EXERCISES FOR MARCH 29 The first two exercises are about β -numbers. **Exercise 0.1.** Show, by example, that the number $\delta > 0$ in Jones' L^{∞} traveling salesman theorem (Theorem 2.5 or Theorem 4.1 in the lecture notes) is necessary. In other words, the theorem fails for $\delta = 0$. Recall that a Radon measure μ is *smooth*, if it is doubling, and there is a constant $\theta > 0$ such that $\mu(B(x, \theta r)) \le \mu(B(x, r))/2$ for all $x \in \operatorname{spt} \mu$ and $0 < r \le \operatorname{diam}(\operatorname{spt} \mu)$. **Exercise 0.2.** This is Lemma 5.8 from the lecture notes; for hints, see the proof sketch there. Let μ be a smooth measure, and let P,R be (non-dyadic) cubes with $\ell(P) \sim \ell(R) \lesssim \operatorname{diam}(\operatorname{spt} \mu)$, and let ℓ_P,ℓ_R be lines, which minimise $\beta_{\mu,1}(P)$ and $\beta_{\mu,1}(R)$, respectively. Assume that $$\tau P \cap \tau R$$ contains a point of $\operatorname{spt} \mu$ for some $\tau < 1$. Then, ℓ_P and ℓ_R are very close in the following sense: $$\operatorname{dist}(z, \ell_R) \lesssim_{\tau} \min\{\beta_{\mu, 1}(P)\ell(P), \beta_{\mu, 1}(R)\ell(R)\}, \quad z \in \ell_P \cap P.$$ By symmetry, the same holds for $\operatorname{dist}(z, \ell_P)$, for $z \in \ell_R \cap R$. As a background for the next three exercises, you should keep in mind Theorem 3.12 from the book of Tolsa, which Henri proved on the first part of the course: if Γ is an AD regular curve with $\operatorname{diam}(\Gamma) < \infty$, then there exists an M-Lipschitz graph G such that $\mathcal{H}^1(\Gamma \cap G) \geq \theta \operatorname{diam}(\Gamma)$, where $\theta, M > 0$ only depend on the AD-regularity constants of Γ . Here an "M-Lipschitz graph" is a set of the form $$G = R(\{(x, f(x)) : x \in \mathbb{R}\}),$$ where R is any rotation or translation, and $f: \mathbb{R} \to \mathbb{R}$ is M-Lipschitz. Motivated by this, let's make the following definition: **Definition 1.** Fix $\theta > 0$. A bounded set $E \subset \mathbb{R}^2$ is called *graph* (θ, M) -rectifiable, if there exists an M-Lipschitz graph G such that $\mathcal{H}^1(E \cap G) \geq \theta \operatorname{diam}(E)$. Thus, a bounded AD regular curve is (θ, M) -rectifiable with θ, M depending only on the AD regularity constants. The next exercises investigate, to what extent **large subsets** of AD regular curves are still graph (θ, M) -rectifiable. I hope that your first instinct is the same as mine: they should also be graph (θ, M) -rectifiable with slightly worse constants, right? Well, if you thought so, think again... **Exercise 0.3.** Assume that Γ is a Lipschitz curve (not even necessarily AD regular), and $E \subset \Gamma$ is a bounded subset with $\mathcal{H}^1(E) > 0$. Prove that E is graph (θ, M) rectifiable for some $\theta > 0$ and $M < \infty$. ¹To make things a little easier, you may assume that Γ is a C^1 -curve. The general case reduces to this by a standard approximation result, but I don't want to make that a prerequisite for the exercise. So, subsets of Lipschitz curves are graph (θ, M) -rectifiable for some (θ, M) , but these numbers turn out to be **impossible** to quantify! The next exercise is just a lemma for the last one. **Exercise 0.4.** Let $E \subset \mathbb{R}^2$ be a graph (θ, M) -rectifiable bounded set. Prove that there is a line $\ell \subset \mathbb{R}^2$ such that the orthogonal projection $\pi_{\ell}(E)$ on to ℓ has length $$\mathcal{H}^1(\pi_{\ell}(E)) \gtrsim \left(\frac{\theta}{M}\right) \operatorname{diam}(E).$$ **Exercise 0.5.** Pick a large number n. Start the unit line segment $[0,1] \subset \mathbb{R}^2$, split it into n pieces of length 1/n, and rotate each piece counterclockwise by an angle $2\pi/n$. Then, split these pieces again into n pieces of length $1/n^2$, and rotate by $2\pi/n$. Repeat n times (so, heuristically, the total amount of rotation equals $n \cdot (2\pi/n) = 2\pi$). This process gives you a set E_n . Prove that $\mathcal{H}^1(E_n) = 1$, and that $E_n \subset \Gamma_n$ for for some AD regular curve Γ_n with $\operatorname{diam}(\Gamma_n) \sim 1$, where the regularity constants do not depend on n. Finally, prove that $\mathcal{H}^1(\pi_{\ell}(E)) \lesssim 1/n$ for **every** line $\ell \subset \mathbb{R}^2$. In particular, taking n large, E_n is not graph (θ, M) rectifiable for any "fixed" constants θ, M , even if the curves Γ_n are, by the result in Tolsa's book! It's fun to try to visualise, where the Lipschitz graph G_n "lives", which satisfies $\mathcal{H}^1(\Gamma_n \cap G_n) \gtrsim 1...$