
k
(0.17) Vi,..., Vi, CR"™ open = m Vj open;
j=1
k
(0.18) Vi,..., Vi CR" closed = U Vj closed.
j=1

Proof. (0.15):

T € UVa:>E|oz0€.A s.t. € Vg,
acA

Vao open = 3 open ball B(z,r) C Vg, C U Va.
acA

(0.16):
Vo closedVa = VI openV o
019 | Jye () open

= ﬂVa closed.

(0.17) and (0.18): (Exerc.).

Remark.

V;j open Vj € N % m V; open,
j=1
Vj closed Vj € N % U V; closed. (Exerc.)

Jj=1

1 Lebesgue measure in R”

1.1 Introduction

A geometric starting point: If I = [a,b] C R is a bounded interval, its length is

UI)="b-a.
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(Similarly if I is an open or half open interval.)
A set I C R™ is an n-interval if it is of the form

I=I % %I,

where each I; C R is an interval (either open, closed, or half open).

An n-interval I is an open (respectively closed) n-interval if each I; is open (resp. closed).
Let I; has the end points a;, b;; a; < b;. Then the geometric measure of I is

0I) = (b — ar)(by — ag) -+~ (by — an) = [ [ (b5 — ;)
j=1

(n =1 length, n = 2 area, n = 3 volume). Define ¢(0)) = 0.
Our goal would be to define a "measure” as a mapping

my: P(R™) — [0, +00],
such that it satisfies the conditions:
(1) mp(E) is defined V E C R™ and m,(E) > 0.
(2) If I is an n-interval, then m,,(I) = ¢(I).
(3) If (Ey) is a sequence of disjoint subsets of R" (i.e. E; N Ey =0 if j # k), then

[ee)
mp (U2 Ey) = Zmn(Ek) countably additivity.
k=1

(4) my, is translation invariant, i.e.
mn(E + ) = my(E),
where ECR", z e R", and E+x={y+x|y€ E}.

It turns out that there exists no such mapping that would satisfy all the conditions (1) — (4)
simultaneously. In the case of the (n-dimensional) Lebesgue measure m,, we drop the condition
(1). Hence

my: LebR™ — [0, +00],

will be a mapping that satisfies the conditions (2), (3) and (4), where
LebR"™ C P(R")

is the family of Lebesgue measurable sets. The family LebR"™ contains, for instance, all open and
closed subsets of R".
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1.2 The Lebesgue outer measure in R”

Convention.
a+ 0o = 00+ a = o0, a # —00
a—00=—00+a=—00, a # oo
00 — 00, —00-+ 00 not defined
—(00) = —00, —(—00) = 0
00, a>0
©-a=a-00=4¢—00, a<0
0, a= Note! 0-00 =0
—o0, a>0
(—0)a =a(—0) =< 400, a<0
0, a=

(—00)oo = 00(—00) = —o0
00, a>0
a
6 = q —09Q, a<0
not defined, a=0
2 -2 —0, aeRr
0o —00
£00 not defined
+oo

Recall: If (a;);en is a sequence such that a; > 0V j, then either

k

o0 o0
Zaj: lim ZajGR or Zaj:+oo.
j=1 Jj=1

k—o00 4
J=1

Reason: partial sums Z?:l a; form an increasing sequence.
Let A C R™. Consider countable open covers of A (possibly finite)

F=A{L,1I,...},

where each Iy C R" is a bounded open n-interval (or @) and

AC G 1.
k=1
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| | /

Then we say that F is a Lebesque cover of A. We form a series

S(F) = iwk), 0 < S(F) < +oo.
k=1

Definition. The n-dimensional (Lebesgue) outer measure of A is

‘ my (A) = inf {S(F): F is a Lebesgue cover of A} . ‘

(Later we will prove that closed n-intervals would work as well.)

Remark. 1. Denote J, = {z € R": |z;| < k Vj} (open n-interval). Clearly

o0
R" = J,
k=1

and therefore always there exist open covers U2 ;I O A (and hence inf exists).

2. I, C R™ open n-interval = 0 < {(I;) < oo = the sum is well-defined and
0<> U(Ii) < +oo.
k=1

3. The outer measure m,(A) depends (of course) on the dimension n. If n is clear from the

context, we abbreviate m*(A4) = m? (A).

4. Tt follows directly from the definition that Ve > 0 there exists a Lebesgue cover F of A
(usually depending on €) such that

S(F) <m*(A) +e.
(We allow m*(A) = +00.) Note that it is usually not possible to find a Lebesgue cover F of
A for which m} (A) = S(F).
5. Thus A — m*(A) is a mapping P(R™) — [0,0¢], in particular, m* is defined in the whole
P(R™).

Example. 1. Let n =2 and let A = {(2,0): a <z < b} C R? (a line segment in the plane).
Claim: m5(A) = 0.
Proof: Let ¢ > 0 and I, =]a — ¢,b + ¢[x] — £,¢[C R? an open 2-interval.

e—0

ACIL.=0<m5A) <lI.)=2b—a+2) —0,
hence m3(A) = 0.
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2. Let n = 1. Consider the set of rational numbers Q C R.
Claim: m;(Q) = 0.
Proof Since Q is countable, we may write Q = {g;: j € N}. Let € > 0 be arbitrary. For each
j € Nlet

g g
Li=]e— gt + 5[ CR

be an open interval. Its length is ((I;) = 2¢/27T1 = ¢/27.

el VjeN=Qc|JL=
J

o) 00 c o) 1 0
0 <mi(Q Z 22_252525——”),

hence m7(Q) = 0.
3. Similarly, A C R™ countable = m;(A) = 0.

4. Let A C R" be a bounded set, that is 3R > 0 such that A C B(0, R). Then A C I, where

n times

I=]—R,R[x---x]—R,R[ open n-interval.

R

=
N g

m*(A) < ¢(I) = (2R)".

We get an estimate

Basic properties of the (Lebesgue) outer measure.
Theorem 1.3. (1) m’(0) = 0;
(2) ”monotonicity”: A C B = m}(A) <m}(B);

(8) 7subadditivity”:  Aj, Ag,... CR" =
ma (U 4) < 3 _ma(4))
j=1 j=1

Remark. (3) holds also for finite unions Ué‘?zl(Aj) (choose Agiq =---=10).

Proof. (1): Clear.
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(2): Let F be a Lebesgue cover of B.

ACB = F isalso a Lebesgue cover of A definitfon (A) < S(F).

Take the inf over all Lebesgue covers of B = m}(A4) < m}(B).

(3): Denote A = U;A;. Let € > 0. For each j choose a Lebesgue cover F; = {I;1,lj2...} of A;
such that _
S(Fj) < my(4;) +¢/2.

Now F = J; Fj = {Ljx: j € N,k € N} is a Lebesgue cover of A, hence (by definition)

m’(A) =D S(F) <) mi(A) + Y e/27 =D "mi(4)) +e.

Jj=1 j=1 j=1 j=1

Letting ¢ — 0 we get the claim.

Remark. Above we need some facts on ”summing” (more precisely, why S(F) = >22, S(F;))?
See Lemma 1.7 and 1.8 below.

Theorem 1.4. Let A C R™. Then

(1.5) my(A+x)=my(A)
for all x € R™, where A+x={y+az:y e A};

(1.6) my,(tA) = t"my,(A),
whenever t > 0 and tA = {ty: y € A}.

Proof (Exerc.) O
On summing. Let I be an (index) set and a; > 0V i € I. If J C I is finite, we denote

SJ:ZCLZ', S@ZO.
ieJ

Definition.
Zai = sup{Sy: J C I finite}.
el
Lemma 1.7.
> o= lim Z ai.
ieN

That is, this "new” definition coincide with the usual one (for countable sums).
Proof Denote J, = {1,...,n}, S=),ya; (=sup{Sy:J CN finite}).

(S Jn) increasing sequence = 3 lim S; =95

n—oo

S;,, <8 = §<68.
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On the other hand,

JCNfinite = dneN st. JCJ,
= S§;<8;, <8
= S<S5 (taking sup over V J).
U

Next both I and J are arbitrary index sets (i.e. they may be uncountable). (In addition, we
abbreviate a;; = ag; jy.)

Lemma 1.8.

Z aij Zzzaij :ZZGU'

(i,j)EIXT iel jeJ jeJ iel

Proof Denote by Sy.s the sum on the left hand side, by Sy the sum in the middle, and by
Soik the sum on the right hand side.
(a): If A C I x J is finite, then 3 finite I' C I, J' C Jst. ACI xJ

= SASS]/XJ/(:*)ZZCLQSZZ@USS}(%

iel’ jeJ’ iel’ jeJ
= Suas < Skes  (taking sup over V A).

[(x): there is only finitely many terms in Sy« s/, so the order of summing does not matter.]|
(b): Let I' C I be finite and J/ C J be finite V i € I'. Denote

A={(i,j):ieljeJ}

Svas > S.A = Z Z Qg -

i€l jeJ!

Then

Take (V i € I') the sup over finite J/ C J

Svas > Z Z Qg

iel’ jeJ
sup over finite I' CI =  Syas > Skes

Similarly, Syas = Soik- O

Z aijzzzaijzzza“'

(4,5)eNxN ieN jeN JEN ieN

Corollary 1.9.

Remark. The subadditivity does not (in general) hold in the form

(1.10) ma ([ Ai) <D mi (40,
il icl
where A; CR", ¢ € I, and [ is an uncountable index set. Reason:

R"= | {z}, mi({z}) =0VeeR"
reER™
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If (1.10) would hold, then

0<my®) =mi( | fa}) < 3 mi({z}) = 0.

r€R™ r€R™

On the other hand, we will prove later that m; (R™) = +oo. This is a contradiction, so (1.10) does
not hold!
1.11 (Lebesgue )measurable sets

We will define the (Lebesgue) measurable sets of R™, denoted by LebR™, by using so-called
Carathéodory’s condition.
Recall the subadditivity (Theorem 1.3 (3)): A,BCR" =

m*(AU B) <m*(A) + m*(B).
Later we will prove that 3 A, B CR" st. ANB =0, but
m*(AU B) <m*(A) + m*(B).

In other words, the Lebesgue outer measure m* is not countable additive. We want to get rid of
this unsatisfactory behaviour and therefore we ”throw away” certain sets.
Let E C R" be given and let A C R™ be a "test set”:

A=(ANE)U(A\E) disjoint union
m* subadditive = m*(4A) <m*"(ANE)+m*(A\E).

ANE

A\E

Definition. (Carathéodory’s condition, 1914.) A set E C R" is (Lebesgue) measurable if
m*(A) =m"(ANE)+m*"(A\E) forall AcCR"
g
Remark. F CR" measurable <=
m*(A) >m*"(ANE)+m*(A\ E) forall ACR", with m*(A) < oc.
Reason: follows from the subadditivity and holds always if m*(A) = +oo.
Definition. If £ C R" is measurable, we denote
m(E) =m*(E) or my(E) if needed.

m(E) is the (n-dimensional Lebesque) measure of E.

We write
LebR" = {E C R": F Lebesgue measurable} C P(R").
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Hence
m =m*|LebR": LebR" — [0,00|, restriction of the outer measure.

Later we will show that
LebR"™ C P(R"™).

Theorem 1.12.
m*(F)=0 = E measurable.

Proof. Let A C R" be an arbitrary test set.

monotonicity
——

ANECE

monotonocity
e

m*(ANE)=0
m*(A) > m*(A\E)=m*"(ANE)+m*"(A\ E)
N—_——

=0

ADA\E

= F measurable.

O
Theorem 1.13.
E  measurable <= E°¢  measurable.
Proof. 1t s enough to show : Let E' be measurable and A C R”. Then
m*(A) =m*(ANE)+m*(AN E°)
=m" (A N (EC)C) +m* (AN E°)
= E° measurable.
O

Example.

ECR" countable 2 m*(E)=0

Thm. 1.12 Thm. 1.13
— —

E measurable E° measurable.

Special cases:

) € LebR, R € LebR,
rational numbers Q € LebR, irrational numbers R\ Q € LebR.

Let E1, Es,... be measurable. We will prove that
o o
U E; and ﬂ FE; are measurable.
i=1 i=1
To prove these statements we need some auxiliary lemmata. First the case of a finite union/intersection:

Lemma 1.14. FEi,...,E, measurable = Ule E;, and ﬂle E; measurable.
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Proof. | (a) union:

k k-1
E; = (U E) U Ey
=1 =1

= we may assume k = 2.
Suppose E; and E, are measurable. Let A C R" be a test set.

E{ measurable =
m*(A) = m*(AN Ey) + m* (AN EY)

E,; measurable, with test set ANE{ =
m*(ANEY) =m*(AN E{N Ey) + m*(AN Ef N ES)

m*(A) =m*(ANEy) + m* (AN Ef N Ey) +m* (AN Ef N ES),

(subadd. =) > m*(B)

where

B=(ANE)U(ANE{NE;)=AnN(E1U(E{NE)) =AnN (E1U(E2\ E))
:Aﬂ(ElLJEg).

Hence

m*(A) > m*(B) + m*(AN E{N ES)
=m (AN (E1 U Ey)) +m*(An (Ey U Ey)°)
= F{UFE,; measurable.

AN ES

‘ (b) intersection: | de Morgan, Theorem 1.13 ("measurability of the complement”) and part (a)
=

k k ¢
E;, = ( Ef > measurable.
=1 =1

7

Theorem 1.15. Ey, Es measurable = FEy\ Ey measurable.

Proof. El\E2 :ElﬂEg. O
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Lemma 1.16. Let F1,...,E, be disjoint and measurable, and let A C R™ be an arbitrary set.
Then

k k

i=1 i=1

Proof. ‘ ) The case k =2 : ‘ E; measurable, AN (Ey U E3) = B as the test set =

m*(B) =m* (BN E) +m*(B\ Ey)

=ANE; =ANE>

=m"(ANE;)+m" (AN Ey) ie. the claim.

‘ (b) general case: | By induction: Suppose that the claim holds for 2 < k£ < p, that is

Eq, ..., E, measurable P P
EiNE; =0, i#j = m*(An (| JE))=> m'(AnE).
ACR” i=1 =

Thus we get (for k=p+1)
AN (UL B) = A (UL Bi) U Bpi)

—
UP_, Ei, Epyq1 disjoint and measurable
p+1
m*(An (| E)) "= m*(An( UE +m* (AN Epy1)

p
=N M ANE) +m (AN Epp)
i=1
pt1

=Y m'(ANE;).
=1
O

Lemma 1.17. Let F = Uf; FE;, where the sets E; are measurable. Then there exist disjoint and
measurable sets I; C E; s.t.
o
E=|JF.
i=1
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Proof. Choose

F = Ey, [measurable]
Fy, = Ey \ Ey, [measurable (Thm. 1.15)]

k—1
Fy. = Ex \ U E;, [measurable (Thm. 1.15 and L. 1.14)]

&

— \ 4

r, -@

n-@

Then clearly
F,CcE Vi, E=|JF and FENF=0VYi#j

The main result of Lebesgue measurable sets

Theorem 1.18. Let Eq, Es, ... be a sequence (possibly finite) of measurable sets. Then the sets
UEi and ﬂEZ
i i

are measurable. If, in addition, the sets E; are disjoint, then

(1.19) m(U E;) = Z m(E;). (”countably additivity”)

Proof. Denote

S = UEZ =y UFZ-, F; measurable and disjoint,

k
Sc=JF, S.cs

L. 1.14 (measurability of finite unions) = Sy measurable. Let A be a test set. Then
m*(A) = m* (AN Sk) + m*(A\ Sk)

monot.

> m* (AN Sk) +m"(A\S)
k

116 Z *(ANE)+m*(A\S) VkeN.
=1
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Letting k£ — oo we get

(1.20) m*(A) > im*(Aﬂ F) +m*(A\ S)
subadd. -
SUmt (U2 (AN E)) +m*(A\ S)
= m*(ANS) +m*(A\S)

= 5= UEZ measurable.

Inequality (1.20), in the case A = S, and the subadditivity =

F —0
e subadd. (120
> om(F) > m(S) Zm GNE) +m S\S Zm

=1

If E; are disjoint, we may choose F; = E;, and therefore (1.19) holds.
The first part of the proof and Thm. 1.13 imply that (), E; = (UZ Elc)c is measurable. U

Example. Let A C R? s.t.
(1.21) m*(AN B(z,r)) < |z|r® Va € R?, Vr > 0.

Claim: m(A) =0

Proof. (a) Suppose first that A is bounded, so A C @ = [—a,a] X [—a,a] (closed square) for
some a. Let n € N. Devide @ into closed (sub-)squares @);, with side length = 2a/n, j =1,... ,n2.
Let x; be the center of Q);. Then

|zj| <2a and Q; C B(xj,2a/n) (rough estimates)

monot. (1.21) 3 4 3
= m"(ANQ;) < m*(AnB(z;,2a/n)) < |zj|(2a/n)’ < (2a)*n

(b) General case:

A= U A;, where A; = AN B(0, ) bounded.
jeN

A; C A = Aj satisfies the assumption (1.21) ®) m(A;) =0Vj

T2 (4) = 0.
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1.22 Examples of measurable sets

So far we know that:
m*(A) =0 = A and A° measurable.

Now we will prove that, for example, open sets and closed sets are measurable.
First:

I ¢ R"™ n-interval (open, closed, etc.) = I is measurable and m(I) = ¢(I).
We use (Riemann) integration:

Let I = I x --- x I, C R" n-interval, where I; C R is an interval, with end points a; < b;, j =
1,...,n. Let x;: R" — {0,1}  (the characteristic function of I)

(2) 1, zel
xTr) =
X1 0, z¢&1.

Choose an n-interval @ D I and (Riemann) integrate

bl b7l
/XI:/ / 1d$1d$n:(b1_a1)(bn_an)zg([)
Q al an

Lemma 1.23. Let I and Iy,...,I; be n-intervals s.t. I C U?:l I;. Then €(I) < -
furthermore, the intersections I; N I;, i # j, do not have interior points (i.e. no I;
contains an open ball) and I = U?:l I;, then ¢(I) = Z?:l ((I;).

()Iﬁ
s UF

k
]:
NI

Proof. Define x, x;: R™ = {0,1},

1, zel 1, ze€l;
x(z) = and x;j(z) = J
0, xz ¢ 1 0, T Q Ij.

Then it follows from the assumption I C U?Zl I; that x(z) < E?:l x;j(z) V € R™. Choose an
n-interval () that contains all the n-intervals mentioned above and (Riemann) integrate over @

~[x< [(Z0) =% [ =Y un)
Q Q@ j /e j
If the n-intervals I; do not have common interior points, then x(z) = 25:1 X;j(x) except possible

on the boundaries of n-intervals that do not contribute to the integrals. O

Lemma 1.24. If I is an n-interval, then

Proof. (a): Ye > 0 3 an open n-interval J D I s.t. £(J) < 4(I) +¢.

{J} Leb. cover of I = m*(I) < {(I)+
e > 0 arbitr. = m*(I) < (1).
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(b): Suppose first that I is closed. Let F be a Lebesgue cover of I. Since I is closed and bounded,
I is compact. So 3 a finite subcover Fy = {[3,..., I3} C F. Lemma 1.23 =

UI) < S(Fo) < S(F)
inf over VF = ((I) <m*(I).

Hence: ¢(I) = m*(I) if I is closed. Suppose then that I need not be closed. Let € > 0. Now 3 a
closed n-interval I. C I s.t. ¢(1.) > ¢(I) —e. Thus

monot

m*(I) > m*(I,)=1,)>(I)—c¢
e > 0 arbitr. = m*(I) > ¢(I).

O

Remark. The above holds also for degenerate n-intervals I = I x --- x I, C R™, where at least

one I; is a singleton. Then £(1) = my ().

Let A CR", € > 0 and let Ji, Ja,... C R™ be arbitrary n-intervals s.t. A C |J;2, J;. For each
i 3 open n-interval I; D J; s.t. £(I;) < £(J;) +¢/2°. Now {I1,I5...} is a Lebesgue cover of A, and
therefore m*(A) < >°72, 4(1;) < 322, €(J;) + €. (Recall a geometric series.) It follows that

m*(A) = inf{z 0J;): AcC U J;, J; arbitrary n—interval}.
i=1 i=1

Theorem 1.25. If I is an n-interval, then I is measurable and

Proof. 1. 1.24 = it suffices to prove that I is measurable. Let A C R™ be a test set. Claim:
m*(A) >m*(ANI)+m*(A\I).
Let € > 0. Then 3 a Lebesgue cover of A by open n-intervals F = {I1, I, ...} s.t.

S(F) < m*(A) +e.

I=A1 x---xA,
=
[j :]al,bl[x X]an,bn[

n-interval T ]’

Iinl= (]al,bl[ﬁAl) X oo X (]an,bn[ﬂAn) = {@

I; \ I is not necessarily an n-interval but
L\ =1
k

is a finite union of n-intervals s.t. the intersections I;NI7, and I}, NI7;, k # i, do not have interior

Ji
points.
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"
Ij,2 Ij

Lemma 1.23 and 1.24 =
o) ) + > u) Em f+§yzﬂ

k

Taking the sum over j =

mwAy+s>ﬂf):§: }:m (1}) +§:§:m
SUbgdd < ) o <U[” )

J
——
SANI DA\I

mon

SN ANT) + m*(A\ ).
Letting e -0 = m*(4) >m*(ANI)+m*(A\I). O

Theorem 1.26. (Lindeldf’s theorem) Let A C R™ be an arbitrary set and

U Va2 4,

acA

where the sets V, C R™, a € A are open. Then there exists a countable sub-cover

U Vo, D A
jeN

Proof. Exerc. O
Theorem 1.27. Open subsets and closed subsets of R™ are measurable.

Proof. (a) Let A be open. If x € A, 3 an open n-interval I(x) s.t. = € I(x) C A (3 an open ball
B(z,r;) C A and it contains an open n-interval).

{I(x): x € A} is an open cover of A.

Lindel6f = 3 countable sub-cover {I(z;): j € N}
= A= U I(z;) 1is a countable union of measurable sets
JEN

= A is measurable.

(b) If A is closed, its complement A€ is open and hence measurable = A = (A€)¢ is measurable.
O
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Example. Let f: R?2 — R? be continuous. Claim: fR? is measurable.

Proof.

R? = U Aj, where Aj = B(0,) si compact
JjEN
f continuous = fA; compact
= fA; closed = fA; measurable
fR? = U fA; = fR? measurable.
JEN

O

Recall: Let n,m > 1. A mapping f: R® — R™ is continuous <= f~'U C R" is open V open
UcCR™

If f: R™ — R™ is continuous and C' C R" is compact, then fC C R™ is compact. Reason:

fC C U U; open cover
el
= C CUier f~'U; open cover
= finite sub-cover
C compact

k k
cclJf 'y, = fecus.
j=1

j=1
More general measurable sets, o-algebras.

Fo sets UFi’ F; closed (e.g. Q, [a,b), (a,b])
€N

Gs sets ﬂ Gi, G;open (eg. R\Q, [a,b), (a,b])
€N

Fus sets ﬂ Aj, AjeF,
1€N

Gso sets U Bj, B; € Gs
1€EN

ete.

Definition. Let X be an arbitrary set. A family I' C P(X) is a o-algebra (”sigma-algebra”) of X
if
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(a) DeTy
(by AeTl = X\AeTl;
(c) Ajel, ieN = U2, A el

Remark. (1) If I is a o-algebra and A; € I', i € N, then also ), 4; € I" since

M=) = (U4 er
i i i=1
(2) We have proved: The family of Lebesgue measurable sets LebR" is a o-algebra of R™ (The-

orems 1.12, 1.13, 1.18).

(3) P(X) is the largest o-algebra of X; {0, X} is the smallest o-algebra of X; A C X (fixed)
= {0, X, A, A°} is a o-algebra of X.

Definition. The family of Borel sets Bor R” is the smallest g-algebra of R™ that contains all closed
sets.

Existence: Denote

B= ﬂ{F: ' is a o-algebra of R", T contains closed sets}.

(For instance I' = P(R") is a o-algebra of R™ that contains all closed sets.)
B is a o-algebra since:

(a) 0 € B;
(b) Ae B = A°eI' VI = A°eB;
(C) A, eB = UZENAZ'EFVF = UieNAieB'

The construction = B is the smallest o-algebra of R™ that contains closed sets, and so

| BorR" = B. |

Open sets, closed sets, F, sets, Gs sets, etc. are Borel sets.
Theorem 1.28. Every Borel sets is measurable.
Proof. The family of measurable sets Leb R™ is a o-algebra and contains closed sets, and therefore

BorR"™ C LebR"™.
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1.29 General measure theory

Definition. Let I' be a o-algebra in X. A function p: I' — [0, 400] is a measure in X if
(i) p(@) =0;
(i) A; €T, i €N, disjoint = (U2, 4i) = > ;en #(A;).  “countably additivity”
The triple (X, T, ) is a measure space.
Remark. 1. A measure pu is also monotonic:
ABel, ACB = 0<pu(A) <u(B).
Reason: A, B\ A €T disjoint, B=AU (B\ A)
= w(B) = p(A) +pu(B\ A) = p(A).
>0
2. A,BeTl, ACB, p(Ad) <oco = pu(B\A)=pu(B)—pnA).
3. A measure p is a probability measure if p(X) = 1.
Example. (1) n-dimensional Lebesgue measure
my: LebR™ — [0, 4+00]

is a measure.
Reason: LebR” is a o-algebra in R™ and m is countably additive.

(2) Let X # () be an arbitrary set. Fix z € X and define for all A C X

1, ifxe A,
n(A) = .
0, ifx ¢ A.

Then p: P(X) — [0,+00] is a probability measure (so-called Dirac measure at the point
z e X).

Reason: (a) P(X) is o-algebra.

(b) Let A; C X, j € N, be disjoint. Then

M(U Aj) = ZM(AJ')

since

x ¢ U;2; Aj = both sides =0
T € U]O’;l A; dii—0i>nt J exactly one jo € Ns.t. x € Aj;, = both sides = 1.

(3) p: P(X)—[0,400], u(A) =0 VA C X, is a measure.
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(4) Let a; >0, j € N,s.t. 3322, aj = 1. Define for all A C N
w(A) = Z aj.
JEA
Then p: P(N) — [0, 1] is a probability measure.

Definition. Let X be an arbitrary set. A mapping p*: P(X) — [0, 4+00] is an outer measure in X
if

(1) p*(0) = 0;

(2) ACc B = u*(A) < p*(B);

(3) 4 C X, jeN = p (U2 4j) <372, w7 (4)).
Furthermore, a set £ C X is (u*-)measurable, if (Carathéodory’s criterion)
(1.30) p(A) =p (ANE) + p*(A\ E)

holds VA C X.
Denote
M,«(X) ={F C X: E p*-measurable}

of M(X) is u* is clear from the context.
Remark. M(X) C P(X) is a o-algebra in X and the restriction
P M(X): M(X) — [0, +o<]

is a measure. Proof as in the case of Lebesgue measure.

1.31 Convergence of measures
Let X #0, I' C P(X) a o-algebra, and u: I' — [0, +00] a measure.

Theorem 1.32. Let A; € I', j = 1,..., be an increasing sequence (i.e. Ay C Ay C --- C X
(u-)measurable). Then

3

j—o0

m(

Note: A; e 'Vje N = [JjZ,4; €T

<.
Il

Proof.

U Aj = U( Ai\A;—1 ), Ayp=10 (aconvention)
st =1 ~—

disjoint, measurable

s » Aja
S
(-

Ajr1 \ Ay
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u countably additive =

“(U AJ) = ZM(A] \ Aj-1)
=1 =
e
= lim > p(A;\ A1)

Theorem 1.33. Let A; € I', j = 1,..., be a decreasing sequence (i.e. X D A D Ay D ---
(u-)measurable). If, in addition, u(Ag) < oo for some k € N, then

p([) Aj) = lim pu(4;).

Note: I' o-alg. = (52, 4; € I.

Proof. We may assume that u(A1) < oo. Denote (172, Aj = A and Bj = Ay \ A;. Then By C By C
- are measurable.
Aq
Az

B3

(@

Theorem 1.32 = u(| J B;j) = lim u(B)).

i1 j—o0
UBi=UJMi\4)=4\[)4,=4\4
j=1 j=1 j=1
Ay =AU (A1 \ 4;) disjoint union = p(Ay) = p(4;) + u(B;))

A; =AU (A1 \ A) disjoint union = u(Aq) = p(A4) + u(Ar\ A)
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= p(A) = p(Ar) — p(Ar \ A)  (here we need pu(A;) < 00)
= u(A1) — (| By)
j=1
= p(Ar) — lim pu(B;)
= p(A1) — jEI{.lo(M(Al) — u(4;))

— lim u(A;).

J—00

Remark. The assumption u(Ay) < oo for some k € N is necessary. Ex.

Aj:{(x,y)€R2zx>j}
A13A23A33"'

mQ(Aj) = 0 Vj
jeN jeN e

Remark. (An important application for instance in probability theory) Borel-Cantelli lemma: Let
(X,T', ) be a measure space, A; € I', j € N, and

A={x e X: 2 € Aj for infinitely many j € N}.

Then:

o0

> n(4)) < oo = pu(A) =0.
j=1

1.34 Non-(Lebesgue-)measurable set in R

Theorem 1.35. (Vitali, 1905)
LebR C P(R),

in other words, there exists a subset E C R that is not Lebesque measurable.

An idea is to find a set B C R, 0 < m*(B) < oo, and a decomposition of B

-
i=1

into disjoint sets A; s.t.
m*(A4;) = m*(A;) Vi.

Then some A; must be non measurable. A way to guarantee that the sets A; have the same outer
measure is to choose

A=A+

for some (fixed) A C R and z; € R, and use the translation invariance of the outer measure m*.
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Proof. Consider the quotient space R/Q whose elementys are equivalence classes E(z), = € R.
Ez)=E(y) <= z~y <= z—-yecQ.

We may write E(x) = x + Q. Choose from each equivalence class E(z), = € R, exactly one
representative that belongs to the unit interval [0,1]. Let A be the set of such chosen points
(representatives).

Claim: A ¢ LebR.

Assume on the contrary: A € LebR.

(i) The sets A +r, r € Q, are disjoint since:

re(A+r)N(A+s), rnseQ = z=a1+r and z=as+s, aj,ap€ A
= a1 —ays=s—1recQ

= ayp ~ay = E(al) = E(ag)
= a; =ay (because we choose exactly one representative)
= s=r.

(ii) m(A) = 0 (we use the tranlation invariance: A € LebR = A+ a € LebR and m(A) =

1
AcClo1] = A—l—EC[O,Q] Vn € N

= 2> m(|J(A+ D) disj:Ointh(A—I—%) = m(A)
n=1 n=1 n=1
(iil) R = U, cq(A +7):

r€ER = Jac€FE@)NA =>zr—a=recQ,acA
= rx=a+7r, acA
= rx €A+

(i), (i) ja (i) =

+oo =m(R) = Z m(A+r)= Z m(A) = 0. contradiction
reQ reQ

Remark. 1. Also in R", Vn > 1, 4 similar examples, and so

LebR” C P(R™).

2. If A C R is an arbitrary set s.t. m*(A) > 0, then 3 B C A s.t. B ¢ LebR.
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2 Measurable mappings

2.1 Measurable mapping
Denote R = R U {—o0} U {+00}.

Definition. Let A C R". A mapping f: A — R™ is measurable (w.r.t. o-algebra LebR") if f~la
is (Lebesgue-)measurable for all open G C R™. A mapping f: A — R is measurable if
(i) f~'G is measurable for all open G C R™,

(ii) f~!(+o00) is measurable, and

(iii) f~'(—o0) is measurable.

R™ R™

Remark. 1. f: A — R™ measurable =
A= f"'R™ CcR" is a measurable set.
Similarly f: A — R measurable =
A=fYR)U f 1 (+oo) U f(+00) CR™ is a measurable set.
2. f: A — R™ measurable, B C A measurable = f|B: B — R measurable.
Reason: G C R™ open =

1B~ G) = B, n TG

measurable  easurable

is measurable.

3. Let X be an arbitrary set and I' C P(X) a o-algebra.
Define: A mapping f: X — R is measurable (w.r.t. o-algebra I') if f~'G € I for all open
G CR.

Recall A mapping f: A — R™, A C R", is continuous at x € A if Ve > 0 30 = d(e) > 0 s.t.
f(B(:E, J) N A) C B(f(x),e).
f: A — R™ is continous if f is continuous at every x € A.

f
A

()
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Fact: f: A — R™ continuous <=
(2.2) f~'Gis openin A Y poen G C R™, ie. f7'G = ANV, where V C R" is open.
Theorem 2.3. A measurable and f: A — R™ continuous = f measurable.

Proof.

G C R™ open (2:22 f~'G openin A = Jopen V C R" s.t.
ff'\éa= A n V.  eLebR"
<~ —~

measurable measurable

= f measurable.
O
Theorem 2.4. If f: A — R™ is measurable, then f~'B is measurable for all Borel sets B C R™.
Proof. Denote I' = {V C R™: £~V measurable}. Then I is a o-algebra because:
(1) f7'0 = () measurable = @ €T,

(2) Vel = ff've= A\ f 'V measurable = V°eT,
<~ Lo

measurable measurable

(3) Vel ieN = f Y UenVi) =Ujen f7'V; measurable = (J; o V; €T

measurable

Furthermore T’ contains all closed sets because: F closed = F¢ open = f~lF = ( fYF C))c
—_—

measurable

measurable = F €T
Hence I' D Bor R™ (= the smallest o-algebra that contains all closed sets). O

Corollary 2.5. If f is measurable, then the preimage f~'(y) of a point y and the preimage f~11
of an interval are measurable.

Example. Let £ C R" amd xg: R™ — {0, 1} the characteristic function of F,

w1 Hren
:1;‘:
XE 0, ifzdE.

Claim: yg measurable function <= FE measurable set.
Proof. E = x3' (1) measurable (Cor. 2.5).
Let FE be measurable and G C R ope.

R”, if {0,1} C G,

0, if{0,1}nG =0,
E, if{0,1}NG = {1},
E¢, if {0,1} NG = {0}.

These sets are measurable = x g measurable function. O
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Theorem 2.6. Let f: A — R™ be measurable, A C R™, and g: B — R* continuous, where
fAC BCR™. Then go f is measurable.

Proof.

RF* 2.2
Gc | open } (:>) ¢~ 'G open in B
g continuous

= Jopen VCR"st. g 'G=BnNV
= (gof)'G=fNg'G) =N (BNV) Ach f~HV) measurable.

Warning: f and g measurable # ¢ o f measurable.
If f: A— R™, then

f=Ufm), f@) = (fi(@),..., fm(@),
where
fit A=R, fj(x) = (Pjo f)(x) and Pj(y1,...,Ym) = y; (= projection onto j’s coordinate axis).
Theorem 2.7. f=(f1,...,fm): A —= R™ is measurable <= f; is measurable Vj € {1,...,m}.

Proof. If f is measurable, then f; = P; o f is measurable (Thm. 2.6) since P; is continuous.
Suppose that f; is measurable Vj. Let G C R™ be open.

Lindeléf = G = U 19, 10 open m-interval (cf. proof of Thm. 1.27)
1€N

70 — Ifi) NETY. [(Z ﬂ P 1I(Z )R open

G = U FUO = U ﬂ f- 1P 11 U n f 11( measurable.

1€EN ieEN j=1 1€eN j=1
mcasurablc

O

Theorem 2.8. Let f: A — R and g: A — R be measurable. Then their sum and product are
measurable (whenever defined). Furthermore, \f, A € R and |f|*, a > 0, are measurable.
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Proof. Suppose first that f,g: A — R are measurable. Denote f + g = u o v, where
ALR?ER, v=(fg) and u(z,y)==z+y.

Thm. 2.7 = v measurable

. } = f+ g = uowv measurable.
u continuous

Note: The case f,g: A — R™ measurable = f + g measurable follows from Theorem 2.7.
Suppose then that f,g: A — R are measurable. [The sum f+ g is defined if there exists no point

x € A such that {f(x),g(z)} = {4+00,—00}.] Denote f + g = h. We know that A is measurable

(Remark 1.). On the other hand,

Uh™l(—o0)UAg, where Ag=h"'R.

Ug Y(+00) is measurable.

Ug !(—o0) is measurable.

= Ap is measurable.

beginning of proof
—

f|Ap and g|Ap measurable (Remark 2.) h~1G is measurable VG C R open

= h is measurable.

Product Similarly (Exerc.)

Special case of the product.
f\“ |f|* = wo f, where u(x) = |z|* continuous if @ > 0. Thm. 2.6 = |f|* is measurable. O

From now on we consider only functions f: A — R, A C R™.
An important basic criterion:

Theorem 2.9. Let A C R" be measurable and f: A — R. TFAE (= the following are equivalent)
(1) f is measurable;
(2) E,={z€A: f(z) < a} is measurable Ya € R;
(3) El ={x€ A: f(x) > a} is measurable Va € R;
(4) E!={x € A: f(z) < a} is measurable Va € R;
(5) Elf={x € A: f(x) > a} is measurable Va € R.

Proof.
E!= A\ E, hence (2) < (5)
E= A\ E, hence (3) < (4)
El = ﬂ E,11/; hence (2) Thm. 118 (4)
JEN
Thm. 1.18
E, = U E" _1/; hence (4) (2)
jEN

Eq, = f7'((=00,a)) U f~'(—00) hence (1) = (2)

open
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Suppose that (2) holds [and thus also (3),(4),(5)] Claim: (1) holds, that is, f is measurable.
Proof: Let G C R be open.

G= U I;, 1I; = (a;,b;) open interval (Lindeldf)
JjeN

f7la = U f_llj, f_llj ={z:a; < f(z) <b;} = E;j N Ep, measurable
jeN
= f~'G measurable

fH(+o0) = m E’; measurable
jeN

fH(—o00) = m E_; measurable
jeN

= f measurable.

O

Remark. The assumption ” A measurable” is necessary in Theorem 2.9. Example: Let A be non-
measurable (Thm. 1.35) and zp € A. Define f: A — R,

—o0 if z = x.

flz) = {—I—oo if z € A\ {zo},

Then E, = {z € A: f(x) < a} = {x¢} is measurable Va € R, thus (2) holds but f can not be
measurable (since A non-measurable), that is (1) does not hold.

Example. Claim: f: R — R measurable <=

(1) f? measurable function,
(2) E ={z: f(x) > 0} measurable set.

Proof: Denote E, = {z: f(z) < a}. We must prove E, is measurable Ya € R (Theorem 2.9).
(i) Let a > 0.

fz)<a <= f(x)*<a®or f(z) <0, hence

E, = {z: [*(z) <d’}U E° measurable.
measurable (1) measurable (2)

(ii) Let a <0.

f(z)<a <= f(z)?>a?and f(x) <0, hence

Eq,={z: f*(x) > a®}N E° measurable.
measurable (1) measurable (2)

Theorem 2.9 = f is measurable.

f measurable Thm, 2.8 f? = f - f is measurable. Similarly: f measurable Thn 29 p
measurable. O
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Remark. f2 measurable % f measurable. Reason: Let £ C R be non-measurable and f: R — R,

1, ifxek,
xTr) =
@) {—1, if z € E°.

Then f2 is measurable as a constant function f2(x) = 1 but {z: f(x) > 0} = E is non-measurable

Thm. 2.9
set. =" f non-measurable.

2.10 limsup and liminf of a sequence

Definition. Let aj,as,... be a sequence in R. Denote

b, =supa;, ¢ = II>1£ a;.  (bg,cr € R allowed)

i>k
Then
by > by > >by >bpr1 >+ and
1 <ca < <k <cpyr1 <--- (sup/inftaken over a smaller set)
= limits
lim by = inf by =3 and lim ¢ =supcy =~ (Foo allowed).
k—o00 keN k—ro0 keN
Denote
B =limsupa; or lima; “upper limit” or ”limes superior”
i—00 i—00
v =liminfa; or lima; ”lower limit” or ”limes inferior”.
1—00 1—00
Thus

limsupa; = lim (sup ai) = inf (sup ai) ,

i—00 k—oo ">k keN"i>k
liminf a; = lim (inf ai) = sup(inf ai) .
1—00 k—o0 i>k keN >k

Remark. (a;) a sequence in R = lim Sup;_, o @; and liminf; ,. a; always exist (€ R) and are
unique.

Example. (1) oo, —00,00,—00,...; by =00Vk, ¢y =—0c0Vk = =00, vy=—00
(2) 1,2,3,4,...; bp=o00oVk, cx=kVk = f=0c0=1

(3) 0,1,0,1,0,1,...; bpy=1Vk, g =0Vk = =1, v=0

(4) 0,—-1,0,-2,0,-3,...; b, =0VEk, ¢ty = -0 Vk = =0, v=—c0.

Theorem 2.11. (i) liminf; , a; < limsup,_, ., a;,
(ii) a; < M Vi >ip = limsup, . a; < M,

(i4i) a; > m Vi >ip = liminf; ;o a; > m.
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Proof. (i) ¢ <bp = v =limp_oo cp < limp_yo0 b = B,
(ii) by < M Vk >idg = [ =limp by < M,

(i) cxg >mVk >ip = ~v=1limg_ 0 cx > m.

Theorem 2.12. Let (a;) be a sequence in R. Then

Jlim ¢; (€R) <= liminfa; = limsupa; (€ R).
i—00 i—00 i—00
In this case
lim a; = liminf a; = limsupa; (foo allowed).

1—00 1—00 i—00

Proof. Suppose that Ja = lim;_, o a;.
(al) a € R

e>0 = digst.a—e<ag; <a+eVi>i
= a—ec<c, <yY<pB<b, <a+e
€ arbotrary = v=p

(a2) o = o0

MeR = Figs.t.a; > M Vi>ig
= M<c¢,<v7<p
M arbitrary = v=pf= 00

(a3) a = —oo similarly.
denote

Suppose that § =+ =
(bl) « € R

e>0 = Ik st.by<ateVk>k
Jko s.t. ¢ > a—e Vk > ko
k> max{k;,ks} = a—e<cg <a<by<a+te

€ arbitrary = a = lim ag
k—o0

(b2) a = o0

MeR = dkgst.c,>MVk >k
= ap >cp > MYk >k

= lim a =
k—00

(b3) o = —o0 similarly. O
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2.13 Measurablity of limit function
Theorem 2.14. Let f;: A — R, j € N, be measurable. Then the functions

sup f;, inf f;, limsup f;, liminf f;
jEN JeN j—o0 Jj—o0

are measurable. If f =lim;_, f;, then f is measurable.

Remark. These functions are defined pointwise Vo € A. For instance, the value of the function
supjey fj at a point x € A is sup;ey fj(v) € R.

Proof. Denote g(x) = supjey fj(7), © € A. For all a € R:

(2.15)

measurable

{x e A: g(z) < a} © m {x € A: fj(x) <a} is measurable = ¢ = sup f; is measurable.
jEN JeN
((%): glz) <a < fj(z) <aVjeN)

(2.16)

inf f; = —sup(—f;) is measurable,
JeN jEN

limsup f; = inf (sup f;) is measurabel [(2.15), (2.16)],
o0 REN"j>k
liminf f; = sup(inf f;) is measurable [(2.15), (2.16)].
Jj—roo keN j2k
Thm. 2.12

If 3f = lim f;, then lim f; = ="""limsup f; is measurable.
Jj—00 j—o0 j—o0

Almost every(where) (abbreviated a.e.) = except a set of measure zero.
Example:

(a) a.e. real number is irrational, because m(Q) = 0.

(b) e=9® 12 0 for ae. z € R since m({0}) = 0.

Theorem 2.17. Let f,g: A — R. Suppose that f is measurable and g = f a.e. Then g is measur-
able.

Proof. f,g: A — R and f(z) = g(x) Vz € A\ Ay, where Ay C A, m(Ap) = 0. Let a € R. Denote

E,={zxe€A: f(x)<a} and F,={zecA:g(x)<a}l.
measurable
Fy = (FunAo) U (Fa\ Ao),
m*(F, N Ag) <m*(Ag) =0 = F,N Ay is measurable.
F,\ Ay =E,\ Ay is measurable

= F, Is measurable.
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Remark. Hence sets of measure zero do not affect on measurability = we may talk about
measurability of functions that are defined only a.e.

Theorem 2.18. Let fj: A — R, j € N, be measurable and fi — [ a.e. Then f is measurable.
Proof. f =limsup,_,, f;j a.e. O

Example. Suppose f: R — R and 3f'(x) Vz € R.
Claim: f’ is measurable.
Proof: Denote

fla+1/n) - f(z) hence f'(z) = lim g, ().

gn(x) - 1/7”L ’ n—o00

J f'(z) Vx € R = f continuous and therefore measurable = g, measurable (Thm. 2.8)

Thm. 2.14
=" f' measurable.

3 Lebesgue integral

3.1 Simple functions
Definition. A function f: R™ — R is simple if
(1) f is measurable,
(2) f20 (f(z) 20VzeR"),
(3) f takes only finitely many values.
Denote Y = {f | f: R"™ — Rsimple} (or Y,).

Remark. 1. feY = f(x)# oo Vz.
2. feY, E€lLebR” = fxygpeV.
Let f € Y and let aq,...,a; € [0,+00) be the values of f. Then

k
Ai=f _1(a,~) are measurable and disjoint, R"™ = U A;
=1

and

k
f= Z a; - X4, | is the standard representation of f.
i=1
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Definition. Let f € Y and f = Zle a; - X4, its standard representation. Then the integral of f
(over R™) is

k
I(f) = Z a;m(A;). (recall 0 - 00 =0)
i=1
If E C R™ is measurable, then the integral of f over FE is

I(f,E) = I(fxE).
In particular:
I(f) = I(,R"),
0 <I(f,E) < o0,
E €LebR" = I(xg)=m(E).

Theorem 3.2. If f €Y and Zle a; - XA, s the standard representation of f, then

k
I(f,E) = Zaim(Ai NE).
i=1

Proof. Omitted. O
Theorem 3.3. Let E;, j € N, be measurable and disjoint sets and let ' = UjeN E;. If f €Y, then
I(f,B) =) _I(].E)).

JEN

Proof. Let f = Zle a;x A; be the standard representation.

k
L.32 = I(f,E)=)_am(A;NE).
=1

Since A; N E = (J;en(A4i N Ej), then (by the countable additivity Thm. 1.18)

m(AiNE) =Y m(ANE) Vi=1,...k

jeN
k k
= I(fiE) =Y a;y mAinE)=>Y > am(A;NE))
=1 jeN jEN i=1
EN"I(f, ).
jeN

Remark. Clearly I(f,0) = I(fxp) = I(0) = 0, and therefore by Thm. 3.3 the mapping
LebR" — [0,+c], Ew~ I(f,E)

is a measure for every (fixed) f € Y.
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Convergence theorem 1.32 =

Corollary 3.4. If f € Y and E1 C Ey C --- are measurable, then
I(f, U]O-ilEj) = ]lig.lo I(f, E])
Theorem 3.5. Let f,g € Y, E measurable, and a > 0 a constant. Then
(i) f+g€Y and I(f+g,E) =I(f, E) + (g, £);
(ii) af €Y and I(af,E) = al(f, E).

Proof. (i): Clearly f+g €Y.
(a) Let E =R"™ and

k l
F=> ajxa;, 9= bixs
= i=1

the standard representation. Then

.. 3.2
(f + 9xains; = (@i + bj)xanp;, Vij =

(3.6)

I(f + g, A; N Bj) = (ai + b])m(AZ M Bj) = aim(Ai N Bj) + b]m(AZ N Bj)
[(f,AZ N Bj) + I(g, A; N Bj)

R™ = disjoint union of sets A; N B;. Theorem 3.3 =

I(f+9) 2 3 I(f +9,Ai 0 By) (29 > I(f,AinB;)+ > I(g,A;NB))

i,9 1,3 i,J
3.3
=1(f)+1(g)

(b) E arbitrary.

I(f+9,E)=1((f+9)xe) =I1(fxe +9xe) =1(fxe) + I(9xE)
= I(f,E) + I(g, E).

(ii): af €Y clear.
a=0 = I(af,E)=0=0al(f,E).

Let a >0 and f = Zle a;x A, the standard representation.

k
af = Z aa;x 4, standard representation.
i=1

k k
I(af,F) = Zaaim(Ai NE)= aZaim(Ai NE)=al(f, E).
i=1 i=1

Monotonicity properties.
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Theorem 3.7. (1) E measurable and f,g € Y, f < g (i.e. f(zx) < g(x)Vz) = I(f,E) <
(g, E);

(2) E C F measurable, f €Y = I(f,E) <I(f,F);
(3) feY, m(E)=0 = I(f,E)=0

Proof. (1): g=f+(9— f), where g — f >0 and g — f € Y. Theorem 3.5 =

I(9,E) 2 I(f,E) + I(g - f,E) > I(f,E).

>0

ECF = 0<xg<xrFr
= fxe<fxr (€Y)
fey

1

I(f,E) =I(fxe) < I(fxr) = I(f,F).

—
~

(3): If f = Zle a;X 4, is the standard representation, then

k
I(f,FE) :Zaim(AiﬂE) =0 since A;NE C E and m(E) = 0.

3.8 Lebesgue integral, f >0

Theorem 3.9. Let f: R" — R be measurable and f > 0. Then 3 an increasing sequence of simple
functions f; €Y, fi < fa <o, st f(x) =limj o fj(z) Vo € R™.

Proof. Deﬁng fi: R — R as follows: Divide [0, 7) into disjoint half open intervals Iy, ..., I, whose
length is 1/27, i.e.
L=[(G—-1)277,277), i=1,...,k=j2.
Define
(i—1)277, ifxe fL, (e (i—1)277 < f(x) <i279)
file) = {j, if 2 € f1[j,+o0] (e f(x)>j).

f measurable = f~!(I;) measurable and

f- [J,+oo] measurable. = fieY, j=12,...

fj = 0, takes only finitely many values

Construction = f; < fj41 (see the picture).
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| T (Gree)  fL

Claim: f;(z) = f(z) Vo € R".
(a): f(z) < +oo0 = Fjo > f(x). If j > jo, then

(i —1)277 < f(x) <277 for some i € {1,...,527}
= fi(2)=(i—-1)277 < f(x) <27 = fi(x) + 277 = flz) =277 < fij(z) < f(x)
= jgngo fi(@) = f(z).
(b): f(z) =400 = fi(z) =4V = fi(zx) = 400 = f(x). d

Definition. Let f: R” — R be measurable and f > 0. Then the (Lebesgue) integral of f over R™
is

/fzsup{f(so): peY, o< f}.

If E C R™ is measurable, then the integral of f over FE is

(3.10) [ =] e

Denote also

/ f= / fdm = / f(x)dm(x), m = n-dimensional Lebesgue measure.
E E E

If n =1 and E = [a,b], we denote [, f = fabf = fabf(a:) dr.
Convention. If f: A — R and E C A, then we define fxg: R” — R,

if FE
[xe(x) = {£($)’ 1{:2 Z E7

Then (3.10) defines [, f for all measurable f: A — R and measurable E C A.
Theorem 3.11. f €Y and E measurable = I(f,E) = [ f.
Proof. We may assume E = R" (otherwise replace f by fxg € Y).

@) f<f=I1f=<]f

) pev, p<f "2 1) <1(f) = [f<I).



Spring 2017 45

Basic properties of integrals.

Theorem 3.12. Suppose that the functions below are mon-negative and measurable and the sets
are measurable subsets of R™.

(1) f<g = Jpf<pg
() ACB = [,f< |9
(3) f(x) =0Ve € E = [,f=0
(4) m(E)=0 = [pf=0
(5) 0<a<oo = [paf=al,f.

Proof. (1): Let E=R", €Y, o< f = p<g =

< fr 2 [1< s

EeclLebR" = fxg <gxginR" %

Lr=[rwes [ow= [0

(2): fxa < fxsija (1) = claim.
(3): fxe=0 = [.f=1(0)=0.
(4): Let ¢ €Y, ¢ < fxg. Since ¢|R™ \ E =0, then ¢ = pxg and

I(g) = I(p, B) *H¥ o 22 /f—o

(5): If a =0, both sides are zero. Let a >0, ¢ €Y, o < fxgp = ap <afxp =

/af>1(a<,p)3‘5:ﬁa :>/af>a/f
f= afi/f/afyial/afia/f>/af

Relation to the Riemann integral.

Theorem 3.13. Let E C R" be bounded and f: E — R measurable, f > 0. If f is Riemann
integrable over E, then the

(Riemann integral) (R) / f= / f (Lebesgue integral).
E E

This is the case, for example, when E is a closed n-interval and f continuous.
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Proof. Choose a closed n-interval I O E. By definition

<R>/Ef=(R>/If><E and /Efz/fXEz/IfXE,

we may assume that £ = I (by replacing f with fxg). Let D = {I1,...,I;} be a partition of I
into half-open disjoint intervals. Denote

gi = inf f(z), gi=inf f(zr) = g <g; and
x€l; z€l;

Gi=sup f(z), G; =sup f(z) = G;>G,.

zel; x€l;

The (Riemann) lower sum is

where 1) = Zle Gix1, €Y. Clearly ¢ < f <1, and therefore
sup I<y
(3.14) mo< 19) 2 [ 1< [ v =1 <.
E E
Suppose that f is Riemann integrable over £. Then Ve > 0 3 a partition D as above s.t.
(3.15) mp < (R)/ f < Mp (always) and 0< Mp—mp <e.
E

Letting € — 0 we obtain from (3.14) and (3.15) =

<R>/Ef=/Ef.

Remark. The case where E is unbounded (improper Riemann integral) is more complicated. A
counterpart of Theorem 3.13 holds if f > 0, but not in general.

O

The Lebesgue integral is more general than the Riemann integral:

Example. Let f = xg, Q = rational numbers. Then f is simple because f~1(1) = Q and
f71(0) = R\ Q are measurable.

/ f=m(ENQ)=0 V measurable F C R.
E

On the other hand, f is not Riemann integrable over any interval [a,b], a < b,: Let D = {I3,..., I}}
be a partition of [a,b] into subintervals. Every I; contains both rational and irrational numbers.
Hence
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Theorem 3.16. Let f: E — R be measurable, f > 0 and Jpf < oo. Then f(x) < oo for a.e.
rze k.

Proof. Denote A ={x € E: f(x) = oo} (measurable set since f is measurable).
fle)>j Veed j=12,... = jxa<fxe Vi
= /E f = 1Gxa) = jm(4) ¥

Jj—00

0§m(A)§l/f—>0 = m(A) =0.
J JE
<00

Monotone convergence theorem.
Theorem 3.17. (MCT) Let f;: E — R be measurable and
0<fis<fo< - <fi < fipn<ee
Then
lim / fi= / lim f; (400 aloowed).

Proof. fi < fix1 = [pfi < [pfix1 = 3T alimit lim; [ f; = a (€ [0,00]). Similarly,
3 f =lim;_, f; that is measurable (Thm. 2.14).

i<t [f<f[r=a<[r
Need to prove: fEfga.

May assume: £ = R" (otherwise replace f;, f by functions fjxg, fxe (note: fixe  fxE)).
Let 0<b <1, p €Y, ¢ < f. Denote

E; ={z e R": fj(x) > bp(x)} = {x € R™: (f —bp)(x) >0} (measurable set).

f](l’) < fj+1($) Ve, Vj = Ej C Ej+1 V.

Claim: R" = (J32, Ej.
Let x € R" be arbitrary.

If p(x) =0, then x € Ej.
If p(z) > 0 then bp(x) < p(z) < f(x) (because 0 < b < 1 and ¢(x) < 00).
= Jjs.t. bp(x) < fij(x) = x € Ej.

o0
Hence R" = U E;.
j=1
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fi 2 fixe; = bpxe,

Measure and integral

:>/ sz/ box e, = bl(p, E; —>b[cp,UE —b[ ), as j — 00

H,_/
=Rn
= a=lm [ [;2b0(p) VpeY, p<f
J—00 E
S oa>h [ f YO<b<l

R”

=ty a > I

Remark. The order of f and lim can not be changed in general: Example:

) 1 )
fi=ixeym fi€, KE)Zszl &

fj(az)ﬁ—o%o VeelR

= / lim f;=0#1= lim / fj (the sequence (f;) is not increasing).
R J—00 J]—00 R

Example. Find the limit

0 e—:ct

im [ St
z—0+ 0 1+t

Solution: It’s enough to study the limit

[e’] e—xnt

A e

for all sequences (z,) s.t. z, > 2,41 > 0 and z, 0. Denote

e—mnt
1+¢2’

fn(t) = €[0,00) and n =1,2,...

Tp > Tpp1 >0andt €[0,00) = e ¥t < e ¥ttt

e—mnt e—mn+1t
= 0< fult) = < = t),
_fn( ) 1+t2 = 1+t2 fn—i—l( )
that is, the sequence (fy,) is increasing. Furthermore,
e—xnt oo eO-t 1
t) = = Vte 0, .
B =155 1+ 1482 0, 00)

MCT =

1 n(t)dt = 1 n(t)dt = dt = 1
A O A A

j—= Jo 1—|—t2

n—o0 J
3.13

j—o0 Jj—o0

1
dt

=" lim /j arctant = lim (arctan j — arctan 0) = /2.
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Reason for (x): MCT applied to the increasing sequence (g;),

X[0,5](t)
1427

95(t) =
(Note: In Theorem 3.13 the set E is bounded.)

Theorem 3.18. Let E C R"™ be measurable and f1,..., fr: E — R measurable s.t. fj = 0. Then

k k
/E;fk:;/Efk-

Proof. We may assume: E = R" and k = 2. Theorem 3.9 = 3 increasing sequences (¢;), (1;) of
simple functions s.t.

0j A fi and Y S fa as j— .
3.5 = I(p; + ;) = I(pj) + 1(¢;)

MCT = I(pj) = [¢; = [ fi and I(¥;) = [ fo,
:>/(f1+f2):/f1+/f2-
similarly, ¢; +; /" fi + fo and MCT =

I(p; +15) = [(f1+ f2)

O
Beppo Levi Theorem.
Theorem 3.19. Let E C R" be measurable and f;: £ — R measurable s.t. fi =2 0. Then
[Em=% [
jEN jEN
Proof. Denote uy = Z?:l fj- Then
0<u; <us <--- and uk%ij::u.
j=1
MCT and Thm. 3.18 =
= 1 ST ) 1
JLo= ] pim i kgaloZ/fa Z/fa

O

The next convergence result is also very important!

Theorem 3.20. (Fatou’s lemma). Let E C R" be measurable and f;: E — R measurable s.t.
f; =20V j€N. Then

/ liminf f; < lim inf/ fi (+00 allowed).
E J7eo JE

j—)OO
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Proof. Denote
gr(z) = inf fj(z), =€ E.
j>k

Then

0<gr <gry1 VkeN
gr measurable (Thm. 2.14)
g < fr and hm gr = hm 1nf fi

MCT = lim inf f; —/ lim g Mer hm / gk—hmmf/ < liminf/ fr.
Ek—)oo E E

E J—7 g <fp k—oo

Example. (1)
15 = 17X,/
lim fj(z) =0V2€R = liminf f; =0

]—)OO J—00

[ri=1vi

Fatou’s lemma holds in the form 0 < 1.
(2)
fi = X241
lim fj(x)=0V2z€R = liminf f; =0
j—o0 j—o0
[ 1= mlli.21) == 00 a5 j o

Fatou’s lemma holds in the form 0 < co.
Integral as a set function is a measure:

Theorem 3.21. Let f: R" — R be measurable, f > 0. Then the mapping
LebR"™ — [0, +o¢], E»—>/ f
E

1S a measure, i.e.
(1)
=0
)

(i1) if E; C R™ are measurable and disjoint, then

Lo

SRS

In particular,
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(iii) By C Ey C --- C R™ measurable =

/ f = lim f,
U;”;1 Ej o0 Ej

(iv) R™ D Ey D Ey D -+ measurable and fEl f<oo =

/ f = lim f,
Nj=1 E; J=o )R

Proof. (i): Thm. 3.12 (4); (ii): Exerc.; (iii) and (iv): Theorems on convergence of measures 1.32
and 1.33, .

Theorem 3.22. (i) Let f,g: E — R be measurable and f >0, ¢ > 0. If f = g a.e. in E, then

Jo7= s

In particular: f > 0 measurable and defined a.e. in E = fEf well-defined.
(i) Let f: E — R be measurable, f > 0. If [ f =0, then f =0 a.e. in E.

Proof. (i): Denote A = {x € E: f(x) # g(z)}. By assumption m(A4) =
& ”1/ el /E\Ag*/g—/

(ii): Assume on the contrary that m({z € E: f(z) > 0}) > 0. By Exercise, 37 > 0 s.t.

m({z € E: f(x >r})>0

denote =A
= /f > f > 7’/ x4 =rm(A) >0. contradiction
A

(*): ACE, () 0 fxa =rxal

O

Remark: Let (X,I', u) be a measure space, f I-measurable function X — [0, cc]. Define the
integral of f

/ f=sup{l(p): : X — R simple, p < f},
X

/Ef:/XfXE ifEeT.

The results in Section 3.8 (except Theorem 3.13 (Riemann int.)) hold.
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3.23 Lebesgue integral: general case

Let f: E — R be measurable and E C R™. Denote

fH(x) = max{f(x),0} (=
f(x) = —min{f(z),0} (= %(]f] — f) measurable).

(’f |+ f ) measurable)

N —

Then

ff@) =0,  f(z)>0

f@)y=f"@) = f (@), |f@=f"@)+f ()

(Note: above the case oo — 0o does not occur because either f*(z) =0 or f~(z) =0.)
Section 3.8 =

/f+ and /f_ defined (€ [0, 4+00]).
E E

/Ef:/Eer—/Ef_ (cf. f=ft—f)?

No(!) since now the (undefined) case co — oo may occur!

Can we always define

Definition. A function f: E — R is integrable in E if f is measurable and i} B fT < oo and
fE f~ < oco. Then the integral of f over E is

/Ef=/Ef+—/Ef— (€R).

Theorem 3.24. A function f: E — R is integrable in E <=  f measurable and

i<
[ A= [is

Then
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Proof. Measurability is included in the definition of integrability. Furthermore,

et _ 318 B " _
|f|—i/+i/:[E|f|—[Ef +/Ef < .
>0 —— =

>0
0< fH<Ifl = [pft<[plfl <oo
= f integrable in F.
0<f~<Ifl = [pf™ < [ulfl <o
Furthermore,
fA- /f*—/f‘\SVf*\+\/f‘\=/f*+/f‘
E E E E E E E
—
>0
3.18
L ey = s
O
Remark. f integrable in F it Gy |f(x)] <ooae xe€kE.
Theorem 3.25. If f: E — R is measurable, |f| < g and g integrable in E, then f is integrable in
E.
Proof.

/E!flé/Eg<oo.

Remark. It suffices that |f| < g a.e. in E, i.e.

m({z € B: |f(x)] > g(x)}) =0, then /E\f\=/E m+/m<oo

=A H,_/
<oo —0

Theorem 3.26. If f: £ — R is measurable and Riemann integrable, then f is Lebesgue integrable

n E and
/Efz(R)/Ef-

= 1(|f| +f), [ = l(|f| — f) Riemann integrable

Proof.

313 fT ja fT Leb. integrable and Riem./Leb.-integrals are same

= /Efz/Eﬁ—/Ef—:(R)/Ef*—(R)/Ef—=<R>[Ef.

Theorem 3.27. Let E C R"™ be measurable, f,q: E — R integrable in E and A € R. Then
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(i) f+ g integrable in E and fE(f—i-g) = fEf-l-ng;

(i) \f integrable in E and [y \f = X [5 3

(iii) f<g = [pf < [po;

(iv) m(E) =0 = [pf=0;

(v) f=g ae inE = fEf:ng.
Remark. f, g integrablein £ = f(z),g(z) € Rae. x € E = f+ g defined a.e. in E.
Proof. (i): Let h = f + g. Then h defined a.e. and measurable

|h| < |f|+|h| = /’h\ S/!f!—F/IQ\ < oo = h integrable
E E E
In general, h™ # f* +g", but a.e. in E:

W —h"=h=f4+g=fr—f +gt—g

= ht+f +g =h +ft+g" (functions > 0, integrate both sides (Thm. 3.18))

:>/h++/f_+/g_=/h_+/f++/9+ (integraalit < co)
E E E E E E

el f e
:/Ef+/Eg.

AT =AM ja (A)" =Af"

= font=afr o [on=af

= claim

(ii): (a) A>0

(b) A<0
AT =(=Nf" ja (Af)” =(=N)f", and the claim follows as above
(iii): (i) and (ii)) = g — f integrable and

fo= o+ [ nz=[r
>0

iv): m(E)=0 = [pff=0and [f-=0 = [,f=0
(v): f=gae. inE = ft=g" fT=¢g ae inFE

= /Ef+:/Eg+ ja /Ef_:/Eg_ = claim.

—~
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Convergence theorems

Theorem 3.28. (Dominated convergence theorem, DCT) Let E C R" be measurable and
(fj), j €N, a sequence of measurable functions s.t.

f(z) = lim fj(z) ae z€kE.

j—00
If3 g: E— R s.t. g is integrable in E and
Ifi(x)| < g(z), VjeEN, and a.e. z € E,

then f is integrable in E and

/Ef:jli_go/Efj. (Note/EfeR)

Proof. By redefining f;, f and g in a set of measure zero, we may assume

filx) —— EmiaN flx) VzeFE and
[fi(x)| <g(z) Vzek

= |f(z)| < |g(z)] Vweck.

g integrable in F, Thm. 3.25) = f integrable in E.

Fatou

g+fi>0 and g+ fj—29+f =

/g+/f /g+f>Fa%°“hmmf <9+fj>:11j“$£f(/];g+/ﬂfj)
/g+h]rgg.gf/ fi

N /féliminf/fj (note /g<oo>
E J—00 E E
— f; >0, therefore

X /f Lo " vmint [ o= p) =tmint ([ o~ [ 1)
- 0 —hiiizp/ f

= f > hmsup/ fi-

J—00

Hence

/f<hmmf/fj§hmsup/fjg/f = claim O
J—0 j—o0 E E
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Example. Find the limit
1
lim n/ z3/? sinE dx .
0 n

n—o0

Let f,(z) = naz—3/? sin £ = ((n/x)sin(x/n) g—1/2 1200, g1z Ak f(x), then

—1, as n—o0

/Olf:/(l)zﬁzz.

|sint| <tVt>0 = |(n/x)sin(x/n)|<1 VneN, Vze(0,1]
= |fa(z)] <272 = g(2) (= f(x)), g integrable in [0, 1]

DCT:>/fn /f_2

4 Fubini’s theorems

Here we just present Fubini’s theorems without proofs.
We identify RPT4 = RP x RY, p,q € N.

2 €ERPY = 2= (11,...,%p,Y1,...,7q) = (T,Y).
=z€RP =ycR4
R? {4} x RY
‘//wj;)
RP x {y} B
v R
! . @ f(z,y)
T ']Rp

Theorem 4.1. (Fubini’s 1. theorem, f > 0) Let f: RPT? — R be measurable and f > 0. Then
(1)

y+— f(z,y) is measurable for a.e. x € RP;
i.e. mp({z € RP: y — f(z,y) non-measurable}) = 0]

(2)
x — f(x,y) is measurable for a.e. y € RY;
(3)

T f(z,y)dmy(y) is measurable;
RY
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(4)

yr—>/ f(z,y)dmy(z) measurable;
RP

(5)

[t

I3 ( o1 @0) qu<y>) dmy(z)
/Rq < ALY dmp($)> dmy(y). (+00 allowed)

Theorem 4.2. (Fubini’s 2. theorem, general case) Let f: RPT? — R be measurable and suppose
that at least one of the integrals

/Rm’f” /R< Rq\f@y)\qu(y)) dmy(x), or

/Rq < Rp|f(:17,y)|dm;,,(x)> dmq(y)

18 finite. Then
(1) y— f(x,y) is integrable over R for a.e. x € RP;
(2) x+— f(x,y) is integrable over RP for a.e. y € RY;

(3) x> [oq f(x,y) dmy(y) is integrable over RP, i.e.

J,

(4) y— [po f(@,y) dmy(z) is integrable over RY;

|f(z,y)| dmq(y)| dmp(z) < oo
Ra

(5) f is integrable over RP*Y, and

/RM f= - < 5 fz,y) qu(y)> dmy(z) = /Rq ( . f(z,y) dmp(x)> dmy(y). (€R)

Below is a list of (some) books that can be used as an additional material.
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