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Preface

These are revised lecture notes for the course “Degree theory and branched
covers” lectured for the first time at the University of Jyväskylä Fall 2015.
The purpose of these lecture notes is to introduce the necessary theory for the
proof of the Chernavskii–Väisälä’s theorem, see [Väi66]; see also Chernavskii
[Č64].

Theorem (Väisälä, 1966). Let f : M → N be a discrete and open map
between n-manifolds M and N for n ≥ 3. Then the branch set Bf of f has
topological dimension at most n− 2 and dimBf = dim fBf = dim f−1fBf .

A discrete and open map1 is called a branched cover. Recall that a map
is discrete if preimage of a point is a discrete set, and a map is open if
image of an open set is open. A point x ∈ M in the domain of a mapping
f : M → N is a branch point if f is not a local homeomorphism at x. The
branch set Bf is the set of all branched points of f .

Väisälä’s theorem is fundamental in the theory of these mappings. It
yields as a corollary that the branch set does not locally separate the domain
of the map; the same holds of course for the image of the branch set. As a
corollary we obtain

This fact, on the other hand, shows that a branched cover between man-
ifolds is either orientation preserving or orientation reversing ; some authors
assume branched covers to be orientation reversing. In similar vein, Väisälä’s
theorem justifies the name “branched cover”:

Corollary. Let f : M → N be a branched cover between n-manifolds. Then
f is either orientation preserving or reversing.

In fact, as we will later see, a branched cover between manifolds is locally
a completion of a covering map.

The proof of Väisälä’s theorem requires a substantial amount of prelimi-
nary material. The main argument uses local degree theory of proper maps.
In order to define the local degree we discuss first (compactly supported)
Alexander–Spanier cohomology, which we use to define (local) orientation

1In these notes map and mapping are synonymous and typically refer a continuous
map.
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and the local index of a brached cover. The classical expositions on this
theory are Spanier [Spa66] and Massey [Mas78], which we mainly follow.

The realistic goal of the course is to prove a version of Väis̈lä’s theorem
stating that Bf and fBf have no interior and do not locally separate man-
ifolds M and N . The degree arguments follow then from Borel [Bor60] and
Church–Hemmingsen [CH60].
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Chapter 1

Alexander–Spanier
cohomology

In this chapter we discuss the definition and basic properties of Alexander–
Spanier cohomology. The use of Alexander–Spanier cohomology in the proof
of Väisälä’s theorem stems from the good properties of this cohomology with
respect to closed sets. To emphasize this aspect we compare it to the more
familiar singular cohomology to highlight the differences.

The compactly supported Alexander–Spanier cohomology H∗c (X) is the
homology of a (co)chain complex (Ckc (X), dk) which is a quotient complex
of a (co)chain complex (Φk

c (X), δk) of k-functions in X. More precisely, we
have a commutative diagram

0 // Φ0
c(X)

δ0
//

��

Φ1
c(X)

δ1
//

��

Φ2
c(X)

δ2
//

��

Φ3
c(X)

δ3
//

��

· · ·

0 // C0
c (X)

d0
// C1
c (X)

d1
// C2
c (X)

d2
// C3
c (X)

d3
// · · ·

where the vertical arrows are quotient maps, and Hk
c (X) = ker dk/im dk−1

It should be noted that we do not discuss the (non-compactly supported)
Alexander–Spanier cohomology H∗(·) at all in these notes and merely refer
to Spanier [Spa66] for details.

1.1 Space of k-functions

To emphasize the generality of the theory, we assume at this stage only that
X is a topological space. To obtain viable theory, more conditions are added
in the later sections (and, in the end, we consider actually open and closed
sets in Euclidean spaces).

Definition 1.1.1. For k ∈ N, a k-function on X is a function Xk+1 →
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Z. We denote by Φk(X) the abelian group of all k-functions on X. For
completeness, we define Φk(X) = {0} for k < 0.

Remark 1.1.2. A more meticulous author would use here notation Φk(X;Z).
For our purposes the coefficients play very little role before discussion on
orientation. Thus we fix Z as our coefficient ring; see Spanier [Spa66] and
Borel-book for more general treatment. Note, however, that replacing the
coefficients ring Z by the field R, we obtain vector spaces Φk(X;R).

Remark 1.1.3. In some sources (e.g. Massey [Mas78]), k-functions are
assumed to have finitely many values. This restriction plays, however, no
role in our arguments. As a particular consequence of the restriction to
finitely many values is that a finitely valued k-function φ : Xk+1 → Z has a
unique representation

φ = λ1χA1 + · · ·+ λmχAm

with λ1, . . . , λm ∈ R and the pair-wise disjoint sets A1, . . . , Am ⊂ Xk+1.

1.1.1 Local equivalence of k-functions

It is crucial to notice that there is no assumption on continuity of k-functions
or for the map f : X → Y . The topology of X comes forth in the notion of
local triviality, which is a key concept in the theory.

For the definition, we denote

∆k
X = {(x, . . . , x) ∈ Xk+1 : x ∈ X}

the k-diagonal of X; note that, trivially, ∆k
X ⊂ Xk+1 for each k ∈ N,

∆0
X = X, and ∆k

X = ∅ for k < 0.

Definition 1.1.4. Two k-functions φ : Xk+1 → Z and ψ : Xk+1 → Z are
locally equivalent if there exists a neighborhood W of ∆k

X in Xk+1 for which

φ|W = ψ|W .

A k-function φ is locally trivial if φ is equivalent to the zero function Xk+1 →
Z, (x1, . . . , xk+1) 7→ 0.

The following lemma gives a partial answer why this terminology is used.

Lemma 1.1.5. Let φ and ψ be k-functions on X. Then φ and ψ are locally
equivalent if and only if for each x ∈ X there exists a neighborhood U of x
in X for which φ|Uk+1 = ψ|Uk+1.

Proof. Suppose φ and ψ are locally equivalent and x ∈ X. By local equiva-
lence, there exists a neighborhood W of ∆k

X for which φ|W = ψ|W . Since the
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product topology of Xk+1 is generated by products of open sets in X, there
exists a neighborhood U of x for which Uk+1 ⊂W . Then ψ|Uk+1 = φ|Uk+1 .

To the other direction, let, for each x ∈ X, the set Ux be a neighborhood
of x in X for which φ|Uk+1

x
= ψ|Uk+1

x
, and set W =

⋃
x∈X U

k+1
x . Then W is

a neighborhood of ∆k
X in Xk+1 and φ|W = ψ|W . Thus φ and ψ are locally

equivalent.

It is vital to not confuse locally trivial functions with the zero functions.

Example 1.1.6. Let X = {x, y} be a Hausdorff space consisting of two
points. Then the function φ : X1+1 → Z defined by φ(x, y) = φ(y, x) = 1,
φ(x, x) = ψ(y, y) = 0 is a locally trivial 1-function, since the 1-diagonal ∆1

X

is open in X2.

In what follows, we denote

Φk
0(X) = {φ ∈ Φk(X) : φ is locally trivial}.

Observation 1.1.7. 1 Local equivalence of k-functions is an equivalence
relation.

Observation 1.1.8. Two k-functions φ and ψ in Φk(X) are locally equiv-
alent if and only if φ−ψ is locally trivial. Furthermore, Φk

0(X) is a (neces-
sarily normal) subgroup of Φk(X).

1.1.2 Support of a k-function

The chains in compactly supported Alexander–Spanier cohomology are equiv-
alence classes of compactly supported k-functions. For this reason, we in-
troduce now the notion of a support spt(φ) of a k-function φ.

Definition 1.1.9. Let k ∈ N. A k-function φ : Xk → Z is not supported
at x ∈ X if there exists a neighborhood U ⊂ X of x for which φ|Uk = 0.
The set null(φ) = {x ∈ X : φ is not supported at x} the nullset of φ. The
complement of null(φ) in X is the support sptφ of φ in X.

Now it is important to notice that the nullset and the support of a k-
function are subsets of the underlying space X and not of the product space
Xk+1. Note also that Example 1.1.6 gives an easy example of a non-zero
k-functions having empty support.

Observation 1.1.10. Let φ ∈ Φk(X). Then the nullset null(φ) is open and
the support spt(φ) is closed. If k = 0, the support spt(φ) is the usual support
of a function, that is, spt(φ) = {x ∈ X : φ(x) 6= 0}.

1The observations are worthy of their name, easy to prove from definitions. Facts, on
the other hand, may need elaborate arguments.
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Locally equivalent k-functions have the same support. We state this as
a lemma.

Lemma 1.1.11. Let φ, ψ ∈ Φk(X) be locally equivalent k-functions. Then
spt(φ) = spt(ψ).

Proof. The claim is equivalent to the claim null(φ) = null(ψ). Since local
equivalence is an equivalence relation, it suffices to show that null(φ) ⊂
null(ψ).

Let x ∈ null(φ). Then there exists a neighborhood U of x for which
φ|Uk+1 = 0. Since φ and ψ are locally equivalent there exists a neighborhood
W of ∆k

X for which φ|W = ψ|W . By the definition of product topology, there
exists a neighborhood V of x for which V k+1 ⊂W ∩Uk+1. Thus ψ|V k+1 = 0
and x ∈ null(ψ).

Definition 1.1.12. A k-function φ : Xk+1 → Z is compactly supported if
spt(φ) is compact.

We denote

Φk
c (X) = {φ ∈ Φk(X) : spt(φ) is compact}.

Observation 1.1.13. For each k ∈ Z, Φk
c (X) is a subgroup of Φk(X).

1.1.3 Coboundary

The chains in Alexander–Spanier theory are given by the equivalence classes
in Φk(X)/Φk

0(X). As a preparatory step we consider a coboundary operator
on the level of k-functions.

Definition 1.1.14. The coboundary operator for k-functions is the homo-
morphism δk : Φk(X)→ Φk+1(X) defined by

δk(φ)(x1, . . . , xk+2) =
k+2∑
`=1

(−1)`+1φ(x1, . . . , x`−1, x`+1, . . . , xk+2),

where x1, . . . , xk+2 ∈ X. For completeness, we define δk = 0: Φk(X) →
Φk+1(X) for k < 0.

Convention 1.1.15. To simplify notation, we denote the homomorphism
δk simply by δ to unless it is important to emphasize the domain and range.

Example 1.1.16. Let X be a point, that is, X = {a}. We calculate
δ : Φk(X)→ Φk+1(X) in this case.

For each k ∈ N, Xk = {(a, . . . , a)} is also a point and hence Φk(X) is iso-
morphic to Z, where the isomorphism is Z 7→ Φk(X), m 7→ ((a, . . . , a) 7→ m).
Let φk ∈ Φk(X) be the generator of Φk(X) satisfying φk(a, . . . , a) = 1.
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For each k ∈ N, we have

δφk(x1, . . . , xk+2) =
k+2∑
`=1

(−1)`+1φk(x1, . . . , x̂`, xk+2)

=

(
k+2∑
`=1

(−1)`+1

)
φk(a, . . . , a) =

1 + (−1)k+1

2

=
1 + (−1)k+1

2
φk+1(x1, . . . , xk+2).

Thus

δφk =

{
φk+1, k is odd,
0, k is even.

In particular, δ is an isomorphism for k odd and the zero map for k even.

Example 1.1.17. Let X be a space and F ∈ Φ0(X), that is, F : X → Z is
a function. Then

δF (x, y) = F (y)− F (x)

for each x, y ∈ X. Similarly,

δ2F (x, y, z) = δF (y, z)− δF (x, z) + δF (x, y)

= F (z)− F (y)− (F (z)− F (x)) + (F (y)− F (x)) = 0

for all x, y, z ∈ X. Note that, condition δF (x, y) = 0 implies

F (y) = F (x)

for each x, y ∈ X, that is, F is a constant function.

Remark 1.1.18. The previous example is one of the reasons why we do
not take the homology of the complex Φ!

c(X) as the compactly supported
Alexander–Spanier cohomology of X. Indeed, the homology of the complex
Φ!
c(X) =

(
Φk
c (X), δ

)
k∈Z does not satisfy the additivity axiom, which states

that the homology of a disjoint union is a direct sum.

Example 1.1.19. For ψ ∈ Φ1(X) condition δψ = 0 gives the equation

0 = δψ(x, y, z) = ψ(y, z)− ψ(x, z) + ψ(x, y)

i.e. the cocycle condition

ψ(x, z) = ψ(x, y) + ψ(y, z)

for each x, y, z ∈ X.

A typical calculation, common to all homology/cohomology theories,
shows that δδ = 0. We leave the verification of this fact to the interested
reader.

10



Observation 1.1.20. For each k ∈ Z, δk+1 ◦ δk = 0, that is,

δk+1(δkφ)(x1, . . . , xk+2) = 0

for every x1, . . . , xk+2 ∈ X.

A fundamental observation is that the coboundary of a k-function has
smaller support. We formalize this as follows.

Lemma 1.1.21. Let k ∈ Z and φ ∈ Φk(X). Then spt(δφ) ⊂ spt(φ).

Proof. Let x ∈ null(φ). Then there exists a neighborhood U ⊂ X of x for
which φ|Uk+1 = 0. Thus, for x1, . . . , xk+2 ∈ U , we have

δkφ(x1, . . . , xk+2) =

k+2∑
`=1

(−1)`+1φ(x1, . . . , x`−1, x`+1, . . . , xk+2)

=

k+2∑
`=1

(−1)`+1φ|Uk+1(x1, . . . , x`−1, x`+1, . . . , xk+2) = 0.

Thus x ∈ null(δk(φ)).

Corollary 1.1.22. For each k ∈ Z,

δΦk
0(X) ⊂ Φk

0(X) and δΦk
c (X) ⊂ Φk

c (X).

Example 1.1.23. Let X = R and F : R→ Z,

x 7→
{

1, x ≥ 0
0, x < 0

In particular, spt(F ) = [0,∞). On the other hand,

δF (x, y) = F (y)− F (x) =


1, x < 0 ≤ y,
0, x, y ≥ 0 or x, y < 0,
−1, x ≥ 0 and y < 0.

Suppose x 6= 0. Then (x, x) is contained either in (0,∞)×(0,∞) or (−∞,∞)
and δF |U2 = 0 where U is either of these open sets. Thus null(δF ) ⊃ R\{0}.
Since clearly {0} ⊂ spt(δF ), we conclude that spt(δF ) = {0}.

Having the coboundary operator and notion of support at our disposal,
we have a topological characterization for the kernel of δ0. Recall that a
function F : X → Z is locally constant if for each x ∈ X there exists a
neighborhood U of x in X for which F |U : U → Z is constant.

Lemma 1.1.24. Let F ∈ Φ0(X), that is, a function F : X → Z. Then
spt(δF ) = ∅ if and only if F : X → Z is locally constant.

Proof. Suppose first that spt(δ0F ) = ∅, that is, (δF ) = X. Let x ∈ X.
Then there exists a neighborhood U of x in X for which δF |U2 = 0. Thus
F (y)−F (x) = δF (x, y) = 0 for all y ∈ U . Hence F |U is constant. The other
direction is similar.
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1.2 Algebraic intermission

We recall some basic algebraic notions and facts. Let G be an abelian group.

1.2.1 Quotient spaces

Given a subgroup H ⊂ G, the coset g + H of g ∈ G is the set {v + w ∈
G : h ∈ H}. The set G/H of all cosets {g + H : g ∈ G} is a partition of G
and it induces an equivalence relation ∼H on G; we define g ∼H g′ if and
only if g − g′ ∈ H.

Observation 1.2.1. The addition +: G/H ×G/H → G/H

(g +H) + (g′ +H) = (g + g′) +H

for g+H, g′ +H ∈ G/H, is well-defined and (G/H,+) is an abelian group.

Convention 1.2.2. Typically the element g+H of G/H is denoted also by
[g] suppressing the subgroup H from the notation. We follow this convention
in forthcoming sections.

Observation 1.2.3. Let f : G → G′ be a homomorphism and H < ker f a
subgroup. Then there exists a unique homomorphism f̄ : G/H → G′ satisfy-
ing

G
f //

g 7→[g] !!

G′

G/H
f̄

<<

Moreover f̄ is an isomorphism if fG = G′ and H = ker f . (Note that no
condition on normality is needed, since G is abelian.)

1.2.2 Chain complexes

Definition 1.2.4. A sequence G# = (Gk, αk)k∈Z of abelian groups and
homomorphisms αk : Gk → Gk+1 is a chain complex if αk+1 ◦ αk = 0. The
homology H∗(G#) of G# is the sequence (Hk(G#))k∈Z where

Hk(G#) = kerαk

/
imαk−1

for each k ∈ Z.

Example 1.2.5. The sequences

Φ!(X) = (Φk(X), δk)k∈Z and Φ!
c(X) = (Φk

c (X), δk)k∈Z

are chain complexes.
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Remark 1.2.6. Note that imαk−1 ⊂ kerαk, since αk ◦ αk+1 = 0.

Definition 1.2.7. Let G# = (Gk, αk) and G′# = (Hk, βk) be chain com-
plexes. A sequence f# = (fk : Gk → G′k)k∈Z is a chain map f# : G# → G′#
if

Gk
αk //

fk
��

Gk+1

fk+1

��
G′k βk

// G′k+1

commutes.

Example 1.2.8. Pull-back homomorphisms f ! : Φk(Y )→ Φk(X), and their
restrictions f ! : Φk

0(Y )→ Φk
0(X) and f ! : Φk

c (Y )→ Φk
c (X), are chain maps.

Lemma 1.2.9. Let G# and G′# be chain complexes and f# : G# → G′# a
chain map. Then, for each k ∈ Z, there exists a well-defined linear map
f∗ := f∗k : Hk(G#)→ Hk(G

′
#) satisfying f∗k([v]) = [fk(v)].

Proof. Since f∗ is a chain map, fk(kerαk) ⊂ kerβk and im fk ◦ αk−1 ⊂
imβk−1. Thus we have a diagram

kerαk
fk //

))
v 7→[v]

��

kerβk

w 7→[w]
��

kerαk/imαk−1
f∗k
// kerβk/imβk−1

1.2.3 Exact sequences

Definition 1.2.10. Let A, B, and C be abelian groups and f : A→ B and
g : B → C homomorphisms. A sequence

A
f // B

g // C

is exact at B if ker g = im f .

A basic result on exact sequences is the Five Lemma2.

Fact 1.2.11. Let

A1
f1 //

h1

��

A2
f2 //

h2
∼=
��

A3
f3 //

h3

��

A4
f4 //

h4
∼=
��

A5

h5

��
B1

g1 // B2
g2 // B3

g3 // B4
g4 // B5

2Typically the introduction of the Five Lemma is followed by saying “Chace the dia-
gram.”
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be a commutative diagram of abelian groups and homomorphisms having
exact rows. Suppose that h2 and h4 are isomorphisms. Suppose also that h1

is surjective and h5 is injective. Then h3 is an isomorphism.

A sequence

A#

f# // B#

g# // C#

of chain complexes and chain maps is exact if

Ak
fk // Bk

gk // Ck

is exact.

Definition 1.2.12. A sequence

0 // A // B // C // 0

of abelian groups and homomorphisms is a short exact sequence if it is exact
at A, B, and C.

A sequence

· · · // Ak−1
// Ak // Ak+1

// · · ·

of abelian groups and homomorphisms is a long exact sequence if the se-
quence is exact at each Ak.

Example 1.2.13. Let f : V →W be a linear map. The sequence

0 // ker f �
� // V

f // im f // 0

is a short exact sequence.

The short and long exact sequences of chain complexes are defined sim-
ilarly.

Observation 1.2.14. Let G# = (Gk, αk) be a chain complex. Then Hk(G#) =
0 if and only if the sequence

Gk−1
αk−1 // Gk

αk // Gk+1

is exact at Vk

Observation 1.2.15. Let

0 // A
f // B // 0

be an exact sequence. Then f is an isomorphism.
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Indeed, since the sequence is exact, ker f = {0} and im f = B.
A beautiful fact, which motivates for us the whole discussion in this

section, is that short exact sequence of chain complexes yields a long exact
sequence in (co)homology.

Fact 1.2.16. Let

0→ A#
//

f# // B#

g# // C#
// 0

be a short exact sequence of chain complexes (and chain maps). Then there
exists homomorphisms ∂k : Hk(C#) → Hk+1(A#) (so-called connecting ho-
momorphisms) for which

· · · // Hk(A#)
f∗ // Hk(B#)

g∗ // Hk(C#)
∂k // Hk+1(A#) // · · ·

is a long exact sequence.

Idea of the proof: Show that the homomorphism Hk(C#) → Hk+1(A#),
[c] 7→ [f−1

# βkg
−1
# c] is well-defined and satisfies the required properties by

chasing the commutative diagram

0 // Ak //

��

Bk
g# //

βk
��

Ck //

��

0

0 // Ak+1

f# // Bk+1
// Ck+1

// 0

Finally, we remark the construction of the long exact sequence is natural.

Fact 1.2.17. Let

0 // A#

f# // B#

g# // C#
// 0

0 // A′#

h1
#

OO

f ′# // B′#

h2
#

OO

g′# // C ′#

h3
#

OO

// 0

be a commutative diagram of chain complexes and chain maps having exact
rows. Then the diagram

· · · // Hk(A#)
f∗ // Hk(B#)

g∗ // Hk(C#)
∂k // Hk+1(A#) // · · ·

· · · // Hk(A
′
#)

h1
∗

OO

f ′∗ // Hk(B
′
#)

h2
∗

OO

g′∗ // Hk(C
′
#)

h3
∗

OO

∂k // Hk+1(A′#)

h1
∗

OO

// · · ·

commutes.
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1.2.4 Products and sums

Given a family of sets (Xi)i∈I , formally the elements of the product
∏
i∈I Xi

are functions f : I →
⋃
i∈I Xi satisfying f(i) ∈ Xi for each i ∈ I. In what

follows, however, we denote the elements of
∏
i∈I Xi as ordered families

(xi)i∈I ∈
∏
i∈I Xi, where xi ∈ Xi for each i ∈ I.

Given abelian groups (Gi)i∈I , the direct product of the groups (Gi)i∈I is
the abelian group

∏
i∈I Gi with group operation given by

(gi)i∈I + (g′i)i∈I := (gi + g′i)i∈I .

for all (gi)i∈I , (g
′
i)i∈I ∈

∏
i∈I Gi.

The direct sum
⊕

i∈I Gi of abelian groups {Gi}i∈I is the subgroup of∏
i∈I Gi consisting of the elements (gi)i∈I having finite support, that is,

elements (gi)i∈I for which the set {i ∈ I : gi 6= eGi} is finite.
We finish with an observation on direct sums of chain complexes.

Observation 1.2.18. The complex
(
Ckc (U)⊕ Ckc (V ), d⊕ d

)
k∈Z is a well-

defined chain complex and the homomorphism

Hk(C
∗
c (U)⊕ C∗c (V ))→ Hk

c (U)⊕Hk
c (V ), [(a, b)] 7→ ([a], [b]),

is a well-defined isomorphism.

Remark 1.2.19. All the results in Section 1.2 hold if we consider, instead
of abelian groups and group homomorphsms, R-modules and R-module ho-
momorphisms, where R is a commutative ring; note that abelian groups are
Z-modules. We do not need this generality in what follows.

1.3 Cochains and cohomology

The Alexander–Spanier k-cochains are defined as equivalence classes of k-
functions modulo locally trivial k-functions. The formal definition reads as
follows.

Definition 1.3.1. The elements of the quotient space

Ck(X) = Φk(X)/Φk
0(X)

are called (Alexander–Spanier) k-cochains and the space Ck(X) as the space
of (Alexander–Spanier) k-cochains in X. Similarly, the elements of

Ckc (X) = Φk
c (X)/Φk

0(X)

are compactly supported k-cochains and Ckc (X) is the space of compactly
supported (Alexander–Spanier) k-cochains in X.
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Remark 1.3.2. Since Φ0
0(X) = {0} by Observation 1.1.10, the quotient

maps Φ0(X)→ C0(X) and Φ0
c(X)→ C0

c (X), φ 7→ [φ], are isomorphisms.

Remark 1.3.3. Let φ and ψ be k-functions so that [φ] = [ψ] ∈ Ck(X).
Then φ− ψ ∈ Φk

0(X). Thus, by Lemma 1.1.11, spt(φ) = spt(ψ).

Definition 1.3.4. The support spt(c) of a cochain c ∈ Ck(X) is spt(φ) for
a k-function (and hence any k-function) φ in c.

1.3.1 Coboundary

It is a direct consequence of Lemma 1.1.21 that the coboundary operator
δk : Φk(X) → Φk+1(X) descends to a coboundary operator dk : Ck(X) →
Ck+1(X) on cochains. We leave the details of this fact to the interested
reader.

Lemma 1.3.5. For each k ∈ Z there exists a linear map dk : Ck(X) →
Ck+1(X) for which dk[φ] = [δk(φ)] for all Φk(X). In particular, dk+1◦dk = 0
for each k.

Proof. Since δΦk
0(X) ⊂ Φk+1

0 (X), there exists a unique homomorphism
dk : Φk(X)/Φk

0(X)→ Φk+1(X)/Φk+1
0 (X) for which the digram

Φk(X)

φ 7→[φ]
��

δk //

))

Φk+1(X)

φ 7→[φ]
��

Φk(X)/Φk
0(X)

dk // Φk+1(X)/Φk+1
0 (X)

commutes. Moreover, for each φ ∈ Φk(X),

(dk+1 ◦ dk)([φ]) = dk+1([δkφ]) = [δk+1δkφ] = 0.

Thus dk+1 ◦ dk = 0.

Combining Lemma 1.3.5 and Corollary 1.1.22 we obtain the following
important observation.

Lemma 1.3.6. For each k ∈ Z, the restriction

dkc = dk|Ck
c (X) : Ckc (X)→ Ck+1

c (X).

of dk is well-defined and the sequence

C#
c (X) = (Ckc (X), dkc )k∈Z

is a chain complex.
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Proof. For the first claim, it suffices to observe that, for each φ ∈ Φk
c (X),

spt(d[φ]) = spt([δφ]) = spt(δφ) ⊂ spt(φ)

is compact. The second claim follows from the fact that dk+1dk = 0.

Convention 1.3.7. Although it would formally more appropriate to denote
the restriction dk|Ck

c (X) with a different symbol, in what follows, we merely

denote d : Ckc (X)→ Ck+1
c (X) and C#

c (X) = (Ckc (X), d)k∈Z.

Definition 1.3.8. A cochain c ∈ Ckc (X) is a k-cocycle if dc = 0, and a
k-coboundary if there exists b ∈ Ck−1

c (X) for which db = c.

We record a simple observation on 0-cocycles, for further use, as lemma.

Lemma 1.3.9. Let F : X → Z be a 0-function for which d[F ] = 0. Then F
is locally constant.

Proof. Let x ∈ X. Since [δF ] = d[F ] = 0, there exists a neighborhood U of
x for which δF |U2 = 0. Then, for each y ∈ U ,

F (y)− F (x) = δF (x, y) = 0.

Thus F is locally constant.

Example 1.3.10. Let [ψ] ∈ C1
C(X) be a cocycle, i.e. [δψ] = d[ψ] = 0. Let

x ∈ X. Since δψ is locally trivial, there exists a neighborhood U of x for
which δφ|U3 = 0. Thus, for x, y, z ∈ U ,

φ(x, y) = φ(x, z) + φ(z, y);

cf. Example 1.1.19.

1.3.2 Cohomology H∗c (·)

Since ker dkc ⊂ im dk−1
c for each k ∈ Z, we have well-defined quotient spaces

Hk
c (X) = ker dkc

/
im dk−1

c =
{[φ] ∈ Ckc (X) : dk[φ] = 0}

{dk−1[ψ] ∈ Ckc (X) : [ψ] ∈ Ck−1
c (X)}

for each k ∈ Z.
Heuristically, Hk

c (X) measures the amount of non-trivial solutions of the
equation dk[φ] = dk[φ′] i.e. the number different solutions [φ] and [φ′] for the
equation d[φ] = 0 for which the equation [φ]− [φ′] = dk−1[ψ] does not hold.

In terminology of Section 1.2, Hk
c (X) is the homology Hk(C

#
c (X)) of the

chain complex C#
c (X).

Definition 1.3.11. For k ∈ Z, the abelian group Hk
c (X) is the kth com-

pactly supported Alexander–Spanier cohomology group of X. The elements
of Hk

c (X) are called compactly supported Alexander–Spanier cohomology
classes of X.
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Examples

We consider now some standard examples. Starting from one point, as is
commonly done.

Example 1.3.12. Let X be a point. Then

Hk
c (X) ∼=

{
Z, if k = 0,
0, otherwise.

Indeed, we observe first that in this case, Φk
0(X) = {0} and Φk(X) = Φk

c (X).
Thus we may identify Ckc (X) with Φk

c (X) and dk : Ckc (X)→ Ck+1
c (X) with

δk : Φk
c (X)→ Φk

c (X). By Example 1.1.16, the diagram

0 // C0(X)
d // C1(X)

d // C2(X)
d // C3(X) // · · ·

0 // Z 0 // Z id // Z 0 // Z // · · ·

commutes. Thus, ker d0 ∼= Z and im dk = ker dk+1 for k 6= 0.

Example 1.3.13. Let X be a compact connected space. Then H0
c (X) ∼= Z.

Indeed, let F : X → Z be the constant function 1. Since X is compact,
F ∈ Φ0

c(X). Since spt(F ) 6= ∅, [F ] 6= 0 in Φ0
c(X)/Φ0

0(X) = C0
c (X). Since

d[F ] = [δF ] = 0, [F ] ∈ ker d0. Finally, since C−1
c (X) = {0}, we have that

im d−1 = 0 and [φ] 6= 0 in H0
c (X). Thus H0

c (X) 6= {0}.
We show now that if c ∈ H0

c (X) then c = m[F ] for some m ∈ Z. The
claim follows from this observation. Let [c] ∈ H0

c (X) and G ∈ Φ0
c(X) for

which c = [G] in H0
c (X). Since [δG] = d[G] = dc = 0 and G : X → Z

is a function, we conclude that G is localy constant function. Since X is
connected, G is a constant function and hence an integer multiple of F .

Example 1.3.14. Let X be a connected non-compact space. Then H0
c (X) =

0.
Indeed, let [c] ∈ H0

c (X) and F ∈ Φ0
c(X) a representative of c. Since

[δF ] = dc = 0, we have δF ∈ Φ1
0(X). Thus F is a locally constant function.

Since X is connected, F is a constant function. Since spt(F ) is compact
and X is non-compact, we conclude that F = 0. Thus H0

c (X) = 0.

1.3.3 H1
c (R) ∼= Z

By Example 1.3.14, H0
c (R) = 0. We show next that H1

c (R) ∼= Z; note that
it is not clear at this point that Hk

c (R) = 0 for k > 1 (although that will be
the case). For the importance of this result (and the length of its proof), we
record this example as a theorem.
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Theorem 1.3.15. We have

H1
c (R) ∼= Z.

To simplify the proof, we separate an auxiliary lemma.

Lemma 1.3.16. Let [ψ] ∈ C1(R) be a cocycle, that is, d[ψ] = 0. Then there
exists a function Fψ ∈ Φ0(R) for which [ψ] = d[Fψ] in C1(R).

Proof. Let ψ ∈ Φ1(R) be a representative of c. Since δψ is locally trivial,
there exists a covering U of R by open intervals so that (δψ)|U3 = 0 for
each U ∈ U . Then, for each U ∈ U and x, y, z ∈ U ,

(1.3.1) ψ(x, y) = ψ(x, z) + ψ(z, y).

We define a function Fψ : R → R as follows. We fix first a basepoint
y0 ∈ R. For y ∈ R, let y1, . . . , yk = y be a (monotone) sequence having the
property that, for each i = 1, . . . , k, there exists Ui ∈ U so that [yi−1, yi] ⊂
Ui. We set

Fψ(y) =

k∑
i=1

ψ(yi−1, yi).

By (1.3.1), the value Fψ(y) does not depend on the choice of the sequence
y1, . . . , yk.

It remains to show that ψ and δFψ are locally equivalent. Let U ∈ U
and x, y ∈ U . We may assume that y0 < y < x, the other cases are similar.
Let y1, . . . , yk = x be a monotone sequence defining Fψ(x) as above. Then
y1, . . . , yk, y is a valid sequence to define Fψ(y). Thus

δFψ(x, y) = Fψ(y)− Fψ(x) = ψ(x, y).

This completes the proof.

Proof of Theorem 1.3.15. Let F : R → R be the characteristic function of
R+, i.e. the function F = χ[0,∞). Since spt(δF ) = {0}, the cochain c = [δF ]
is compactly supported, that is, c ∈ C1

c (R). Since dc = d[δF ] = [δδF ] = 0,
the cochain c is a cocycle, and c represents a cohomology class in H1

c (R). It
suffices to show that [c] generates H1

c (R).

Step 1: The class [c] is non-trivial. Suppose towards contradiction that
[c] = 0. Then there exists a cochain [G] ∈ C0

c (R) for which c = d[G].
Since c = [δF ], we conclude that d[F ] = d[G] in C1(X). Thus F − G is a
constant function by Lemma 1.3.9. Since G is compactly supported, this is
contradiction.

Step 2: The class [c] generates the cohomology group H1
c (R). Let [c′] ∈

H1
c (R) and ψ ∈ Φ1

c(R) a representative of c′. By Lemma 1.3.16, there exists
a function Fψ : R → Z for which [ψ] = d[Fψ]. Since ψ and δFψ are locally
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equivalent, we conclude that δFψ has compact support and that Fψ is locally
constant in the complement of the support of ψ. We fix M > 0 for which
the interval [−M,M ] contains the support of ψ.

By adding a constant to function Fψ if necessary, we may assume that
spt(Fψ) ⊂ [−M,∞). Let also λ ∈ Z be the value of Fψ in [M,∞).

Let f : R → Z be the function f = Fψ − λF . Then spt(f) ⊂ [−M,M ].
Indeed, for x < −M , we have f(x) = Fψ(x) − λF (x) = 0 and, for x > M ,
f(x) = Fψ(x)− λF (x) = λ− λ = 0.

Since

c′ − λc = [ψ]− λ[φ] = [δFψ]− λ[δF ]

= [δFψ − λδF ] = [δ(Fψ − λF )] = [δf ] = d[f ],

we have
[c′] = [c′ − λc] + λ[c] = [d[f ]] + λ[c] = λ[c]

in H1
c (R). This completes the proof.

1.4 Pull-back

Typically a continuous mapping induces a pull-back in cohomology. In the
case of compactly supported cohomology it is natural that the mapping is
also proper. Recall that a continuous mapping f : X → Y is proper if each
compact set E ⊂ Y has a compact pre-image f−1E.

We develop the pull-back homomorphism in three steps. First, for k-
functions, than cochains, and finally for cohomology. Since the construction
of the pull-back is standard, the necessary steps are listed as observations.
Note that, for k-functions, we do not formally need even continuity.

Definition 1.4.1. Let f : X → Y be a map. The pull-back homomorphism
f ! : Φk(Y )→ Φk(X) is the homomorphism φ 7→ f !(φ), where f !(φ) : Xk+1 →
R is the function

f !(φ)(x1, . . . , xk+1) = φ(f(x1), . . . , f(xk+1)).

for each φ ∈ Φk(Y ) and x1, . . . , xk+1 ∈ X.

Lemma 1.4.2. Let f : X → Y be a continuous map and φ ∈ Φk(Y ). Then
spt f !(φ) ⊂ f−1 spt(φ).

Proof. Let y ∈ null(φ) and x ∈ f−1(y). Since f is continuous, there exists
a neighborhood V of x so that fV is contained in a neighborhood U of
y so that φ|Uk+1 = 0. Hence f !(φ)|V k+1 = 0 and x ∈ null(f !(φ)). Thus
f−1(null(φ)) ⊂ null(f !(φ)). Hence

spt(f !(φ)) = X \ null(f !(φ)) ⊂ X \ f−1(null(φ)) = f−1 spt(φ).

This concludes the proof.
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Corollary 1.4.3. Let f : X → Y be a continuous map, and let φ : Y k+1 → Z
and ψ : Y k+1 → Z be locally equivalent k-functions. Then f !φ and f !ψ are
locally equivalent. In particular, f !Φk

0(Y ) ⊂ Φk
0(X).

Corollary 1.4.4. Let f : X → Y be a proper continuous map. Then
f !Φk

c (Y ) ⊂ Φk
c (X).

Remark 1.4.5. The inclusion spt(f !φ) ⊂ f ! spt(φ) may be strict. Indeed,
let X = R2, A = R × {0}, φ : R2 → R be the characteristic function φ =
χR2\A, and ι : A ↪→ X the inclusion. Then φ ∈ Φ0(R2) and spt(φ) = R2.

On the other hand, ι!φ = 0 and spt(ι!φ) = ∅.

The coboundary operator δ and the pull-back f ! clearly commute.

Observation 1.4.6. Let f : X → Y be a map and φ ∈ Φk(Y ). Then

(δ ◦ f !)(φ) = (f ! ◦ δ)(φ).

In particular, the pull-back f ! : Φk(Y ) → Φk(X) decends as a pull-back
f# : Ck(Y )→ Ck(X).

Lemma 1.4.7. Let f : X → Y be a continuous map. Then there exists a
homeomorphism f# : Ck(Y ) → Ck(X) satisfying f#[φ] = [f !φ]. Further-
more, if f is proper, the restriction f# : Ckc (Y )→ Ckc (X) is well-defined.

Proof. By Corollary 1.4.3, f !Φk
0(Y ) ⊂ Φk

0(X). Thus there exists a homo-
morphism f# : Φk(Y )/Φk

0(Y )→ Φk(X)/Φk
0(X) satisfying

Φk(Y )
f !

//

�� ((

Φk(X)

��
Φk(Y )/Φk

0(Y )
f#
// Φk(X)/Φk

0(X)

where vertical arrows are quotient maps. Similar application of Corollary
1.4.3 gives also the other claim.

It is straightforward to see that the coboundary operator d commutes
with f#. We record this as an observation.

Observation 1.4.8. Let f : X → Y be a continuous map. Then

Ck(Y )

f#

��

dk // Ck+1(Y )

f#

��
Ck(X)

dk
// Ck+1(X)

commutes. In particular, f# : C#(Y ) → C#(X) is a chain map. If in

addition the map f is proper, f# : C#
c (Y )→ C#

c (X) is a chain map.
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Finally, a proper continuous map induces a pull-back in cohomology.

Observation 1.4.9. Let f : X → Y be a proper continuous map. Then there
exists a homomorphism f∗ : Hk

c (Y )→ Hk
c (X) satisfying f∗[c] = [f#c].

The pull-back f∗ is natural in the following sense.

Observation 1.4.10. Let f : X → Y and g : Y → Z be proper continuous
mappings. Then

(g ◦ f)∗ = f∗ ◦ g∗ : H∗c (Z)→ H∗c (X).

Furthermore, id∗ = id: H∗c (X) → H∗c (X). In particular, if f : X → Y is
a homeomorphism, the homomorphism f∗ : H∗c (Y )→ H∗c (X) is an isomor-
phism.

We finish this section with two simple observations on inclusions and
closed sets.

Lemma 1.4.11. Let X be a space and A ⊂ X a closed subset. Then the
inclusion ι : A ↪→ X is a proper map. In particular, ι induces the pull-back
(ιXA)∗ : H∗c (X)→ H∗c (A).

Proof. Let E ⊂ X be a compact set. Then E ∩ A is closed in E. Hence
ι−1(E) = E ∩A is compact. Thus ι is proper.

Lemma 1.4.12. Let X be a compact connected space and A ⊂ X a con-
nected closed subset. Then the inclusion ι : A→ X induces an isomorphism
ι∗ : H0

c (X)→ H0
c (A).

Proof. Since X and A are compact and connected, H0
c (X) = 〈[χX ]〉 and

H0
c (A) = 〈[χA]〉, where χX and χA are characteristic functions of X and A,

respectively; note that we tacitly identify C0
c (·) = Φ0

c(·). Since ι#χX = χA,
we have

ι∗[χX ] = [ι#χX ] = [χA].

Thus the claim follows.

1.5 Push-forward

Regarding our discussion, the push-forward of cohomology classes is a key
notion in what follows. Push-forward induced by an inclusion is an oper-
ation familar from many compactly supported cohomology theories. Here,
heuristically, on the level of k-functions it can be seen as the zero exten-
sion. Formally, however, the most straightforward zero extension leads to
unwanted increase of support of k-functions. To overcome the unwanted
phenomenon, consider auxiliary neighborhoods of supports. On the level of
cochains these choices of supports have no role.

To obtain reasonable theory, some assumptions on the space X are
needed. In this section we assume that X is locally compact and Haus-
dorff.
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Inclusions

Let X be a space and A ⊂ X a subset. In what follows, we denote

ιXA : A→ X

the inclusion map A ↪→ X.

Remark 1.5.1. The reader may wonder the unnatural order in the sub-
script. This choice stems from the composition rule, namely, for A ⊂ B ⊂
X, we have

ιXA = ιXB ◦ ιBA : A→ X,

i.e. cancellation in the middle.

We make first some observations on a pull-back induced by an inclusion.

Observation 1.5.2. Let A ⊂ X be a subset. Then the pull-back ι! : Φk(X)→
Φ!(A) inclusion map ι : A ↪→ X is the restriction map

ι! : φ 7→ φ|Ak+1 .

Lemma 1.5.3. Let U ⊂ X be an open subset. Then

spt(ι!XUφ) = spt(φ) ∩ U.

for every φ ∈ Φk(X). In particular,

spt(ι#XUc) = spt(c) ∩ U

for each c ∈ Ck(X).

Proof. We show that null(ι!XUφ) = null(φ) ∩ U . Clearly, spt(ι!XUφ) ⊂
spt(φ) ∩ U . Let now x ∈ null(ι!φ). Then there exists a neighborhood W of
x in U so that (ι!φ)|Wk+1 = 0. Since W is open in X, we have that

φ|Wk+1 = (ι!φ)|Wk+1 = 0.

Thus x ∈ U ∩ null(φ) and null(ι!XUφ) = null(φ) ∩ U . The second claim
follows immediately.

1.5.1 Push-forward of k-functions

As mentioned in the introduction to this section, we defined the push-
forward of compactly supported k-functions using auxiliary neighborhoods
of supports. Let U ⊂ X be an open set and let

Rkc (X,U) = {φ ∈ Φk
c (X) : spt(φ) ⊂ U}.
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Remark 1.5.4. The reader may wonder the name Rkc (X,U) instead of the
more natural Φk

c (X,U). We follow here the naming convention in Massey
[Mas78], which is followed also in followed also in the forthcoming sections,
where we denote Φk

c (X,U) the kernel of the (ιXU )! in Φk
c (X).

Note that,

Φk
c (X) =

⋃
U

Rkc (X,U),

where U ranges over the open subsets of X. Note also that, clearly, the sets
Rkc (X,U) are not disjoint and that, given a k-function φ ∈ Φk

c (X) there no
canonical choice for the neighborhood U of the support of φ. Finally, note
that Rkc (X,U) is a subgroup of Φk

c (X).

Definition 1.5.5. Let U and V be open sets in X for which V ⊂ U . The
homomorphism (ιXU )V! : Rkc (U, V )→ Φk(X) is defined by

(ιXU )V! φ(x) =

{
χV k+1(x)φ(x), x ∈ Uk+1

0, otherwise

for φ ∈ Rkc (U, V ).

The reason for the auxiliary set V is that the mere zero extension
Φk
c (U)→ Φk

c (X) does not resepect the support of k-functions.3.

Example 1.5.6. Let X = R, U = R \ {0}, and let E : Φk
c (X) → Φk(X) be

the zero extension of k-functions, that is,

Eφ(x) =

{
φ(x), x ∈ Uk+1

0, otherwise

for φ ∈ Φk
c (U .

Consider now the 0-function F : U → Z+, x 7→ x/|x|. Then δF (x1, x2) =
F (x2) − F (x1) 6= 0 for x1x2 < 0 and δF (x1, x2) = 0 for x1x2 > 0. In
particular, spt(δF ) = ∅.

Then spt(E(δF )) = {0}. Hence EΦ0
0(U) 6⊂ Φ0

0(X). Moreover, for x > 0,

δE(δF )(−x, x, 0) = E(δF )(x, 0)− (EδF )(−x, 0) + E(δF )(−x, x)

= δF (−x, x) = F (x)− F (−x) = 2.

Thus δE(δF ) 6= E(δδF ) = 0.

It is important to notice that the push-forward (ιXU )V! does not commute
with the coboundary δ as the following example reveals.

3We thank Toni Annala and Eerik Norvio for pointing out mistakes in the earlier
version and for suggestions.
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Example 1.5.7. Let X = R, U = R \ {0}, and V = R \ [−1, 1]. Let also
F : U → Z+ be the function F = χ[2,∞).

Let x ≥ 2. Then

(ιXU )V! δF (0, x) = χV 2(0, x)δF (0, x) = 0.

On the other hand,

δ(ιXU )V! F (0, x) = (ιXU )V! F (x)− (ιXU )V! F (0) = χV (x)F (x)− 0 = F (x) = 1.

Thus δ(ιXU )V! 6= (ιXU )V! δ.

In what follows, we show that – on the level of cochains – the push-
forward does not depend on the set V and the commutativity holds. The
first result is that the push-foward operator (ιXU )V! preserves the support
of k-functions.

Lemma 1.5.8. Let V ⊂ U be open sets in X satisfying V ⊂ U , and φ ∈
Rkc (U, V ). Then spt(ιXU )V! φ = sptφ. In particular, (ιXU )V! Φk

0(U) ⊂ Φk
0(X).

Proof. We show first that spt((ιXU )V! φ) ⊂ sptφ. Let x ∈ U \ spt(φ). Then,
in particular, x ∈ null(φ). Hence there exists a neighborhood W of x in U
for which φ|Wk+1 = 0. Then

(ιXU )V! φ|Wk+1 = χ(V ∩W )k+1φ|Wk+1 = 0.

Since U is open in X, we have that W is open in X. Thus x ∈ null((ιXU )V! φ),
and spt((ιXU )V! φ) ⊂ spt(φ).

Suppose now that x ∈ X \ U . Then W = X \ V is a neighborhood
of x in X. Since W k+1 ∩ V k+1 = ∅, we have (ιVXU )!φ|Wk+1 = 0. Thus
x ∈ null((ιVXU )!φ) also in this case, and spt((ιVXU )!φ) ⊂ spt(φ).

To show that spt(φ) ⊂ spt((ιVXU )!φ), let x ∈ spt(φ) and W a neighbor-
hood of x in X. Since V is a neighborhood of spt(φ), we have that W ∩V is
a neighborhood of x in X, and hence also in U . Since x ∈ spt(φ), we have
that φ|(W∩V )k+1 6= 0. Thus

(ιVXU )!φ|(W∩V )k+1 = χV k+1 |(W∩V )k+1φ|(W∩V )k+1 = φ|(W∩V )k+1 6= 0.

Thus x ∈ spt
(
(ιVXU )!φ

)
.

1.5.2 Push-forward of cochains

In spirit of the previous section, let U ⊂ X be an open set and let

Qkc (X,U) = {c ∈ Ckc (X) : spt(c)}.
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Note that now Qkc (X,U) is the image of Rkc (X,U) under the quotient map
Φk(X)→ Ck(X), that is,

Qkc (X,U) = {[φ] : Ck(X) : φ ∈ Rkc (X,U)}.

Thus Qkc (X,U) is a subgroup of Ckc (X) and Ckc (X) a union of the sets
Qkc (X,U) when U ranges over all open sets in X.

By Lemma 1.5.8, homomorphisms (ιXU )V! : Rkc (X,U) → Rkc (X,V ) de-
cend to homomorphisms (ιXU )V# : Qkc (X,U)→ Qkc (X,V ) for which the dia-
grams

Rkc (U, V )
(ιXU )V! //

φ 7→[φ]
��

Rkc (X,V )

φ 7→[φ]
��

Qkc (U, V )
(ιXU )V#// Qkc (X,V )

commute.

Lemma 1.5.9. Let U and V be an open sets in X for which V ⊂ U . Then

1. for each c ∈ Qkc (U, V ), (ιXU )#(ιXU )V#c = c, and

2. for each c ∈ Qkc (X,V ), (ιXU )V#(ιXU )#c = c.

Proof. For the first claim it suffices to show that, given φ ∈ Φk
c (U, V ), we

have that φ− (ιXU )!(ιXU )V! φ ∈ Φk
0(U). Let x ∈ Uk+1. Then

φ(x)− (ιXU )!(ιXU )V! φ(x) = φ(x)− χV k+1(x)φ(x) =

{
0, x ∈ V k+1,
φ(x), otherwise

Clearly, V ⊂ null(φ − (ιXU )!(ιXU )V! φ). Suppose x 6∈ V . The x 6∈ spt(φ).
Thus there exists a neighborhood W of x in U for which φ|Wk+1 = 0. Then,
clearly, (

φ− (ιXU )!(ιXU )V! φ
)
|Wk+1 = 0.

ThusX\V ⊂ null(φ−(ιXU )!(ιXU )V! φ). We conclude that φ−(ιXU )!(ιXU )V! φ ∈
Φk

0(U). This proves the first claim.
For the second claim, it suffices to show that φ−(ιXU )V! (ιXU )!φ ∈ Φk

0(X).
Let x ∈ Xk+1. Then

φ− (ιXU )V! (ιXU )!φ = φ− χV k+1φ.

An analogous argument as above now yields the claim.

Corollary 1.5.10. Let U , V , and W be open sets in X for which V ⊂ U
and W ⊂ U . Then, for each c ∈ Qkc (U, V ) ∩Qkc (U,W ),

(ιXU )V#c = (ιXU )W# c.
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Proof. Let c ∈ Qkc (U, V )∩Qkc (U,W ). SinceQkc (U, V )∩Qkc (U,W ) = Qkc (U, V ∩
W ), we have, by Lemma 1.5.9,

(ιXU )V#c = (ιXU )V#

(
(ιXU )#(ιXU )V ∩W# c

)
=

(
(ιXU )V#(ιXU )#

)
(ιXU )V ∩W# c = (ιXU )V ∩W# c.

Similarly, (ιXU )W# c = (ιXU )V ∩W# c. The claim follows.

Definition 1.5.11. Let U be an open set in X. The homomorphism

(ιXU )# : Ckc (U)→ Ckc (X)

defined by (ιXU )#c = (ιXU )V#c for each c ∈ Qkc (U, V ) and open set V satis-

fying V ⊂ U , is the push-forward induced by the inclusion ιXU : U ↪→ X.

By Lemma 1.5.9, the push-forward (ιXU )# is a right inverse of (ιXU )#.
More precisely, we have the following result. For its importance, we record
it as a proposition.

Proposition 1.5.12. Let U be an open set in X. Then

(ιXU )#(ιXU )# = id

and
(ιXU )#(ιXU )#|Qk

c (X,U) = id.

Proof. The first claim follows directly from Lemma 1.5.9. Indeed, let c ∈
Ckc (U) and let V be an open set for which c ∈ Qkc (U, V ). Then

(ιXU )#(ιXU )#c = (ιXU )#(ιXU )V#c = c.

Similarly, the second claim follows from Lemma 1.5.9. Indeed, let c ∈
Qkc (X,U). Since (ιXU )#c ∈ Ckc (U), there exists an open set V for which
V ⊂ U and (ιXU )#c ∈ Ckc (U, V ). Thus

(ιXU )#(ιXU )#c = (ιXU )V#(ιXU )#c = c.

The claim follows.

1.5.3 Push-forward in cohomology

It remains to show that the homomorphism (ιXU )# : C#
c (U) → C#

c (X) is
a chain map. Although this follows almost immediately from the previous
proposition, we record it also as a proposition for its importance.

Proposition 1.5.13. Let U be an open set in X. Then d(ιXU )# = (ιXU )#d.
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Proof. Let c ∈ Ckc (U). Then d(ιXU )#c ∈ Qk+1
c (X,U). Thus, by Proposition

1.5.12,

(ιXU )#dc = (ιXU )#d
(

(ιXU )#(ιXU )#c
)

= (ιXU )#(ιXU )#d(ιXU )#c = d(ιXU )#c.

The claim follows.

The push-forward in cohomology has a special role in the theory. For
this reason, we introduce also here the commonly used notation for this
operator.

Definition 1.5.14. For an open set U ⊂ X, the homomorphism

τXU = (ιXU )∗ : Hn
c (U)→ Hn

c (X)

is called the push-forward (in compactly supported Alexander–Spanier coho-
mology) induced by the inclusion U ↪→ X.

We note in passing that the composition of inclusions U ↪→ V and V ↪→
X yields the following composition rule.

Observation 1.5.15. Let U ⊂ V ⊂ X be open sets. Then

τXU = (ιXU )∗ = (ιXV ◦ ιV U )∗ = τXV ◦ τV U .

Since the push-forward is induced by an inclusion, it is natural to expect
that, on the cohomological level, push-forward and pull-back with a proper
map commute in a suitable sense. This is indeed the case and we record in
the form of the following lemma.

Lemma 1.5.16. Let f : X → Y be a proper map, V ⊂ Y a domain, and
U = f−1V . Then, for each k ∈ Z, the diagram

Hk
c (V )

τY V

��

(f |U )∗ // Hk
c (U)

τXU

��
Hk
c (Y )

f∗ // Hk
c (X)

commutes.

Proof. Recall that (ιXU )# : Ckc (U) → Qkc (X,U) and (ιY V )# : Ckc (V ) →
Qkc (Y, V ) are isomorphisms, where Qkc (X,U) = {c ∈ Ckc (X) : spt(c) ⊂ U}.
The inverses of (ιXU )# and (ιY V )# are (ιXU )# : Qkc (X,U) → Ckc (U) and
(ιY V )# : Qkc (Y, V )→ Ckc (V ), respectively.
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Since f is proper and U = f−1V , we have that f#Qkc (Y, V ) ⊂ Qkc (X,U).
Thus

f# ◦ (ιY V )# = (ιXU )# ◦ (ιXU )# ◦ f# ◦ (ιY V )#

= (ιXU )# ◦ (f ◦ ιXU )# ◦ (ιY V )#

= (ιXU )# ◦ (ιV Y ◦ f |U )# ◦ (ιY V )#

= (ιXU )# ◦ (f |U )# ◦ (ιY V )# ◦ (ιY V )# = (ιXU )# ◦ (f |U )#

as homomorphisms Ckc (V )→ Ckc (U). Hence

f∗ ◦ τY V = τXU ◦ (f |U )∗.

The claim follows.

1.6 Compact supports of cohomology classes

Since elements ofH∗c (X) are called compactly supported cohomology classes,
it is reasonable to consider the meaning of this statement more closely. Since
cochains which are coboundaries have non-trivial support, it is easy to get
convinced that a cohomology class does not have a well-defined support.
It turns out, however, that each cohomology class in H∗c (X) is compactly
contained in a pre-compact open subset of X if X is locally compact.

Lemma 1.6.1. Let X be a locally compact space and a ∈ Hk
c (X). Then

there exists a pre-compact open subset U ⊂ X and b ∈ Hk
c (U) for which

a ∈ τXU (b).

Proof. Let u ∈ Ckc (X) be a cochain representing a, that is, a = [u]. Since
sptu is well-defined and compact, there exists a pre-compact open set U con-
taining sptu, that is, U is compact and sptu ⊂ U . Since u ∈ Qkc (X,U) and
Qkc (X,U) = (ιXU )#C

k
c (U), there exists v ∈ Ckc (U) for which (ιXU )#(v) = u.

Thus τXU ([v]) = [(ιXU )#(v)] = [u].

We also have the following result which heuristically states that if a
cocycle c ∈ Ckc (U) is a coboundary in Ckc (X) then it is coboundary already
in Ckc (W ) for some pre-compact open set W . Again, we need to assume
that X is locally compact.

Lemma 1.6.2. Let X be a locally compact space, U ⊂ X a pre-compact
open subset, and a ∈ ker τXU . Then there exists a pre-compact open subset
V ⊂ X containing U so that a ∈ ker τV U .

Proof. Let u ∈ Ckc (U) be a cochain representing a. Since [(ιXU )#u] =
τXU (a) = 0, there exists v ∈ Ck−1

c (X) for which (ιXU )#u = dv. Let V be
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a pre-compact open neighborhood of spt(u) ∪ spt(v). Then v ∈ Qkc (X,V ),
(ιXV )#v ∈ Ckc (V ), and

d(ιXV )#v = (ιXV )#dv = (ιXV )#(ιXU )#u

= (ιXV )#(ιXV )#(ιV U )#u = (ιV U )#u.

Hence
(ιV U )∗a = [(ιV U )#u] = [d(ιXV )#v] = 0.

1.7 Cohomology of disconnected spaces

As another application we record again easy but important result on coho-
mology of disconnected spaces. The two fundamental observations, on level
of k-functions and cochains, are the following.

Observation 1.7.1. Let X be a space, U = {Ui}i∈Λ a covering of X with
mutualy disjoint open sets, and φ ∈ Φk(X). Then φ is locally equivalent to
the k-function

φU =
∑
i∈I

φ|Uk+1
i

=
∑
i∈Λ

(ιXUi)!(ιXUi)
!φ.

In particular, [φ] = [φU ] as k-cochains in Ck(X). Furthermore, for c ∈
Ckc (X),

c =
∑
i∈I

(ιXUi)#(ιXUi)
#c.

Observation 1.7.2. Let X be a space, U = {Ui}i∈Λ a covering of X with
mutualy disjoint open sets, i ∈ Λ, and φ ∈ Φk(Ui). Then

(ιXUj )
!(ιXUi)!φ =

{
φ, j = i
0, j 6= i

In particular, for (ci)i∈Λ ∈
⊕
Hk
c (Ui),

(ιXUj )
#
∑
i∈Λ

(ιXUi)#ci = cj

for each j ∈ Λ.

Theorem 1.7.3. Let X be a space and U = {Ui}i∈Λ a covering of X by
mutually disjoint open sets Ui ⊂ X. Then

J :
⊕
i∈Λ

Hk
c (Ui)→ Hk

c (X), (ci)i∈Λ 7→
∑
i∈Λ

τXUici,
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is an isomorphism and

I : Hk
c (X)→

⊕
i∈Λ

Hk
c (Ui), c 7→ ((ιXUi)

∗c)i∈Λ.

is its inverse.

Proof. To check that J is well-defined, it suffices to note that there are
finitely many non-zero terms in the sequence (ci)i∈Λ. Clearly, J is a homo-
morphism.

To show that I is well-defined, let [c] ∈ Hk
c (X). For each i ∈ Λ, the

set Ui is both open and closed, and hence ιXUi is proper. Since spt(c) is
compact, there exists finitely many i ∈ Λ for which spt(c) ∩ Ui 6= ∅. Thus I
is well-defined. Clearly, I is a homomorphism.

Let [c] ∈ Hk
c (X). Then

(J ◦ I)[c] =
∑
i∈Λ

τXUi(ιXUi)
∗[c] =

[∑
i∈Λ

(ιXUi)#(ιXUi)
#c

]
= [c].

Let ([ci])i∈Λ ∈
⊕

i∈ΛH
k
c (Ui). Then

(I ◦ J)([ci])i∈Λ =

(
(ιXUj )

∗
∑
i∈Λ

τXUi [ci]

)
j∈Λ

=

([
(ιXUj )

#
∑
i∈Λ

(ιXUi)#ci

])
j∈Λ

= ([cj ])j∈Λ.

Thus I is the inverse of J , and J is an isomorphism.

1.8 Retraction of the support

In this section we prove a result which apprears rather techinical at the first
glance but turns out to be an important ingredient in the proof of the long
exact sequence for a pair.

Heuristically, the result we prove states that, given a k-function which
is locally trivial over a closed subset, we may retract a support away from
A using a coboundary. We formulate now the result more formally. Let,
from now on in this section, X be a locally compact and second countable,
Hausdorff space.

We denote

Φk
c (X,A) = {φ ∈ Φk

c (X) : φ|Ak+1 is locally trivial}

for each k ∈ Z and

Φ!
c(X,A) =

(
Φk
c (X,A), δ

)
k∈Z
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the corresponding complex. Note that R!
c(X,X \ A) is a subcomplex of

Φ!
c(X,A). Indeed, if spt(φ) ⊂ X \A, then A ⊂ null(φ) and φ|Ak+1 is locally

trivial as a k-function in Φk
c (X,A).

Note also that φ|Ak+1 is locally trivial if and only if spt((ιAX)!φ) = ∅.

Theorem 1.8.1. Let X be locally compact, second countable, and Hausdorff
and let A ⊂ X be a closed subset. Let φ ∈ Φk

c (X,A) be a k-function for
which δφ ∈ Rk+1

c (X,X \ A). Then there exists ψ ∈ Rkc (X,X \ A) and
ρ ∈ Φk−1

c (X,A) for which
φ = ψ + δρ.

Before moving to the proof of this theorem, we record its consequence
on the level of cochains.

Let
Ckc (X,A) = ker

(
(ιXA)# : Ckc (X)→ Ckc (A)

)
for each k ∈ Z, and let again

C#
c (X,A) =

(
Ckc (X,A), d

)
k∈Z

be the corresponding complex. Clearly, C#
c (X,A) is the image of Φ!

c(X,A)

under the quotient map Φ!
c(X)→ C#

c (X). Since Q#
c (X;U) is the image of

R!
c(X,U) under the quotient map Φ!

c(X)→ C#
c (X), we have, in particular,

that Q#
c (X,X \A) is a subcomplex of C#

c (X,A).

Theorem 1.8.2. Let X be a locally compact, second countable, and Haus-
dorff space, and let A ⊂ X be a closed set. Then the inclusion i : Q#

c (X,X \
A) ↪→ C#

c (X,A) induces an isomorphism

i∗ : Hk(Q
#
c (X,X \A))→ Hk(C

#
c (X,A)).

Proof. For injectivity, suppose a cycle [φ] ∈ Qkc (X,X \ A) is a boundary in

C#
c (X,A). Then there exists [φ′] ∈ Ck−1

c (X,A) for which [φ] = d[φ′] = [δφ].
Thus ψ and δφ are locally equivalent and φ = δφ+ β, where β ∈ Φk

0(X). In
particular, δφ ∈ Rkc (X,X \A).

Since φ′ ∈ Φk
c (X,A) and δφ ∈ Rk+1

c (X,X \A), there exist, by Theorem
1.8.1, ψ′ ∈ Rkc (X,X \A) and ρ′ ∈ Φk−1

c (X,A) for which φ′ = ψ′+δρ′. Hence

φ = δ(ψ′ + δρ′) + β = δψ′ + β.

We conclude that [φ] = d[ψ′], where [ψ′] ∈ Qk−1
c (X,X \ A). Thus [ψ] is a

boundary in Q#
c (X,X \A). This proves the injectivity.

For surjectivity, let [φ] ∈ Ckc (X,A) be a cycle, that is, d[φ] = 0. Then
δφ is locally trivial, and hence δφ ∈ Rkc (X,X \A). Since φ ∈ Φk

c (X,A) and
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δφ ∈ Rkc (X,X \ A), there exist, by Theorem 1.8.1, ψ ∈ Rkc (X,X \ A) and
ρ ∈ Φk−1

c (X,A) for which φ = ψ + δρ. Thus

δψ = δ(δρ− φ) = −δφ.

Thus
d[ψ] = [δψ] = [−δφ] = −d[φ] = 0.

We conclude that [ψ] is a cycle in Qkc (X,X \A). Since [ρ] ∈ C#
c (X,A) and

[φ] = [ψ] + d[ρ], we have that [φ] and [ψ] represent the same homology class

in Hk(C
#
c (X,A)). This proves the surjectivity.

The proof of Theorem 1.8.1 is based on choice of a perturbation of the
identity X → X and a related chain homotopy operator on the level of k-
functions. We begin with these preliminaries and the proceed to the proof
of the theorem.

1.8.1 Chain homotopy

We begin by showing that an induced homomorphism f ! : Φk(X)→ Φk(X)
is chain homotopic to the identity. We introduce the following notations.
Let f : X → X be a mapping (not necessarily continuous). For each k ∈ N
and i = 1, . . . , k, we denote

F fi : Xk → Xk+1, (x1, . . . , xk) 7→ (f(x1), . . . , f(xi), xi, . . . xk)

and

Df : Φk(X)→ Φk−1(X), φ 7→
k∑
i=1

(−1)i+1φ ◦ F fi ;

for k < 0, we set Df = 0 for completeness.
In particular, for φ ∈ Φk(X),

(Dfφ)(x1, . . . , xk) =

k∑
i=1

(−1)i+1φ(f(x1), . . . , f(xi), xi, . . . , xk)

for (x1, . . . , xk) ∈ Xk.
The main proposition is that the mapping Df : Φ!(X) → Φ!(X) is a

chain homotopy.

Proposition 1.8.3. Let f : X → X be a (non-continuous) map. Then, for
each k ∈ Z,

id− f ! = δDf +DF δ : Φk(X)→ Φk(X).
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Proof. Let φ ∈ Φk(X) and x1, . . . , xk+1 ∈ X. Then

(δDfφ)(x1, . . . , xk+1) =
k+1∑
j=1

(−1)j+1(Dfφ)(x1, . . . , x̂j , . . . , xk+1)

and

(Dfδφ)(x1, . . . , xk+1) =
k+1∑
i=1

(−1)i+1(δφ)(f(x1), . . . , f(xi), xi, . . . , xk+1).

On the other hand, for each j = 1, . . . , k + 1,

(Dfφ)(x1, . . . , x̂j , . . . , xk+1)

=

j−1∑
i=1

(−1)i+1φ(f(x1), . . . , f(xi), xi, . . . , x̂j , . . . , xk+1)

+
k+1∑
i=j+1

(−1)(i+1)−1φ(f(x1), . . . , f̂(xj), . . . , f(xi), xi, . . . , xk+1)

and

(δφ)(f(x1), . . . , f(xi), xi, . . . , xk+1)

=
i∑

j=1

(−1)j+1φ(f(x1), . . . , f̂(xj), . . . , f(xi), xi, . . . , xk+1)

+
k+1∑
j=i

(−1)(j+1)+1φ(f(x1), . . . , f(xi), xi, . . . , x̂j , . . . , xk+1)

Thus

(δDfφ)(x1, . . . , xk+1) + (Dfδφ)(x1, . . . , xk+1)

=

k+1∑
j=1

(−1)j+1
j−1∑
i=1

(−1)i+1φ(f(x1), . . . , f(xi), xi, . . . , x̂j , . . . , xk+1)

+

k+1∑
j=1

(−1)j+1
k+1∑
i=j+1

(−1)iφ(f(x1), . . . , f̂(xj), . . . , f(xi), xi, . . . , xk+1)

+
k+1∑
i=1

(−1)i+1
i∑

j=1

(−1)j+1φ(f(x1), . . . , f̂(xj), . . . , f(xi), xi, . . . , xk+1)

+
k+1∑
i=1

(−1)i+1
k+1∑
j=i

(−1)jφ(f(x1), . . . , f(xi), xi, . . . , x̂j , . . . , xk+1)
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By rearranging the double sums, we obtain

(δDfφ)(x1, . . . , xk+1) + (Dfδφ)(x1, . . . , xk+1)

=
∑
i<j

(−1)i+jφ(f(x1), . . . , f(xi), xi, . . . , x̂j , . . . , xk+1)

−
∑
i>j

(−1)i+jφ(f(x1), . . . , f̂(xj), . . . , f(xi), xi, . . . , xk+1)

+
∑
j≤i

(−1)i+jφ(f(x1), . . . , f̂(xj), . . . , f(xi), xi, . . . , xk+1)

−
∑
j≥i

(−1)i+jφ(f(x1), . . . , f(xi), xi, . . . , x̂j , . . . , xk+1)

=
k+1∑
i=1

φ(f(x1), . . . , f(xi−1), xi, . . . , xk+1)

−
k+1∑
i=1

φ(f(x1), . . . , f(xi), xi+1, . . . , xk+1)

= φ(x1, . . . , xk+1)− φ(f(x1), . . . , f(xk+1))

=
(

(id− f !)φ
)

(x1, . . . , xk+1).

This completes the proof.

1.8.2 Small perturbation of the identity

We move now to the second tool in the proof of Theorem 1.8.1 – small per-
turbation of the identity. We recall some terminology related to coverings.

Recall that a covering V refines covering U if for each V ∈ V there
exists U ∈ U for which V ⊂ U , and that a covering U of X is locally
finite if for each x ∈ X there exists a neighborhood W for which #{U ∈
U : U ∩W 6= ∅} <∞.

A Hausdorff space is paracompact if each open covering has a locally
finite refinement. Our space X is paracompact.

Fact 1.8.4. Locally compact, second countable, and Hausdorff spaces are
paracompact.

Indeed, a locally compact, second countable, and Hausdorff space is both
regular [Dug78, Theorem XI.6.4] and Lindelöf [Dug78, Theorem XI.7.2]. A
fortiori, regular Lindelöf spaces are paracompact [Dug78, Theorem VIII.6.5].

The reason to emphasize paracompactness are the star refinements; see
[Dug78, Theorem VIII.3.5]. Given a covering U of X, a star of U ∈ U in
U is the set U∗ =

⋃
{U ′ ∈ U : U ′∩U 6= ∅}. A star U ∗ of U is the covering

U ∗ = {U∗ : U ∈ U }.
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Fact 1.8.5. Each open covering of a paracompact space has a locally fi-
nite star refinement, that is, for each open covering U of X there exists a
covering V for which V ∗ is a locally finite refinement of U .

To define (non-continuous) mappings f : X → X, we consider as small
perturbations of the identity id : X → X, we need some auxiliary notations.

Let W be a covering of X and A ⊂ X a closed subset. We denote
WA = {W ∈ W : W ∩ A 6= ∅}. Also, given any subcollection W ′ ⊂ W , the
notation (W ′)∗ refers to the collection {W ∗ ⊂ X : W ′ ∈ W ′}, where W ∗ is
the star of W in W .

Definition 1.8.6. Let W be a covering of the space X and A ⊂ X a closed
subset. A mapping f : X → X is an (W , A)-perturbation (of the identity) if

1. f |A∪X\⋃WA
= id, and

2. for each W ∈ WA, fW ⊂W ∗ ∩A, where W ∗ is the star of W in W .

Each covering of X and each closed set in X there exists a perturbation
of the identity.

Lemma 1.8.7. Let W be a covering of X and A ⊂ X. Then there exists a
(W , A)-perturbation f : X → X.

Proof. First, for each W ∈ WA, let xW ∈ W ∩ A, and for each x ∈ X, let
Wx ∈ W be a neighborhood of x. We define now f by

x 7→
{
xWx , x ∈ (

⋃
WA) \A,

x, otherwise

Then, clearly, f |A = id and f |X\⋃WA
= id.

Let now W ∈ WA and x ∈ W . Then Wx ∩W 6= ∅ and hence Wx ⊂ W ∗,
where W ∗ is the star of W in W . Since f(x) ∈ Wx, we conclude that
fW ⊂W ∗. Thus the mapping f is a (W , A)-perturbation of the identity.

We record now basic properties for a perturbation of the identity f : X →
X and the associated chain homotopies Df : Φ!(X) → Φ!(X) in the case of
locally finite coverings having pre-compact elements. We begin a statement
on the supports, which holds without additional assuptions on covers.

In the following lemmas, delicate considitions regarding the covering W
are imposed to the k-functions in Φk(X). These conditions are necessary as
the following example reveals.

Example 1.8.8. Let X = R and A = Z. Let also W = {(x− 1, x+ 1): x ∈
Z}. Let φ ∈ Φ1(X) be the 1-function satisfying φ(x, x−1) = 1 for each x ∈ Z
and φ(x, y) = 0 otherwise. Then spt(φ) = ∅. Let also f : X → X be the map
for which f(x) be the integer part of x ∈ R. Then f is a (W , A)-perturbation
and spt(f !φ) = Z. In particular, f !φ is not compactly supported.
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Lemma 1.8.9. Let W be an open covering of X, A ⊂ X a closed subset, and
f : X → X a (W , A)-perturbation. Let also φ ∈ Φk(X) be a k-function for

which φ|(W ∗∩A)k+1 = 0 for each W ∈ WA. Then spt(f !φ) ⊂ cl
(⋃

W ∗
sptφ

)
\A.

Proof. We show first that A ⊂ null(f !φ). Let x ∈ A and let W ∈ W be an
element containing x. Let also x1, . . . , xk+1 ∈ W . Since W ∈ WA, we have
that (f(x1), . . . , f(xk+1)) ∈ (W ∗)k+1. Thus

f !φ(x1, . . . , xk+1) = φ(f(x1), . . . , f(xk+1)) = 0.

Hence f !φ|(W ∗)k+1 = 0 and x ∈ null(f !φ).

It remains to show that spt(f !φ) ⊂ cl
⋃

W ∗
sptφ. Let x 6∈ cl

⋃
W ∗

sptφ and
W ∈ W a neighborhood of x.

Suppose first that W ∈ WA. Let V = W \ cl
⋃

W ∗
φ and (x1, . . . , xk+1) ∈

V k+1. Then (f(x1), . . . , f(xk+1)) ∈ (W ∗)k+1 ∩Ak+1 and

f !φ(x1, . . . , xk+1) = φ(f(x1), . . . , f(xk+1)) = 0

by assumption φ|(W ∗∩A)k+1 = 0. Hence x ∈ null(f !φ).
Suppose now that W 6∈ WA. We observe that W ∩

⋃
Wφ = ∅. Indeed,

otherwise, there exists W ′ ∈ Wφ for which W ∩ W ′ 6= ∅ and then W ⊂
(W ′)∗ ⊂

⋃
W ∗
φ , which is a contradiction.

Since x 6∈ spt(φ), there exists a neighborhood V of x contained in W for
which φ|V k+1 = 0. Thus f |W = id and φ|V k+1 = 0. Hence

f !φ|V k+1 = φ|V k+1 = 0.

Hence x ∈ null(f !φ).

Regarding the mapping properties of the chain homotopy Df we have
the following lemmas.

Lemma 1.8.10. Let W be an open covering of X, A ⊂ X a closed subset,
f : X → X a (W , A)-perturbation. Let ψ ∈ Φk

c (X) be a k-function satisfying
ψ|(W ∗)k+1 = 0 for each W ∈ WA. Then

spt(Dfψ) ⊂ cl
(⋃

W ∗
sptψ

)
\A.

Proof. We show first that A ⊂ null(ψ ◦ Fi) for each i = 1, . . . , k. Let x ∈ A
and let W ∈ W be a neighborhood of x in X. Let also x1, . . . , xk ∈ W .
Since W ∈ WA, we have

F fi (x1, . . . , xk) = (f(x1), . . . , f(xi), xi, . . . , xk) ∈ (W ∗)i×W k−i+1 ⊂ (W ∗)k+1

and
(ψ ◦ F fi )(x1, . . . , xk) = 0.
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We conclude that x ∈ null(φ ◦ F fi ). Hence A ⊂ null(φ ◦ F fi ) for each

i = 1, . . . , k. Thus spt(Dfψ) ⊂
⋃k
i=1 spt(ψ ◦ F fi ) ⊂ X \A.

It remains to to show that spt(ψ ◦ Fi) ⊂ cl
(⋃

W ∗
sptψ

)
for each i =

1, . . . , k.. Let x 6∈ cl
⋃

W ∗
sptφ and W ∈ W a neighborhood of x. Let also

i ∈ {1, . . . , k}.
Suppose first that W ∈ WA. Let V = W \cl

⋃
W ∗
φ and (x1, . . . , xk) ∈ V k.

Then (f(x1), . . . , f(xi), xi, . . . , xk) ∈ (W ∗)k+1 and

φ ◦ F fi (x1, . . . , xk) = φ(f(x1), . . . , f(xi), xi, . . . , xk) = 0

by the assumption φ|(W ∗)k+1 = 0. Hence x ∈ null(φ ◦ F fi ).
Suppose now that W 6∈ WA. Similarly as in Lemma 1.8.9, we observe

that W ∩
⋃

Wφ = ∅. Since x 6∈ spt(φ), there exists a neighborhood V of
x contained in W for which φ|V k+1 = 0. Thus f |W = id and φ|V k+1 = 0.
Hence

φ ◦ F fi |V k+1 = φ|V k+1 = 0.

Hence x ∈ null(φ ◦ F fi ). The claim follows.

Lemma 1.8.11. Let W be a open covering of X, A ⊂ X a closed subset,
f : X → X a (W , A)-perturbation, and φ ∈ Φk(X) be a k-function for which
(ιXA)!φ is locally trivial. Then (ιXA)!Dfφ is locally trivial.

Proof. Let φ ∈ Φk(X) be a k-function for which (ιXA)!φ is locally trivial.

It suffices to show that φ ◦ F fi |Ak is locally trivial for each i = 1, . . . , k. Let
x ∈ A. Since φ|Ak+1 is locally trivial, there exists a neighborhood V of x in
A for which φ|V k+1 = 0.

Let i ∈ {1, . . . , k}. Since f |A = id, we have

φ ◦ F fi |V k = φ|V k+1 = 0

for each i = 1, . . . , k. Thus Dfφ|V k = 0. Hence Dfφ|Ak is locally trivial.

1.8.3 Proof of the retraction theorem (Theorem 1.8.1)

Let φ ∈ Φk
c (X,A) be as in the claim, that is, φ|Ak+1 = (ιAX)!φ is locally

trivial and δφ ∈ Rk+1
c (X,U). We begin by constructing a covering W of X

associated to φ|Ak+1 , φ, and δφ.
First, for each x ∈ A, we fix a pre-compact neighborhood Vx of x in X

for which φ|(Vx∩A)k+1 = 0. Then V = {Vx}x∈A∪{X \A} is an open covering
of X. Note that, given V ∈ VA, there exists x ∈ A for which V = Vx and
hence φ|(V ∩A)k+1 = 0.

Second, for each x 6∈ spt(δφ), let V ′x be a neighborhood of x in X for
which δφ|(V ′x)k+2 = 0. Then V ′ = {V ′x}x 6∈spt(δφ) ∪ {X \ cl(null(δφ))} is a
covering of X. Again, note that, if V ′ ∈ V ′ meets null(δφ), then V ′ ⊂
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null(δφ) and there exists x ∈ null(δφ) for which V ′ = V ′x. Hence δφ|(V ′)k+2 =
0.

Third, for each x 6∈
⋃

Wsptφ, let V ′′x be a neighborhood of x in X for
which φ|(V ′′x )k+1 = 0. Then V ′′ = {V ′′x }x6∈sptφ ∪ {

⋃
Wsptφ} is a covering of

X.
Since X is paracompact, there exists a locally finite cover W of X which

is a simultaneous star refinement of V , V ′, and V ′′, that is, given W ∈ W
there exist V ∈ V , V ′ ∈ V ′, and V ′′ ∈ V ′′ for which W ∗ ⊂ V ∩V ′∩V ′′. Let
f : X → X be a (W , A)-perturbation.

It suffices to show that

(i) f !φ ∈ Rkc (X,U),

(ii) Dfδφ ∈ Rkc (X,U), and

(iii) Dfφ ∈ Φk−1
c (X,A).

Indeed, by Proposition 1.8.3,

φ =
(
f !φ+Dfδφ

)
+ δDfφ.

Thus we may take ψ = f !φ+Dfδφ and ρ = Dfφ.
To show (i), let W ∈ WA. Then there exists V ∈ V for which W ∗ ⊂ V

and φ|(V ∩A)k+1 = 0. Thus φ|(W ∗∩A)k+1 = 0. By Lemma 1.8.9, spt(f !φ) ⊂
cl
(⋃

W ∗
sptφ

)
\A. Since cl

(⋃
W ∗

sptφ

)
is compact, we have f !φ ∈ Rkc (X,U).

To prove (ii), let again W ∈ WA. Since W is a star refinement of V ′, there
exists V ′ ∈ V ′ containing W . Since V ′ ∩ A 6= ∅, we conclude that V ′ = V ′x
for some x 6∈ spt(δφ). Since δφ|(V ′)∗ = 0, we have also δφ|(W ∗)k+2 = 0. Thus

spt(Dfδφ) ⊂ cl
(⋃

W ∗
spt δφ

)
\ A by Lemma 1.8.10. Since cl

(⋃
W ∗

spt δφ

)
is

compect, we have Dfδφ ∈ Rkc (X,U).
For the proof of (iii), we observe first that, since (ιXA)!φ is locally trivial,

so is (ιXA)!Dfφ by Lemma 1.8.11. Thus to show that Dfφ has compact
support, it suffices to show that spt(Dfφ) ⊂ cl

⋃
W ∗

sptφ. Let x 6∈ cl
⋃

W ∗
sptφ

and W ∈ W a neighborhood of x. Then there exists x′ ∈6
⋃

Wsptφ for
which W ∗ ⊂ V ′′x . Since φ|(V ′′x )k+1 = 0 we conclude that φ|(W ∗)k+1 = 0. Let

(x1, . . . , xk) ∈W k. Then, for each i = 1, . . . , k,

F fi (x1, . . . , xk) = (f(x1), . . . , f(xi), xi, . . . , xk) ∈ (W ∗)k+1.

Hence Dfφ|(W ∗)k = 0 and x ∈ null(Dfφ). Thus spt(Dfφ) ⊂ cl
⋃

W ∗
sptφ.

Hence Dfφ ∈ Φk−1
c (X,A). This completes the proof of Theorem 1.8.1.
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1.9 Exact sequence of a pair

As discussed in the beginning of Section 1.8, our main interest for Theorem
1.8.1 stems from the proof of the exact sequence of a pair (X,A) for a closed
subset A ⊂ X.

Theorem 1.9.1. Let X be a locally compact and second countable Hausdorff
space and A ⊂ X a closed subset. Then there exists, for each k ∈ Z, a
homomorphism ∂ : Hk

c (A)→ Hk+1
c (X \A) for which the sequence

(1.9.1)

· · · // Hk
c (X \A)

τXU // Hk
c (X)

ι∗XA // Hk
c (A)

∂k // Hk+1
c (X \A) // · · ·

is exact.

The interesting aspect in the sequence (1.9.1) is that contains only of
Alexander–Spanier groups of spaces, and there are no relative groups in
the sense that none of the groups is defined as the homology group of a
quotient complex. In the proof this is reflected by the fact that there is no
(immediate) short exact sequence which implies this long exact sequence.

Structurally it is also an interesting aspect that both the push-forward
τXU and the pull-back ι∗XU are induced by inclusions, here X \A ↪→ X and
A ↪→ X, respectively.

The connecting homomorphism ∂k : Hn
c (A) → Hn

c (X \ A) in (1.9.1) is
defined as follows.

Recall that the pull-back ι#XU : Q#
c (X,U)→ C#

c (U) is an isomorphism of

chain complexes. Let (ιXU )∗ : Hk+1(Q#
c (X,U))→ Hk+1

c (U) be the isomor-

phism in homology induced by ι#XU ; note that H∗c (U) = H∗(C
#
c (U)). Recall

also that, by Theorem 1.8.2, the inclusion j : Q#
c (X,U)→ C#

c (X,A) of com-

plexes induces an isomorphism j∗ : Hk+1(Q#
c (X,U))→ Hk+1(C#

c (X,A)).

Let now ∂′k : Hk
c (A) → Hk+1(C#

c (X,A)) be the connecting homomor-
phism in the long exact sequence

(1.9.2) // Hk
c (X) // Hk

c (A)
∂′k// Hk+1(C#

c (X,A)) //

induced by the short exact sequence

(1.9.3) 0 // Ckc (X,A) �
� // Ckc (X)

ι#XA // Ckc (A) // 0.

The connecting homomorphism ∂k : Hk
c (A) → Hk

c (X \ A) is now the
homomorphism for which the diagram

Hk
c (A)

∂′k
��

∂k // Hk+1
c (U)

Hk+1(C#
c (X,A)) Hk+1(Q#

c (X,U))

∼= (ιXU )∗

OO

j∗

∼=oo
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commutes, that is,

(1.9.4) ∂k = (ιXU )∗ ◦ j−1
∗ ◦ ∂′k.

Proof of Theorem 1.9.1. SinceQkc (X,U) is contained in the kernel of (ιXA)#,
we may factorize (ιXA)# : Ckc (X)→ Ckc (A) through Ckc (X)/Qkc (X,U), that
is, we have the diagram

Ckc (X)
(ιXA)#

//

q

��

Ckc (A)

Ckc (X)/Qkc (X,U)

ῑ

77

where q : Ckc (X)→ Ckc (X)/Qkc (X,U) is the natural quotient map.
Thus the diagram

0 // Qkc (X,U) �
� j′ //

� _

j
��

Ckc (X)
q//

id

Ckc (X)/Qkc (X,U)

ῑ
��

// 0

0 // Ckc (X,A) �
� // Ckc (X)

ι#XA // Ckc (A) // 0

where j : Qkc (X,U) → Ckc (X,A) is an inclusion, has exact rows and all
squares commute.

By naturality of the long exact sequence in homology, the diagram
(1.9.5)

// Hk
c (X) //

id

Hk(C
#
c (X)/Q#

c (X,U))
∂′′k //

ῑ∗
��

Hk+1(Q#
c (X,U)) //

j∗∼=
��

// Hk
c (X) // Hk

c (A)
∂′k // Hk+1(C#

c (X,A)) //

commutes. Since the Alexander–Spanier cohomology H∗c (·) is the homol-

ogy of the complex C#
c (·), we have H∗c (X) = H∗(C

#
c (X)) and H∗c (A) =

H∗(C
#
c (A)). Thus, by the Five Lemma, ῑ∗ is an isomorphism.

We combine now all relationships of H∗c (A), H∗c (U) and H∗c (X) into one
diagram
(1.9.6)

Hk
c (U)

τXU // Hk
c (X)

q∗
��

ι∗XA // Hk
c (A)

∂′k
��

∂k // Hk+1
c (U)

Hk(Q
#
c (X,U))

∼= (ιXU )∗

OO
j′∗

55

Hk(C
#
c (X)/Q#

c (X,U))

ῑ∗

∼=
44

Hk+1(C#
c (X,A))

(ιXU )∗◦j−1
∗

∼=
66

where all triangles commute. The top row in (1.9.6) is exact by (1.9.5). This
completess the proof of the exactness of (1.9.1).
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Naturality of the long exact sequence of a pair

We discuss now some naturality statements for the exact sequences of a pair.
The first one is almost obvious.

Theorem 1.9.2. Let A ⊂ X and B ⊂ Y be closed sets so that there exists
a homeomorphism f : X → Y for which fA = B.4 Then the diagram

Hk
c (X \A;Z)

τA // Hk
c (X;Z)

ι∗A // Hk
c (A;Z)

∂A// Hk+1
c (X \A;Z)

Hk
c (Y \B;Z)

(f |X\A)∗

OO

τB // Hk
c (Y ;Z)

f∗

OO

ι∗B // Hk
c (B;Z)

(f |A)∗

OO

∂B // Hk+1
c (Y \B;Z)

(fX\A)∗

OO

where rows are exact sequences of pairs (X,A) and (Y,B), commute.

Proof. The first square commutes by Lemma 1.5.16 and the second by the
composition law for the pull-back. Thus it remains to show that the square

Hk
c (A;Z)

∂A// Hk+1
c (X \A;Z)

Hk
c (B;Z)

(f |A)∗

OO

∂B // Hk+1
c (Y \B;Z)

(fX\A)∗

OO

commutes. Since the connecting homomorphism ∂′k and isomorphisms j∗
and (ιXU )∗ are natural in the definition of ∂k the claim follows from the
observation that the diagram

Hk
c (A;Z)

∂A //

∂′k ((

Hk+1
c (X \A;Z)

Hk+1(C#
c (X,A)) Hk+1(Q#

c (X,U))

∼=
(ιXU )∗

55

j∗

∼=oo

Hk+1(C#
c (Y,B))

(f#|
C

#
c (Y,B)

)∗ ∼=

OO

Hk+1(Q#
c (Y, V ))

∼= (f#|
Q

#
c (Y,V )

)∗

OO

j∗

∼=oo

(ιY V )∗
∼= ))

Hk
c (B;Z)

∂′k
66

(f |A)∗

OO

∂B // Hk+1
c (Y \B;Z)

(fX\A)∗

OO

commutes.

A typical version of the naturality of the long exact sequence of a pair
reads as follows.

4Typical terminology is that f is a homeomorphism of pairs f : (X,A)→ (Y,B).

43



Theorem 1.9.3. Let A and B be closed subsets of X for which A ⊂ B, and
let U = X \A and V = X \B. Then the diagram

· · · // Hk
c (X \B)

τUV

��

τXV //// Hk
c (X)

id

ι∗XB // Hk
c (B)

ι∗BA
��

∂B// Hk+1
c (X \B) //

τUV

��

· · ·

· · · // Hk
c (X \A)

τXU // Hk
c (X)

ι∗XA // Hk
c (A)

∂A// Hk+1
c (X \A) // · · ·

where the rows are exact sequences of pairs (X,A) and (X,B), commutes.

Proof of Theorem 1.9.3. The squares

Hk
c (X \B)

τUV

��

τXV //// Hk
c (X)

ι∗XB // Hk
c (B)

ι∗BA
��

Hk
c (X \A)

τXU // Hk
c (X)

ι∗XA // Hk
c (A)

commute by the composition laws.
To see that the square

Hk
c (B)

ι∗AB
��

∂B// Hk+1
c (X \B)

τUV

��
Hk
c (A)

∂A// Hk+1
c (X \A)

commutes, we begin with an observation that the square

Qk+1
c (X,V )� _

λ
��

� � jB // Ck+1
c (X,B)� _

κ
��

Qk+1
c (X,U) �

� jA // Ck+1
c (X,A)

of inclusions is well-defined and commutes. Similarly, the triangles in the
diagram

Ck+1
c (V )

(ιUV )#

��

(ιXV )# &&

Qk+1
c (X,V )

(ιXV )#

oo
jJ

xx

� _

λ

��

Ck+1
c (X)

Ck+1
c (U)

(ιXU )#

88

Qk+1
c (X,U)

(ιXU )#
oo

4 T

gg
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commute; indeed, the one on left by composition law and the one on the
right trivially. Further, we note that the commuting diagram

0 // Ckc (X,B)� _

κ
��

� � // Ckc (X)
ι#XB // Ckc (B)

ι#BA
��

// 0

0 // Ckc (X,A) �
� // Ckc (X)

ι#XA // Ckc (A) // 0

induces a diagram in homology

· · · // Hk(C
k
c (X,B))

κ∗
��

// Hk
c (X) // Hk

c (B)

ι∗BA
��

∂′B// Hk+1(Ckc (X,B))

κ∗
��

// · · ·

· · · // Hk(C
k
c (X,A)) // Hk

c (X) // Hk
c (A)

∂′A// Hk+1(Ckc (X,A)) // · · ·

which commutes and has long exact sequences as rows.
Thus the diagram

Hk+1
c (V )

τUV

��

Hk+1(Q∗c(X,V ))
(iXV )∗oo

λ∗
��

(jB)∗
∼=
// Hk+1(C∗c (X,B))

κ∗

��

Hk
c (B)

∂′Boo

ι∗AB
��

Hk+1
c (U) Hk+1(Q∗c(X,U))

(iXU )∗oo (jA)∗
∼=
// Hk+1(C∗c (X,A)) Hk

c (A)
∂′Aoo

commutes. Since ∂A = (iXU )∗ ◦ (jA)−1
∗ ◦ ∂′A and ∂B = (iXV )∗ ◦ (jB)−1

∗ ◦ ∂′B,
we have obtained that the square

Hk+1
c (V )

τUV

��

Hk
c (B)

∂Boo

ι∗AB
��

Hk+1
c (U) Hk

c (A)
∂Aoo

commutes. This concludes the proof.

We record one more variant of the naturality of the long exact sequence
of a pair for further use.

Theorem 1.9.4. Let U ⊂ X be an open set, W = X \ ∂U , and A = ∂U .
Then the diagram

Hk
c (X \ ∂U)

ι∗WU
��

τXW // Hk
c (X)

ι∗
XU
��

ι∗XA // Hk
c (∂U)

∂Xk // Hk+1
c (X \ ∂U)

ι∗WU
��

Hk
c (U)

τUU // Hk
c (U)

ι∗
UA // Hk

c (∂U)
∂Uk // Hk+1

c (U)

commutes.
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Proof. The first square commutes by Lemma 1.5.16 and the second by the
composition law. Thus it suffices to prove that the last square commutes.

By naturality of the long exact sequence (1.9.2), the diagram

Hk
c (A)

∂′k // Hk+1(C#
c (X,A))

(ι#
XU

)∗
��

Hk
c (A)

∂
′U
k // Hk+1(C#

c (U,A))

commutes. Since the diagram

Q#
c (X,W )

ι#
XU ��

jX // C#
c (X, ∂U)

ι#
XU��

Q#
c (U,U)

jU
// C#
c (U, ∂U)

commutes, we also have

(ι#
XU

)∗j
X
∗ = jU∗ (ι#

XU
)∗.

Finally, since the diagram

Q#
c (X,W )

ι#XW //

ι#
XU ��

C#
c (W )

ι#WU��

Q#
c (U,U)

ι#
UU

// C#
c (U)

commutes, we have that

ι∗WU (ι#XW )∗ = (ι#
UU

)∗(ι
#

XU
)∗.

Combining these observations, we have

ι∗WU∂
X
k = ι∗WU ◦ (ι#XW )∗ ◦ jX∗ ◦ ∂′k

= (ι#
UU

)∗ ◦ (ι#
XU

)∗ ◦ jX∗ ◦ ∂′k = (ι#
UU

)∗ ◦ jU∗ ◦ (ι#
XU

)∗ ◦ ∂′k
= (ι#

UU
)∗ ◦ jU∗ ◦ ∂

′U
k = ∂Uk .

This completes the proof.
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1.10 Homotopy property

An important property of (any) cohomology theory is that homotopic maps
(in suitable sense) induce the same homomorphism on the level of cohomol-
ogy. For the compactly supported Alexander–Spanier cohomology this holds
for properly homotopic maps.

Definition 1.10.1. Proper continuous maps f0 : X → Y and f1 : X → Y
are properly homotopic if there exists a proper map F : X× [0, 1]→ Y which
is a homotopy from f0 to f1, that is, F (x, 0) = f0(x) and F (x, 1) = f1(x)
for each x ∈ X.

In this section, we denote I = [0, 1]. Given spaces X and Y , a mapping
F : X × I → Y , and t ∈ I, we also denote Xt = X × {t} ⊂ X × I and
Ft : X → Y the map x 7→ (x, t).

Remark 1.10.2. Note that a mapping F : X × I → Y is proper if and only
if each map Ft : X → Y is proper.

We define the proper homotopy equivalence as usual.

Definition 1.10.3. A proper continuous map f : X → Y is a homotopy
equivalence if there exits a proper map g : Y → X (called homotopy inverse
of f so that g ◦ f and f ◦ g are properly homotopic to identities idX and
idY , respectively.

The homotopy property of the compactly supported Alexander–Spanier
cohomology now reads as follows.

Theorem 1.10.4. Let X and Y be locally compact Hausdorff spaces and let
f0 : X → Y and f1 : X → Y be properly homotopic maps. Then

f∗0 = f∗1 : H∗c (Y )→ H∗c (X).

Corollary 1.10.5. A homotopy equivalence f : X → Y induces an isomor-
phism f∗ : H∗c (Y )→ H∗c (X) in cohomology.

Proof. Let g : Y → X be a homotopy inverse of f . Then f∗ ◦g∗ = (g ◦f)∗ =
id∗X = id and g∗ ◦ f∗ = (f ◦ g)∗ = id∗Y = id.

We begin the proof of Theorem 1.10.4 with an observation. For i = 0, 1,
let hi : X → X × I be the inclusion x 7→ (x, i). Let now F : X × I → X is a
proper homotopy from f0 to f1. Then F ◦ hi = fi and

f∗i = (F ◦ hi)∗ = h∗i ◦ F ∗

for i = 0, 1. Thus it suffices to prove the following proposition.
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Proposition 1.10.6. For i = 0, 1, let hi : X → X × I be the inclusion
x 7→ (x, i). Then

h∗0 = h∗1 : H∗c (X × I)→ H∗c (X).

We begin by introducing some notation. For each t ∈ I, let

ht : X → X × I, x 7→ (x, t),

and let jt : X → Xt and it : Xt → X × I be the homeomorphism x 7→ (x, t)
and inclusion, respectively. So, formally, ht = it ◦ jt for each t ∈ I.

Let also
ρ : X × I → X, (x, t) 7→ x.

Thus we have the diagram

X
jt //

ht

""

Xt

it
��

X × I
ρ

bb

of maps, where jt is a homeomorphism. Since all the maps in the diagram
are proper, we have also a commutative diagram

Hk
c (X)

ρ∗

&&

Hk
c (Xt)

j∗too

Hk
c (X × I)

h∗t

ff

i∗t

OO

in cohomology, where j∗t is an isomorphism. Note also that

h∗t ◦ ρ∗ = (ρ ◦ ht)∗ = id∗X = id

for each t ∈ I.
Homomorphisms ρ∗ and h∗t are homologically ortogonal in the following

sense.5

Lemma 1.10.7. For each t ∈ I,

Hk
c (X × I) = im ρ∗ ⊕ kerh∗t .

Proof. We show first that im ρ∗ ∩ kerh∗t = {0}. Let c ∈ im ρ∗ ∩ kerh∗t . Then
there exists c′ ∈ Hk

c (X) for which ρ∗(c′) = c. Since h∗t ◦ ρ∗ = id, we have
that

c′ = h∗t (ρ
∗(c′)) = h∗t (c) = 0.

5Recall that, if U and V are subgroups of W , then W = U ⊕ V if U ∩ V = {0} and
U + V = W .
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Thus c = ρ(c′) = 0 and im ρ∗ ∩ kerh∗t = {0}.
To show that Hk

c (X × I) = im ρ∗ + kerh∗t , let c ∈ Hk
c (X × I). Then

h∗t (c− ρ∗(h∗t (c))) = h∗t (c)− (h∗t ◦ ρ∗)(h∗t (c)) = h∗t (c)− h∗t (c) = 0.

Thus
c = ρ∗(h∗t (c)) + (c− ρ∗(h∗t (c))) ∈ im ρ∗ + kerh∗t .

This completes the proof.

The main idea of the proof of Proposition 1.10.6 is that, for each c ∈
Hk
c (X × I), the map I → Hk

c (X), t 7→ h∗t (c), is locally constant, and hence
constant, since I is connected. This is immediately true for classes in the
image of ρ∗. Indeed, we have the following lemma.

Lemma 1.10.8. Let c ∈ im
(
ρ∗ : Hk

c (X)→ Hk
c (X × I)

)
. Then

h∗t c = h∗0c

for each t ∈ I.

Proof. Let c′ ∈ Hk
c (X) be a cohomology class and c = ρ∗(c′) ∈ Hk

c (X × I).
Since h∗t ◦ ρ∗ = id = h∗0 ◦ ρ∗, we have

h∗t (c) = h∗t (ρ
∗(c′)) = c′ = h∗0(ρ∗(c′)) = h∗0(c).

The claim follows.

We are now ready for the proof of Proposition 1.10.6.

Proof of Proposition 1.10.6. Let c ∈ Hk
c (X × I). We show that, for each t0

has a neighborhood J in I satisfying h∗t c = h∗t0c for each t ∈ J . Since I is
connected, a standard covering argument then implies the claim.

Let t0 ∈ I. By Lemma 1.10.7, there exists a ∈ im ρ∗ and b ∈ kerh∗t0
for which c = a + b. Since h∗ta = h∗0a for each t ∈ I by Lemma 1.10.8 it
suffices to find an interval J ⊂ I containing t0 in its interior for which we
have h∗t b = h∗t0b = 0 for all t ∈ J . Further, since h∗t = j∗t ◦ i∗t and j∗t is
an isomorphism, it suffices to find an interval J ⊂ I, containing t0 in its
interior, for which i∗t b = i∗t0b = 0 for each t ∈ J .

Consider the exact sequence of the pair (X × I,Xt0)

· · · // Hk
c ((X × I) \Xt0)

τt0 // Hk
c (X × I)

i∗t0 // Hk
c (Xt0)

∂k // · · ·

By assumption, b ∈ ker i∗t0 . Thus there exists b1 ∈ Hk
c ((X × I) \Xt0) for

which τt0(b1) = b. Since b1 is a cohomology class in complactly supported
cohomology there exists, by Lemma 1.6.1, a pre-compact open subset U ⊂
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(X × I) \Xt0 for which b1 is in the image of the push-forward τ(X×I)U . Let

b2 ∈ Hk
c (U) for which b1 = τ((X×I)\Xt0 )U (b2).

Since U is compact and Xt0 ∩ U = ∅, there exists a closed interval
J ⊂ I containing t0 in its interior for which (X × J) ∩ U = ∅. Indeed, let
p : X × I → I to be the projection (x, t) 7→ t. Then p(U) is compact and
t0 6∈ p(U). Thus there exists a closed interval J which contains t0 in its
interior and does not meet p(U).

Let τ ′ = τ(X×(I\J))U and b3 = τU (b2) ∈ Hk
c (X × (I \ J)). By the

naturality of the exact sequence of a pair (Theorem 1.9.3), we have the
commuting diagram

Hk
c (U)

τ ′

��
· · · // Hk

c ((X × (I \ J))
τJ //

τ
��

Hk
c (X × I)

id

i∗J // Hk
c (X × J)

κ∗t0
��

∂k // · · ·

· · · // Hk
c ((X × I) \Xt0)

τt0 // Hk
c (X × I)

i∗t0 // Hk
c (Xt0)

∂k // · · ·

where rows are exact sequences of pairs (X × I,X × J) and (X × I,Xt0),
homomorphisms τ , τt0 and τJ are the corresponding push-forward homo-
morphisms, and iJ : X × J ↪→ X × I and κt0 : Xt0 ↪→ X × J inclusions.

By the composition laws and commutativity of the diagram, we have

τJ(b3) = (τt0 ◦ τ)(b3) = (τt0 ◦ τ ◦ τ ′)(b2) = τ(X×I)U (b2) = b.

Let t ∈ J . We have the commutative diagram

· · · // Hk
c ((X × (I \ J))

τJ //

τ
��

Hk
c (X × I)

id

i∗J // Hk
c (X × J)

κ∗t
��

∂k // · · ·

· · · // Hk
c ((X × I) \Xt)

τt // Hk
c (X × I)

i∗t // Hk
c (Xt)

∂k // · · ·

where the rows are now exact sequences of pairs (X × I,X × J) and (X ×
I,Xt), homomorphisms τ , τt and τJ are the corresponding push-forward
homomorphisms, and iJ : X × J ↪→ X × I and κt : Xt ↪→ X × J inclusions.

Then
i∗t (b) = i∗t (τJ(b3)) = (κ∗t ◦ i∗J)(τJ(b3)) = 0.

Thus b ∈ ker i∗t for each t ∈ J . This concludes the proof.

1.11 Mayer–Vietoris sequence

The Mayer–Vietoris sequence enables us to calculate the cohomology of a
union U ∪ V from cohomologies of the (open) subsets U and V of X. The
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statement reads as follows. The exact sequence is called the Mayer–Vietoris
sequence.

Theorem 1.11.1. Let U and V be open sets in X for which X = U ∪ V ,
and let

ϕ : Hk
c (U ∩ V )→ Hk

c (U)⊕Hk
c (V ), c 7→ (τU(U∩V )c, τV (U∩V )c)

and
ψ : Hk

c (U)⊕Hk
c (V )→ Hk

c (X), (a, b) 7→ τXUa− τXV b.

Then, for each k, there exists a homomorphism ∆: Hk
c (X)→ Hk+1

c (U ∩ V )
for which the sequence

∆// Hk
c (U ∩ V )

ϕ // Hk
c (U)⊕Hk

c (V )
ψ // Hk

c (X)
∆ // Hk+1

c (U ∩ V ) //

is exact.

In the proof, we use the partition of unity.

Fact 1.11.2. Let U be a finite open cover of a locally compact Hausdorff
space X. Then there exists a partition of unity {ϕi}i∈I with respect to U ,
that is,

1. for each i ∈ I, there exists Ui ∈ U for which spt(ϕi) ⊂ Ui,

2. each x ∈ X has a neighborhood Wx ⊂ X for which

#{i ∈ I : ϕi|Wx 6= 0} <∞, and

3.
∑

i∈I ϕi = 1.

The Mayer-Vietoris sequence stems from a short exact sequence for chain
complexes.

Lemma 1.11.3. Let U and V be open sets in X for which X = U ∪V , and
denote W = U ∩ V . Let also

I : Ckc (W )→ Ckc (U)⊕ Ckc (V ), c 7→ ((ιUW )#(c), (ιVW )#(c))

and

J : Ckc (U)⊕ Ckc (V )→ Ckc (X), (a, b) 7→ (ιXU )#(a)− (ιXV )#(b)

be homomorphisms. Then the sequence

0 // Ckc (W )
I // Ckc (U)⊕ Ckc (V )

J // Ckc (X) // 0

is exact.
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Proof. Since (ιUV )# and (ιVW )# are injective, the homomorphism I is in-
jective. Thus it suffices to show that the sequence is exact at Ckc (U)⊕Ckc (V )
and that J is surjective.

By the composition law of the push-forward, we have

J ◦ I = (ιXU )# ◦ (ιUW )# − (ιXV )# ◦ (ιVW )# = (ιXW )# − (ιXW )# = 0.

Thus im I ⊂ ker J .
Suppose (a, b) ∈ ker J . Then (ιXU )#(a) = (ιXV )#(b). Since spt((ιXU )#(a)) ⊂

U and spt((ιXV )#(b)) ⊂ V , we conclude that spt((ιXU )#(a)) = spt((ιXV )#(b)) ⊂
U ∩ V = W . Thus a ∈ Qkc (U,W ) and b ∈ Qkc (V,W ). Let ca ∈ Ckc (W ) and
cb ∈ Ckc (W ) be such that (ιUW )#(ca) = a and (ιVW )#(cb) = b. Since

(ιXW )#(ca) = (ιXU )#((ιUW )#(ca)) = (ιXV )#((ιVW )#(cb)) = (ιXW )#(cb),

and (ιXW )# is injecive, we conclude that ca = cb. Thus

I(ca) = ((ιUW )#(ca), (ιVW )#(ca)) = (a, (ιVW )#(cb)) = (a, b).

Hence kerJ ⊂ im I.
To show the surjectivity of J , let c ∈ Ckc (X). We also fix φ ∈ Φk

c (X) so
that c = [φ]. We construct φU ∈ Φk

c (X,U) and φV ∈ Φk
c (X,V ) for which

[φU ]− [φV ] = [φ] = c.

Then, for a = (ιXU )#([φU ]) ∈ Ckc (U) and b = (ιXV )#([φV ]) ∈ Ckc (V ), we
have

J(a, b) = (ιXU )#(a)− (ιXV )#(b) = [φU ]− [φV ] = c.

Let {λU , λV } be a partition of unity on X with respect to the cover
{U, V } of X satisfying spt(λU ) ⊂ U and spt(λV ) ⊂ V . Let π : Xk+1 → X
be the projection (x1, . . . , xk+1) 7→ x1 and let φU = (λU ◦ π)φ and φV =
−(λV ◦ π)φ be k-functions in Φk(X). Since

spt(φU ) ⊂ spt(λU ) ∩ spt(φ) and spt(φV ) ⊂ spt(λV ) ∩ spt(φ).

we have φU ∈ Φk
c (X,U) and φV ∈ Φk

c (X,V ).
We show that [φ] = [φU ] − [φV ]. Let x ∈ X. Then there exists a

neigborhood B of x for which λU |Bk+1 + λV |Bk+1 = 1. Thus

φU |Bk+1 − φV |Bk+1 = ((λU ◦ π)φ)|Bk+1 − (−(λV ◦ π)φ)|Bk+1

= ((λU + λV ) ◦ π) |Bk+1φ|Bk+1 = φBk+1 .

Thus x ∈ null(φ− (φU − φV )). Hence [φ] = [φU ]− [φV ]. This concludes the
proof.
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Proof of Theorem 1.11.1. By Lemma 1.11.3, we have a long exact sequence

· · · ∂// Hk
c (U ∩ V )

I∗// Hk
c (C∗c (U)⊕ C∗c (V ))

J∗ // Hk
c (X)

∂ // Hk+1
c (U ∩ V ) // · · ·

in homology. Let now θ : Hc(C
∗
c (U) ⊕ C∗c (V )) → Hk

c (U) ⊕ Hk
c (V ) be the

natural isomorphism. Then the diagram

· · · ∂// Hk
c (U ∩ V )

I∗// Hk
c (C∗c (U)⊕ C∗c (V ))

θ ∼=
��

J∗ // Hk
c (X)

∂ // Hk+1
c (U ∩ V ) // · · ·

· · · ∂// Hk
c (U ∩ V )

ϕ // Hk
c (U)⊕Hk

c (V )
ψ // Hk

c (X)
∂ // Hk+1

c (U ∩ V ) // · · ·

commutes.
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Chapter 2

Orientation of domains
Euclidean spaces

2.1 Goals

The goal of this chapter is to provide the existence of the so-called orien-
tataion classes. More formally, the goal of this section is to establish the
following theorem.

Theorem 2.1.1. Let U be a connected open set in Rn. Then Hn
c (U) ∼= Z

and the push-forward τRnU : Hn
c (U)→ Hn

c (Rn) is an isomorphism.

Corollary 2.1.2. Let V ⊂ U ⊂ Rn be open sets. Then τUV : Hn
c (V ) →

Hn
c (U) is an isomorphism.

Proof. Since τRnV = τRnU ◦ τUV , the claim follows.

Having these results at our disposal, we may define an orientation class
of a domain.

Definition 2.1.3. Let U be a domain1 either in Rn or in Sn. A choice of
generator cU ∈ Hn

c (U) ∼= Z is called an orientation (class) of U . Domains
V ⊂ U are consistently oriented if τUV (cV ) = cU .

As one step of the proof of Theorem 2.1.1, we show that all higher
cohomology groups Hk

c (U) for k > n of an open set U in Rn vanish.

Theorem 2.1.4. Let U ⊂ Rn be an open set. Then Hk
c (U) = 0 for k > n.

Similarly, if V ⊂ Sn is an open set, then Hk
c (V ) = 0 for k > n.

As an important corollary of this vanishing result, we have a correspond-
ing result for closed sets. For its importance, we regard it also as a theorem.2

1An open and connected subset is called a domain.
2This result is NOT true for the singular cohomology, see Barratt and Milnor Proc.

Amer. Math. Soc. 13 (1963), 293–297.
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Theorem 2.1.5. Let n ≥ 1 and A ⊂ Sn be a closed set which is not the
whole sphere. Then Hk

c (A) = 0 for k ≥ n.

The corresponding (general) results hold also for nmanifolds and we
disucss them in a separate section in the end of this chapter.

Theorem 2.1.1 is proved in three steps. First we calculate cohomology
groups H∗c (Rn) and H∗c (Sn) of Rn and Sn, respectively. Then we show in
Theorem 2.1.4 that higher cohomology groups (k > n) of open sets in Rn
and Sn are trivial and discuss its applications to closed sets in Rn and Sn.
Then we are ready to prove Theorem 2.1.1.

2.2 Cohomology groups of Euclidean spaces

In this section, we calculate the cohomology (rings) of the Euclidean n-space
Rn and the n-sphere Sn; recall that Sn = {x ∈ Rn+1 : |x| = 1}. The results
(as expected) read as follows. We restrict ourselves to the case n ≥ 1. For
n = 0, we have that R0 is a point and S0 is a disjoint union of two points.
Thus the following results hold with the exception that H0

c (S0) ∼= Z2.

Theorem 2.2.1. Let n ≥ 1. Then

Hk
c (Rn) ∼=

{
Z, for k = n
0, otherwise.

Corollary 2.2.2. Let n ≥ 1. Then

Hk
c (Sn) ∼=

{
Z, for k = 0, n
0, otherwise.

The underlying fact behind the proof of Theorem 2.2.1 is the triviality
of the cohomology of an n-cell. Interestingly, this fact is a mere observation
and we state it as such.

Observation 2.2.3. Let x0 ∈ B̄n, then the inclusion ι : {x0} → B̄n is a
proper homotopy equivalence. In particular, ι∗ : H∗c (B̄n) → H∗c ({x0}) is an
isomorphism and we have

Hk
c (B̄n) ∼= Hk

c ({x0}) =

{
Z, k = 0
0, otherwise.

Finally, one more lemma before the proof of Theorem 2.2.1.

Lemma 2.2.4. Let n ≥ 1 and x0 ∈ B̄n. Then the push-forward homomor-
phism τ : Hk

c (B̄n \ {x0}) → Hk
c (B̄n) is an isomorphism for each k > 0. In

particular, Hk
c (B̄n \ {x0}) = 0 for all k ≥ 0.
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Proof. Since D = B̄n \ {x0} is not compact, H0
c (B̄n \ {x0}) = 0. By the

exact sequence of the pair (B̄n, {x0}), we have

· · · // Hk−1
c ({x0})

∂k−1 // Hk
c (D)

τ // Hk
c (B̄n)

ι∗ // Hk
c ({x0})

∂k // · · ·

where τ = τB̄nD is a push-forward and ι = ιB̄n,{x0} an inclusion.

Since H`
c({x0}) = 0 for ` > 0, we have

0 // Hk
c (D)

τ // Hk
c (B̄n) // 0

for k > 1. Thus the claim holds for k > 1.
To prove the claim for k = 1, it suffices to show that H1

c (D) = 0. We note
first that H0

c (D) = 0 and H1
c (B̄n) = 0. Thus we have the exact sequence

0 // H0
c (B̄n)

ι∗ // H0
c ({x0}) ∂ // H1

c (D) // 0

where ι is an isomorphism by Observation 2.2.3. Thus ker ∂ = H0
c ({x0})

and ∂ = 0. Hence H1
c (D) = im ∂ = 0.

The second claim now follows immediately.

Having Lemma 2.2.4 at our disposal, we are ready for the proof of The-
orem 2.2.1. For the proof, we record a fact.

Fact 2.2.5. For n ≥ 1, there exists a homeomorphism π : Sn \ {en+1} → Rn
(called stereogrphic projection) for which π(S±) = Rn±, where

• Rn± = {(x1, . . . , xn) : Rn : xn = ±|xn|}, and

• S± = {(y1, . . . , yn+1) ∈ Sn : yn = ±|yn|}.

In particular, Sn is a one-point compactification of Rn.

Proof of Theorem 2.2.1. Since R0 is a point, the claim holds for n = 0. Let
n ≥ 1 and suppose that the claim holds for n− 1.

Let Rn± = {(x1, . . . , xn) ∈ Rn : xn = ±|xn|} be as in Fact 2.2.5. Then
Rn+ ∩ Rn− = Rn−1 × {0} ≈ Rn−1. Let also D± = Rn± \ (Rn+ ∩ Rn−). Then
D± ≈ Rn. Moreover, Rn± ≈ B̄n \ {x0}, where x0 ∈ ∂B̄n.

Let A = Rn−1 × {0} and ι± : A ↪→ Rn± an inclusion. By the long exact
sequence of a pair (Rn±, A), we have the exact sequence

Hk
c (Rn±)

ι∗ // Hk
c (A)

∂k // Hk+1
c (D±)

τ // Hk+1
c (Rn±)

By Lemma 2.2.4,

Hk
c (Rn±) ∼= Hk

c (B̄n \ {x0}) = 0
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for k ∈ Z. Thus, for k ∈ Z, we have

0 // Hk
c (A)

∂k // Hk+1
c (D±) // 0

Thus ∂k : Hk
c (A)→ Hk+1

c (D±) is an isomorphism for all k ∈ Z. Thus

Hk
c (Rn) ∼= Hk

c (A) ∼= Hk+1
c (D±) ∼= Hk+1

c (Rn+1)

for all k ∈ Z.

Proof of Corollary 2.2.2. We know that H0
c (Sn) ∼= Z by connectedness and

compactness. We also know that Rn ≈ Sn \ {en+1}. Thus it suffices to show
that Hk

c (Sn \ {en+1}) ∼= Hk
c (Sn) for k > 0.

We have the exact sequence

Hk−1
c ({en+1})

∂k−1 // Hk
c (Sn \ {en+1}) τ // Hk

c (Sn)
ι∗ // Hk

c ({en+1})

of the pair (Sn, {en+1}), where ι : {en+1} ↪→ Sn is an inclusion.
For k > 1, τ is clearly an isomorphism. For k = 1, ι∗ : H0

c (Sn) →
H0
c ({en+1}) is an isomorphism by Lemma 1.4.12. Thus ∂0 = 0. Since

H1
c ({en+1}) = 0, we have

0 // H1
c (Sn \ {en+1}) τ // H1

c (Sn) // 0

and τ : H1
c (Sn \ {en+1})→ H1

c (Sn) is an isomorphism.

2.3 Vanishing above top dimension: open sets

We prove now the vanishing of higher cohomology in the case of open sets
of Rn. The argument reduces to the case of cubical open sets. An open
set Q ⊂ Rn is a dyadic cube if there exists v ∈ Zn and k ≥ 0 for which
Q = 2−kv + (0, 2−k)n. Let D(Rn) be the set of all dyadic cubes in Rn.

Definition 2.3.1. An open set U ⊂ Rn is cubical if there exists a finite
subset C ⊂ D(Rn) so that elements in C are pair-wise disjoint (i.e. Q∩Q′ = ∅
for Q 6= Q′) and U is the interior of the set

⋃
Q∈C Q. We call C an dyadic

partition of U .

Theorem 2.1.4. Let U ⊂ Rn be an open set. Then Hk
c (U) = 0 for k > n.

Similarly, if V ⊂ Sn is an open set, then Hk
c (V ) = 0 for k > n.

Proof. The second claim follows immediately from the first and thus it suf-
fices to show that Hk

c (U) = 0 for an open set U ⊂ Rn and k > n.
The proof is an induction by dimension. Suppose that n = 1. Since

components of (non-empty) open sets in R are open intervals, and open
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intervals are homeomorphic to R. By Theorem 2.2.1, the claim follows for
n = 1.

Suppose now that, for n > 1, the claim holds for all open sets in Rn−1.
We prove the claim first for cubical sets in Rn.

Since a dyadic cube is homeomorphic to Rn, we conclude that the claim
holds for each dyadic cube in Rn. Suppose now, for k ≥ 1, the claim holds in
Rn for all open cubical sets which have a partition into k dyadic cubes. Let U
be an open cubical set having a dyadic partition D with k+ 1 elements. Let
now Q ∈ D be a dyadic cube having the smallest diameter. Set D′ = D\{Q}
and let U ′ be the interior of the set

⋃
Q′∈D′ Q

′. Let A = (Q ∩ U) \Q. Then
A is closed in U and open in ∂Q.

We have, by the exact sequence of the pair (U,A), that the sequence

(2.3.1) Hk
c (U \A)

τ // Hk
c (U)

ι∗ // Hk
c (A)

is exact, where ι : A ↪→ U is an inclusion and τ is the push-forward.
Since U \ A = U ′ ∪ Q and U ′ ∩ Q = ∅, we have, by the induction

assumption and the fact Q ≈ Rn, that

Hk
c (U \A) ∼= Hk

c (U ′)⊕Hk
c (Q) = 0

for k > n.
On the other hand, A ⊂ ∂Q is open and ∂Q ≈ Sn−1. If A = ∂Q, we

conclude that Hk
c (A) ∼= Hk

c (Sn−1) = 0 for k ≥ n. If A 6= ∂Q, then A is
homeomorphic to an open set in Rn. Thus Hk

c (A) = 0 for k ≥ n by the
induction assumption. Then, by (2.3.1), Hk

c (U) = 0 for k > n.
We complete now the induction step by considering an open set U ⊂ Rn.

Let k > n and c ∈ Hk
c (U). Then there exists an open set V ⊂ U so that V

is compact and c ∈ im τUV . Let now C ⊂ D be a finite collection of pair-wise
disjoint dyadic cubes for which V is contained in W = int

⋃
Q∈C Q. Then

c ∈ im τUW = {0}. Thus Hk
c (U) = 0 for all k > n. This completes the

induction step and the proof.

2.4 Vanishing above top dimension: closed sets

We use now Theorem 2.1.4 to prove the vanishing of the higher cohomology
of the closed sets. More precisely, we prove the following.

Theorem 2.1.5. Let n ≥ 1 and A ⊂ Sn be a proper3 closed subset. Then
Hk
c (A) = 0 for k ≥ n.

For the proof of Theorem 2.1.5, we record an observation.

3In the sense that A 6= Sn
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Observation 2.4.1. Let A ⊂ Rn be a compact set. Then the inclusion
map ι : A ↪→ Rn is properly homotopic to a constant map. Further, let
A ⊂ Sn be a closed set which is not the whole sphere and x0 ∈ Sn \A. Then
ι : A ↪→ Sn \ {x0} is properly homotopic to a constant map A→ Sn \ {x0}.

Proof of Theorem 2.1.5. Let j : A ↪→ Sn be an inclusion. By the exact se-
quence of the pair (Sn, A), we have

Hk
c (Sn)

j∗ // Hk
c (A)

∂k// Hk+1
c (Sn \A)

τ // Hk+1
c (Sn),

where Hk
c (Sn) = Hk+1

c (Sn) = 0 for k > n. Thus, for k > n, ∂k : Hk
c (A) →

Hk+1
c (Sn \A) is an isomorphism and Hk

c (A) = 0 by Theorem 2.1.4.
For k = n, we argue as follows. Let x0 ∈ Sn \ A and i : Sn \ {x0} → Sn

an inclusion. Then

A r�

ι $$

� � j // Sn

Sn \ {x0}
, � i

::

where ι : A ↪→ Sn \ {x0} is an inclusion. Since ι is properly homotopic
to a constant map by Observation 2.4.1, the pull-back ι∗ : Hn

c (Sn \ {x0})→
Hn
c (A) is the zero map. Hence j∗ = ι∗◦i∗ = 0, and ∂n : Hn

c (A)→ Hn+1
c (Sn\

A) is an isomorphism. Thus Hn
c (A) = 0 by Theorem 2.1.4.

Corollary 2.4.2. Let A ⊂ Rn be a closed subset. Then Hk
c (A) = 0 for

k ≥ n.

Proof. Let π : Sn \ {en+1} → Rn be the stereographic projection and A′ =
π−1A. If A′ is compact, then Hk

c (A) ∼= Hk
c (A′) = 0 for k ≥ n by Theorem

2.1.5. Suppose A′ is not compact. Then A′ = A′ ∪ {en+1} is compact and
Hk
c (A′) = 0 for k ≥ n. For n ≥ 2, it follows now from the exact sequence

Hk−1
c ({en+1})

∂k // Hk
c (A′)

τ // Hk
c (A′)

ι∗ // Hk
c ({en+1})

of the pair (A′, {en+1}) that τ : Hn
c (A′)→ Hn

c (A′) is an isomorphism.
For n = 1, we use again Lemma 1.4.12 to observe that ι∗ : H0

c (A′) →
H0
c ({en+1}) is an isomorphism. Thus τ : H1

c (A′) → H1
c (A′) is an isomor-

phism. Thus, for n ≥ 1, the claim now follows from Theorem 2.1.5.

2.5 Push-forward in the top dimension

In this section we finish the proof of Theorem 2.1.1.

Theorem 2.1.1. Let U be a connected open set in Rn. Then Hn
c (U) ∼= Z

and the push-forward τRnU : Hn
c (U)→ Hn

c (Rn) is an isomorphism.
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The corresponding result for the n-sphere is an immediate corollary.

Corollary 2.5.1. Let U ⊂ Sn be an open set. Then τSnU : Hn
c (U)→ Hn

c (Sn)
is an isomorphism.

Proof. We may assume that U 6= Sn. Let x0 ∈ Sn \U . By the long exact se-
quence for the pair (Sn, {x0}), the push-forward τ : Hn

c (Sn\{x0})→ Hn
c (Sn)

is an isomorphism. Since Sn\{x0} is homeomorphic to Rn, we conclude that
the push-forward τ(Sn\{x0}U : Hn

c (U) → Hn
c (Sn \ {x0}) is an isomorphism.

The claim now follows.

An important corollary of Theorem 2.1.1 is that closed subsets of do-
mains in Rn do not carry higher cohomology. We record this corollary as
follows.

Corollary 2.5.2. Let U ⊂ Sn be a domain and A ⊂ U a proper closed
subset in U . Then Hk

c (A) = 0 for k ≥ n.

Proof. We may assume that U is a proper subset of Sn. Let k ≥ n and
consider the exact sequence

Hk
c (U \A)

τ // Hk
c (U)

ι∗ // Hk
c (A)

∂ // Hk+1
c (U \A).

For k > n, Hk
c (U) = 0 and Hk+1

c (U \A) = 0, since U and U \E are proper
open subsets of Sn. Thus Hk

c (A) = 0 by exactness.
Suppose now that k = n. Since U \ A 6= ∅ and U is connected, the

push-forward τ : Hn
c (U \A)→ Hn

c (U) is surjective. Thus ι∗ is the zero map
by exactness. Since Hn+1

c (U \A) = 0, we conclude that Hn
c (A) = 0.

Heuristically, Theorem 2.1.1 stems from the observation that each Eu-
clidean ball contained in the domain U carries the nth compactly supported
cohomology of U . More precisely, we show the following lemma and propo-
sition.

Lemma 2.5.3. Let B be a Euclidean ball in Rn. Then the push-forward
τRnB : Hn

c (B)→ Hn
c (Rn) is an isomorphism.

Proposition 2.5.4. Let U be a domain in Rn and B ⊂ U a Euclidean ball
compactly contained in U . Then τUB : Hn

c (B)→ Hn
c (U) is surjective.

Having these results we easily finish the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Let B be a Euclidean ball compactly contained in
U . By Lemma 2.5.3, the push-forward τUB : Hn

c (B)→ Hn
c (Rn) is an isomor-

phism. Since τRnB = τRnUτUB, the push-forward τRnU : Hn
c (U) → Hn

c (Rn)
is surjective. Since τQB : Hn

c (B)→ Hn
c (U) is surjective by Proposition 2.5.4

and τRnB has trivial kernel, we have that τRnU : Hn
c (U)→ Hn

c (Rn) is injec-
tive. Thus τRnU is an isomorphism and Hn

c (U) is infinite cyclic.
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It remains to prove Lemma 2.5.3 and Proposition 2.5.4. We begin with
a sharper version of Lemma 2.5.3.

Lemma 2.5.5. Let B be a Euclidean ball compactly contained in the Eu-
clidean unit ball Bn, that is, B ⊂ Bn. Then the push-forward τBnB : Hn

c (B)→
Hn
c (Bn) is an isomorphism. Furthermore, τRnB : Hn

c (B) → Hn
c (Rn) is an

isomorphism.

Proof. Let A = B̄n \ B. We observe first that the inclusion ι : Sn−1 → A
is a proper homomotopy equivalence. Indeed, let x0 be the center of B and
p : A → Sn−1 the radial projection from x0 to Sn−1. Then p ◦ ι = idSn−1

and ι ◦ p is properly homotopic to idA.
Since ι is a proper homotopy equivalence, we have that ι∗ : Hn

c (A) →
Hn
c (Sn−1) is an isomorphism. Thus, by the naturality of the exact sequence

of pairs, the diagram

Hn−1
c (B̄n)

ι∗
B̄nA // Hn−1

c (A)
∂ //

ι∗

��

Hn
c (B)

τ

��

τB̄nB // Hn
c (B̄n)

ι∗
B̄nA // Hn

c (A)

ι∗

��
Hn−1
c (B̄n)

ι∗
B̄nSn−1// Hn−1

c (Sn−1)
∂ // Hn

c (Bn)
τB̄nBn// Hn

c (B̄n)
ι∗
B̄nSn−1// Hn

c (Sn−1)

commutes. Since Hn
c (B̄n) = Hn

c (A) = Hn
c (Sn−1) = 0 and ι∗ is an isomor-

phism, τB̄nB is an isomorphism by the 5-lemma.
The second statement follows by an analogous argument; consider A =

Rn \B and the set A′ = Rn \Bn in place of Sn−1.

For the proof of Proposition 2.5.4 we show that all Euclidean ball com-
pactly contained in U carry the same cohomology. More precisely, we prove
the following.

Lemma 2.5.6. Let U be a domain in Rn. Each push-forward τUB : Hn
c (B)→

Hn
c (U), where B is a Euclidean ball compactly contained in U , has the same

image.

Proof. Let B and B′ be dyadic cubes compactly contained in U for which
B ∩B′ 6= ∅. Then there exists a Euclidean ball B0, compactly contained in
B ∩B′. Then, by Lemma 2.5.5, we have that

im τUB = im τUB0 = im τUB′ .

Since U is connected, the claim follows.

Lemma 2.5.7. Let B = {B1, . . . , Bk} be finite collection of Euclidean balls
in Rn having connected union V =

⋃
B, and let B be a Euclidean ball

compactly contained in V . Then τV B : Hn
c (B)→ Hn

c (V ) is surjective.
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Proof. By Lemma 2.5.5 the claim holds for k = 1. Suppose now that the
claim holds for all collections of k balls. Let B be a collection of k + 1
balls having connected union V . Let also B be a Euclidean ball compactly
contained in V . Let B1, . . . , Bk+1 be such a labeling of balls in B that
collection B′ = {B1, . . . , Bk} has connected union V ′ =

⋃
B′. Let also

B′ be a ball compactly contained in V ′ ∩ Bk+1. Then, by the induction
assumption, τV ′B′ : H

n
c (B′) → Hn

c (V ′) is surjective. Note that, the push-
forward τBk+1,B′ : H

n
c (Bk+1) is surjective by Lemma 2.5.5.

We show now that τV V ′ : H
n
c (V ′) → Hn

c (V ) and τV Bk+1
: Hn

c (Bk+1) →
Hn
c (V ) are surjective. Let c ∈ Hn

c (V ).
Since Hn+1

c (V ′ ∩ Bk+1) = 0, we have, by the Mayer-Vietoris sequence,
that the homomorphism ψ : Hn

c (V ′)⊕Hn
c (Bk+1)→ Hn

c (V ), (a, b) 7→ τV V ′a−
τV Bk+1

b, is surjective. Thus there exists a ∈ Hn
c (V ′) and b ∈ Hn

c (Bk+1) for
which τV V ′a− τV Bk+1

b = c.
Since τV ′B′ and τBk+1B′ are surjective, there exists a′ and b′ in Hn

c (B′)
for which τV ′B′a

′ = a and τBk+1B′b
′ = b. Thus

τV V ′(a− τV ′B′b′) = τV V ′a− τV B′b′ = τV V ′a− τV Bk+1
b = c

and

τV Bk+1
(τBk+1B′a

′ − b) = τV B′a
′ − τV Bk+1

b = τV V ′a− τV Bk+1
b = c.

Thus τV V ′ and τV Bk+1
are surjective.

We consider now two cases. Suppose first that B ⊂ Bk+1. Then the
claim follows from the surjectivity of τV Bk+1

and Lemma 2.5.5. Suppose
now that B ∩ V ′ 6= ∅. Then there exists a Euclidean ball B′′ compactly
contained in V ′ ∩ B. By induction assumption, τV ′B′′ is surjective. Thus
τV B′′ = τV V ′ ◦ τV ′B′′ is surjective. Since τV B′′ = τV B ◦ τBB′′ , we conclude
that τV B is surjective. This completess the proof.

Proof of Proposition 2.5.4. Let c ∈ Hn
c (U) be a cohomology class. Then

there exists a finite collection B of Euclidean balls compactly contained in
U for which c is in the image of τUV , where V =

⋃
B. Let B′ be a Euclidean

ball compactly contained in V . By Lemma 2.5.7, c is in the image of τUB′ .
Thus, by Lemma 2.5.6, c is in the image of τUB.

2.6 Excursion: Cohomological dimension and sep-
aration in Euclidean spaces

As an application of Theorem 2.1.1, we consider cohomological dimension
of closed sets in Euclidean spaces. The defintion of the cohomological di-
mension reads as follows.
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Definition 2.6.1. The cohomological dimension dimZX of space X is at
most n if Hk

c (U) = 0 for all k > n and each open set U ⊂ X. The space X
has cohomological dimension n if it has cohomological dimension at most n
and it does not have cohomological dimension at most (n− 1).

Clearly, the Euclidean space Rn and all its open subsets have cohomo-
logical dimension n. Similarly, closed sets having non-empty interior have
cohomological dimension n. Closed sets with empty interior, on the other
hand, have cohomological dimension at most n − 1. We record this as a
lemma.

Lemma 2.6.2. Let A ⊂ Rn be a closed set having empty interior and U ⊂ A
open in A. Then Hk

c (U) = 0 for all k > n−1. In particular, dimZA ≤ n−1.

Proof. We may assume that U is connected. Let V ⊂ Rn be a connected
open set in Rn for which V ∩A = U . Since V ∩A is closed in V and V ∩A
is a proper subset of V , we have, by Corollary 2.5.2, that Hk(V ∩ A) = 0
for k > n− 1. The claim follows.

Closed codimension 1 subsets in Rn have an interesting elementary char-
acterization. They are exactly the sets that locally separate Rn. More for-
mally, we have the following definition and theorem.

Definition 2.6.3. A subset E ⊂ X separates X locally around x ∈ X if for
each neighborhood U of x there exists a connected neighborhood V ⊂ U of
x for which V \ E is not connected. A subset E separates X locally if E
separates X locally at some point x ∈ X.

Theorem 2.6.4. Let A ⊂ Rn be a closed subset having empty interior.
Then dimZA = n− 1 if and only if A separates Rn locally.

Proof. Note that, since A has empty interior, dimZ A ≤ n − 1. Thus we
consider two cases: first that dimZA = n− 1 and then dimZA < n− 1

Suppose first that dimZA < n − 1. Let V be a domain in Rn. Then
U = V ∩ A is open in A and Hn−1

c (U) = 0 by the dimension assumption.
By the exactness of the sequence

(2.6.1) Hn−1
c (U)

∂ // Hn
c (V \A)

τ // Hn
c (V )

ι∗ // Hn
c (U),

the push-forward τ : Hn
c (V \ A)→ Hn

c (V ) is an isomorphism. Hence V \ A
is connected. Hence A does not locally separate Rn.

Suppose now that dimZA = n − 1. Then there exists a domain U in A
for which Hn−1

c (U) 6= 0. Let V be a domain in Rn for which V ∩ A = U .
Then (again) by the exactness of (2.6.1), we have that Hn

c (V \A) 6∼= Z. Thus
V \ A is not connected. Let V ′ be a component of V \ A and V ′′ = V \ V ′.
Since ∂V ′ ∩V ⊂ A and A has empty interior, we conclude that V ′′ 6= ∅. Let
x ∈ V ∩ V ′′ ∩ V . Then x ∈ A.
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We show thatA separates Rn locally at x. Suppose towards contradiction
that A does not locally separate Rn at x. Let Bx a Euclidean ball centered
at x and contained in V . By assumption, Bx \ A is connected. Since (Bx \
A)∩ V ′ = Bx ∩ V ′ 6= ∅, we have that Bx \A ⊂ V ′ by connectedness. This is
a contradiction, since (Bx \ A) ∩ V ′′ = Bx ∩ V ′′ 6= ∅. Thus A separates Rn
locally at x.
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Chapter 3

Degree

We recall from Chapter 2 that, given a domain U ⊂ Rn, the choice of a
generator of Hn

c (U ;Z) is called an orientation (class) of U . In this section,
we assume that we have fixed an orientation class cRn ∈ Hn

c (Rn) and, for
each domain U ⊂ Rn, an orientation cU ∈ Hn

c (U) satisfying cRn = τRnUcU .

Remark 3.0.5. From the point of view of definitions, it suffices to fix an
orientation class for each domain in Rn. However, in proofs, we use re-
peateadly use the fact that, for a subdomain V of a domain U , we have the
relation τUV cV = cU .

3.1 Global degree

Since a proper mapping U → V induces a pull-back homomorphismHn
c (V )→

Hn
c (U) and groups Hn

c (U) and Hn
c (V ) are infinite cyclic, we may give the

following definition.

Definition 3.1.1. The degree deg f of a proper mapping f : U → V between
domains in Rn is the (unique) integer λ ∈ Z satisfying

f∗cV = λcU .

We say that a proper mapping f : U → V is orientation preserving if
deg f ≥ 1, and orientation reversing if deg f ≤ −1. Note that, a proper map-
ping f is neither orientation preserving nor orientation reversing if deg f = 0.
Note also that, since a homeomorphism has an inverse, it has either degree
1 or −1.

Since the composition of proper mappings is proper, we have the follow-
ing product rule for the degree.

Lemma 3.1.2. Let f : U → V and g : V → W be proper mappings between
domains in Rn. Then deg(g ◦ f) = deg(g) deg(f).
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Proof. Since

deg(g ◦ f)cU = (g ◦ f)∗cW = f∗g∗cW = f∗ ((deg g)cV )

= (deg g)f∗cV = (deg g)(deg f)cU ,

the claim follows.

A similarly easy observation is that, since properly homotopic maps in-
duce the same pull-back in cohomology, they have the same degree. We
record this as an observation.

Observation 3.1.3. Let f : U → V and g : U → V be properly homotopic
mappings. Then deg f = deg g.

3.2 Local degree

The definition of the local degree is based on the notion of an admissible
domain.

Definition 3.2.1. Let f : X → Y be a map and Ω ⊂ X a pre-compact
domain. A domain W ⊂ Y is (f,Ω)-admissible if W ⊂ Y \ f(∂Ω). A point
y ∈ Y is (f,Ω)-admissible if y 6∈ f(∂Ω).

Remark 3.2.2. Although it is not emphasized in the definition, given a pre-
compact domain Ω, we are mostly interested in an (f,Ω)-admissible domain
contained in fΩ. Hence it is typical to assume, in the context of the local
degree, that the mapping f is, in addition, an open map. Formally, of course
this is not necessary.

The fundamental role of the admissible domains is highlighted by the
following lemma, which states that restrictions to admissible domains are
proper mappings.

Lemma 3.2.3. Let f : X → Y be a map, Ω ⊂ X a pre-compact do-
main, and let W ⊂ Y be an (f,Ω)-admissible domain. Then the restriction
f |f−1W∩Ω : f−1W ∩ Ω→W is a proper mapping.

Proof. Let E ⊂ W be a compact set. Since Ω is pre-compact, it suffices
to show that f−1E ∩ Ω is closed in X. Since W is (f,Ω)-admissible, we
have that f−1W ∩ ∂Ω = ∅, and, in particular, f−1E ∩ ∂Ω = ∅. Thus
f−1E ∩ Ω = f−1E ∩ Ω is closed. The claim follows.

To simplify notation, given a pre-compact domain Ω ⊂ X and an (f,Ω)-
admissible domain W ⊂ Y , we denote D(Ω, f,W ) ⊂ X the pre-image
f−1W ∩ Ω. Note that, D(Ω, f,W ) may be empty. In that case, the re-
striction of f to D(Ω, f,W ) is the so-called empty map.

Having Lemma 3.2.3 at our disposal, we are ready to give the definition
of the local degree of a mapping with respect to an admissible domain.
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Definition 3.2.4. The local degree deg(Ω, f,W ) of a map f : U → V be-
tween Euclidean domains with respect to a pre-compact domain Ω ⊂ U and
an (f,Ω)-admissible domain W ⊂ V is the integer λ ∈ Z satisfying

(3.2.1)
(
τΩD(Ω,f,W ) ◦ (f |D(Ω,f,W ))

∗) cW = λcΩ.

Remark 3.2.5. This cumbersome definition is more reasonable after ob-
serving that the open set D(Ω, f,W ) need not be connected, and hence the
group Hn

c (D(Ω, f,W )) is a priori only a direct sum of infinite cyclic groups.
Consider for examplke the mapping z 7→ z2 for Ω = B2(0, 1) and W =
B2(1/2, 1/4). Heuristically, the role of the push-forward τΩD(Ω,f,W ) in (3.2.1)
is to sum up the degrees of mappings f |D : D → V for different components
D of D(Ω, f,W ).

We proceed now to define the local degree at an admissible point. For
this reason we show that the local degree deg(Ω, f,W ) depends only on the
component Y \ f(∂Ω) containing W . We formulate this result as follows.

Proposition 3.2.6. Let f : U → V be a map, Ω ⊂ U a pre-compact domain
in U , and let W1 ⊂W2 ⊂ fΩ \ f(∂Ω) be (f,Ω)-admissible domains. Then

deg(Ω, f,W1) = deg(Ω, f,W2).

Proof. Let W = W1 ∩W2. Then W is an (f,Ω) admissible domain, and it
suffices to show that deg(Ω, f,Wi) = deg(Ω, f,W ) for i = 1, 2. Let D =
f−1W ∩ Ω and Di = f−1Wi ∩ Ω for i = 1, 2. Then f |D = (fDi)|D and, by
Lemma 1.5.16,

τUiU (f |D)∗cW = (f |Di)
∗τWiW (cW ) = (f |Di)

∗cWi .

for i = 1, 2. Hence

deg(Ω, f,W )cΩ = τΩD(f |D)∗cW

= τΩDi (τDiD(f |Di)
∗cWi)

= τΩDi(f |Di)
∗cDi = deg(Ω, f,Wi)cΩ

for i = 1, 2. The claim follows.

Having Proposition 3.2.6 at our disposal, we may define the local degree
at an admissible point.

Definition 3.2.7. Let f : U → V be a map between domains in Rn and
Ω ⊂ U a pre-compact domain. Given an (f,Ω)-admissible point y ∈ Y ,
the local degree deg(Ω, f, y) ∈ Z of f at y with respect to Ω is the integer
satisfying

deg(Ω, f, y) = deg(Ω, f,W ),

for any (f,Ω)-admissible domain W ⊂ Y containing y.
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Remark 3.2.8. If an (f,Ω)-admissible point y ∈ V is not in the image of
Ω, then D(Ω, f,W ) = Ω ∩ f−1W = ∅ for the component W of V \ f(∂Ω).
Thus Hn

c (D(Ω, f,W )) = 0 and deg(Ω, f, y) = 0.

We finish this section with a trivial (but important) observation that the
local degree is locally constant at admissible points.

Lemma 3.2.9. Let f : U → V be a map, Ω ⊂ U a pre-compact domain.
Then the function deg(Ω, f, ·) : V \ f(∂Ω)→ Z,

y 7→ deg(Ω, f, y),

is locally constant.

Proof. Let W be a component of V \ f(∂Ω) and y1, y2 ∈W . Then

deg(Ω, f, y1) = deg(Ω, f,W ) = deg(Ω, f, y2)

by definition. The claim follows.

3.3 Local index of discrete and open maps

In this section we add more assuptions to our mapping in order to define
the local index at a point. The main difference to the previous discussion
is that the local index is defined in the domain of the mapping instead of
target and that there is no need to consider admissibility of the point– the
index can be defined at each point of the domain. To define the local index,
we consider first the notion of normal domains and neighborhoods.

For the basis of the discussion, we recall a simple lemma.

Lemma 3.3.1. Let f : U → V be an open mapping between Euclidean do-
mains and let Ω ⊂ U be a pre-compact domain. Then ∂fΩ ⊂ f(∂Ω).

Proof. Since Ω is pre-compact, f(Ω) is compact and hence closed. Thus

∂f(Ω) ⊂ f(Ω) ⊂ f(Ω) = f(Ω) ∪ f(∂Ω).

It suffices to show that ∂f(Ω) ∩ fΩ = ∅. Suppose y ∈ ∂f(Ω) ∩ fΩ. Then
there exists x ∈ Ω for which f(x) = y. Since f is an open map and Ω is
open, we conclude that y = f(x) is an interior point of fΩ. This contradicts
the assumption y ∈ ∂f(Ω). The claim follows.

It not however, true in general that ∂fΩ = f(∂Ω); take for example the
mapping z 7→ z3 in the complex plane C and consider the upper half disk
Ω = {x+ iy : x2 + y2 < 1, y > 0}. The domains which satisfy the condition
∂fΩ = f∂Ω are called normal domains.
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Definition 3.3.2. Let f : X → Y be an open mapping. A pre-compact
domain Ω is a normal domain (for the mapping) f if f(∂Ω) = ∂fΩ.

Normal domains exist in abundance.

Lemma 3.3.3. Let f : U → V be an open mapping between Euclidean do-
mains, Ω a pre-compact domain, and let W be a component of fΩ \ f(∂Ω).
Then each component D of f−1W ∩ Ω is a normal domain.

Proof. Since Ω is pre-compact, we have that D is pre-compact and ∂fD ⊂
f(∂D). Thus it remains to verify that f(∂D) ⊂ ∂fD.

Let x ∈ ∂D. Then f(x) ∈ fD. Suppose f(x) ∈ fD. Then, by continuity,
there exists a connected neighborhood G of x contained in f−1fD = f−1W .
Since D is a component of f−1W , we conclude that x is an interior point of
D. This is contradiction. Thus f(x) 6∈ fD and f(x) ∈ ∂fD.

The restriction of an open mapping to a normal domain is a proper and
closed map.

Lemma 3.3.4. Let f : U → V be an open map and W a normal domain in
U . Then f |W : W → fW is a proper and closed map.

Proof. We verify first that f |W is proper. Let E ⊂ fW be a compact
set. Since E is compact and fW is open, we have that ∂fW ∩ E = ∅.
Since W is a normal domain, f−1E ∩ ∂W = ∅. Since f−1E is closed in
U and f−1E ∩ W = f−1E ∩ (W ∪ ∂W ) = f−1E ∩ W , we conclude that
(f |W )−1E = f−1E ∩W is closed in W . Since W is pre-compact, (f |W )−1E
is compact.

Suppose now that A ⊂W is a closed set in W . Since W is pre-compact,
A is compact and fA is closed. Thus fA = fA by continuity and the
definition of the closure. Since A \ A ⊂ ∂W and f(A ∩ ∂W ) ⊂ ∂fW , we
have that

fA ∩ fW = fA ∩ fW = (fA ∩ fW ) ∪
(
f(A \A) ∩ fW

)
= fA.

Thus fA is closed in fW . The claim follows.

We obtain local surjectivity of the restrictions of open maps to normal
domains as a corollary. We record this observation as follows.

Corollary 3.3.5. Let f : U → V be an open mapping between Euclidean
domains, Ω ⊂ U a pre-compact domain, and D ⊂ fU \ f(∂Ω) a domain.
Then, for each component W of f−1D ∩ Ω, the restriction f |W : W → D is
surjective.

Proof. By Lemma 3.3.3, W is a normal domain and by Lemma 3.3.4 the
restriction f |W is a closed map. Thus fW is open and closed in D. Since
D is connected, we conclude that D = fW .
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To define the local index of a discrete and open mapping, we change now
our point of view and discuss normal neighborhoods of points.

Definition 3.3.6. Let f : X → Y be a discrete and open map and let x ∈ X.
A pre-compact domain Ω ⊂ X is a normal neighborhood of x (with respect
to mapping f if Ω is a normal domain for f and f−1(f(x)) ∩ Ω = {x}.

Remark 3.3.7. The relation of normal neighborhoods and admissible points
is obvious. For a normal neigbhborhood Ω of x we have f(x) 6∈ f(∂Ω). Thus
f(x) is an (f,Ω)-admissible point.

Since the existence of a normal neighborhood implies discreteness of the
pre-image fiber at that point, it is natural to consider the existence of normal
neighborhoods for points under the assumptions that the mapping is both
discrete and open. Similarly as normal domains for open mappings also the
normal neighborhoods exist in abundance for discrete and open maps.

Lemma 3.3.8. Let f : U → V be a discrete and open map, x ∈ X, and Ω
a pre-compact neighborhood of x in U . Then there exists a normal neigh-
borhood W ⊂ Ω of x. Moreover, if D ⊂ fW is a neighborhood of f(x) then
f−1D ∩W is a normal neighborhood of x.

Proof. Since f is discrete, there exists a neighborhood D of x, compactly
contained in Ω, for which f−1(f(x)) ∩D = {x}. Since f(x) 6∈ f(∂D), there
exists a component V of fD \ f(∂D) containing f(x). Let now W be the
component of f−1V containing x. Then W is a normal domain by Lemma
3.3.3 and satisfies f−1f(x) ∩W = {x}.

For the second statement, let D ⊂ fW be a connected neighborhood of
f(x). Since W is a normal domain, D ∩ f(∂Ω) = ∅. Hence, by Corollary
3.3.5, the restriction f |f−1D∩W : f−1D ∩W → D maps the components of
f−1D map surjectively on D. Since f−1f(x) ∩W = {x}, we conclude that
f−1D is connected. Hence f−1D ∩W is a normal neighborhood of x.

The local index of a discrete and open map at a point is the local degree
of the restriction of the map to a normal neighborhood. The following lemma
shows that the local index defined this way is well-defined.

Lemma 3.3.9. Let f : U → V be a discrete and open map between Euclidean
domains and x ∈ U . Suppose Ω1 ⊂ Ω2 are normal neighborhoods of x. Then

deg(Ω1, f, f(x)) = deg(Ω2, f, f(x)).

Proof. We observe first that, by Lemma 3.3.8, f−1fΩ1 ∩ Ω2 is a domain.
Since Ω1 ⊂ f−1fΩ1 and Ω1 is a normal domain, we conclude that f−1fΩ1∩
Ω2 = Ω1. Let now W = fΩ1.
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Since the restrictions fi = f |f−1W∩Ωi
: f−1W ∩ Ωi → W for i = 1, 2 are

the same map and, in particular, f∗2 cW = τΩ1,Ωf
∗
1 cW , where Ω = f−1W ∩Ωi,

we have

deg(Ω2, f, f(x))cΩ2 = deg(Ω2, f,W )cΩ2 = τΩ2Ω(f2)∗cW

= τΩ2Ω1 (τΩ1Ω(f1)∗cW ) = τΩ2Ω1(deg(Ω1, f,W )cΩ1)

= deg(Ω1, f,W )cΩ2 = deg(Ω1, f, f(x))cΩ2 .

The proof is complete.

Definition 3.3.10. Let f : U → V be a discrete and open map between
domains in Rn. The local index i(x, f) of f at x ∈ U is the integer satisfying

i(x, f) = deg(Ω, f, f(x)),

where Ω is a normal neighborhood of x.

The local index of the map is merely the degree of a restriction of the
map to a normal neighborhood.

Lemma 3.3.11. Let f : U → V be a discrete and open map between Eu-
clidean domains, x ∈ U , and Ω a normal neighborhood of x in U . Then

i(x, f) = deg(f |Ω : Ω→ fΩ).

Proof. Since Ω is a normal neighborhood, fΩ is (trivially) an (f,Ω)-admissible
domain and D(Ω, f, fΩ) = Ω. Hence deg(Ω, f, fΩ) = deg(f |Ω : Ω → fΩ).
Thus

deg(Ω, f, f(x)) = deg(Ω, f, fΩ) = deg(f |Ω : Ω→ fΩ).

The claim follows.

As an immediate consequence we obtain a useful product formula for the
local index.

Corollary 3.3.12. Let f : U → V and g : V → W be discrete and open
mappings between Euclidean domains. Then, for each x ∈ U ,

i(x, g ◦ f) = i(f(x), g)i(x, f).

Proof. Let Ω be normal neighborhood of x with respect to the mapping g◦f
and let Ω′ = f(Ω). Then Ω is a normal neighborhood of x with respect to
the mapping f and Ω′ = fΩ is a normal neighborhood of f(x) with respect
to g. Thus

i(x, g ◦ f) = deg((g ◦ f)|Ω : Ω→ (g ◦ f)Ω)

= deg(g|fΩ : fΩ→ (g ◦ f)Ω) deg(f |Ω : Ω→ fΩ)

= i(f(x), g)i(x, f).
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We also note, as an observation, that the local index of a local homeo-
morphism is locally constant.

Lemma 3.3.13. Let f : U → V be a local homeomorphism between domains
in Rn. Then the function x 7→ i(x, f) is either the constant function 1 or
−1.

Proof. Let x ∈ U . Since f is a local homeomorphism, there exists a normal
neighborhood W of x so that f |W : W → fW is a homeomorphism. Since,
for each x′ ∈W , i(x′, f) = deg(W, f, fW ) = i(x, f), the function x 7→ i(x, f)
is locally constant. Moreover, since f is a local homeomorphism, i(x, f) =
deg(W, f, fW ) = ±1 at each x ∈ U .

We finish this section, and the discussion on the degree theory, with the
summation formula for the local index.

Theorem 3.3.14. Let f : U → V be a discrete and open map, Ω ⊂ U a
pre-compact domain, and y ∈ V \ f(∂Ω). Then∑

x∈f−1(y)∩Ω

i(x, f) = deg(Ω, f, y).

Remark 3.3.15. We would like to note that this summation formula gives
a simple method to calculate a local (but also global) degree of a discrete
and open map. The reader may want to consider maps z 7→ zk, reiπt 7→
reiπkt, and their products as examples. Or piece-wise linear maps between
manifolds.

Proof of Theorem 3.3.14. Since f is discrete and Ω is compact, the set
f−1(y) is finite. Let {x1, . . . , xk} = f−1(y). For each j ∈ {1, . . . , k}, we
fix a normal neighborhood Ωj ⊂ Ω of xj having the property that the sets
Ωj are pair-wise disjoint. Let W ⊂ V be a neighborhood of y which is

(f,Ωj)-admissible for each j = 1, . . . , k, i.e. W ⊂ V \
⋃k
j=1 f(∂Ωj). Let

also W ′j = f−1W ∩ Ωj and fj = f |W ′j : W ′j → W for each j.Finally, let

W ′ = f−1W ∩ Ω. By Corollary 3.3.5, each component of f−1W ∩ Ω maps
surjectively on W . Thus W ′ =

⋃k
j=1W

′
j .

Having these notations at our disposal, we have

∑
x∈f−1(y)

i(x, f) =

k∑
j=1

deg(Ωj , f, y) =

k∑
j=1

deg(Ωj , f,W )

by the definition of local degree at a point.
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By the definition of local degree, we have

k∑
j=1

deg(Ωj , f,W )cΩ =
k∑
j=1

τΩΩj

(
deg(Ωj , f,W )cΩj

)
=

k∑
j=1

τΩΩj

(
τΩjW ′j

f∗j cW

)

=

k∑
j=1

τΩW ′j
f∗j cW = τΩW ′

 k∑
j=1

τW ′W ′jf
∗
j cW

 .

Since W ′ is a disjoint union of domains W ′1, . . . ,W
′
k, we have, by The-

orem 1.7.3, that the homomorphism J :
⊕k

j=1H
n
c (W ′j) → Hn

c (W ′), (cj) 7→∑k
j=1 τW ′W ′jcj , is an isomorphism and the homomorphism I : Hn

c (W ′) →⊕k
j=1H

n
c (W ′j), c 7→ (ι∗W ′W ′j

c), is its inverse. Since f |W ′◦ιW ′jW ′ = f |W ′j : W ′j →
W , we have ι∗W ′jW ′

◦ (f |W ′)∗ = f∗j for each j = 1, . . . , k. Thus

k∑
j=1

τW ′W ′jf
∗
j cW = J(f∗1 cW , . . . , f

∗
k cW )

= J(ι∗W ′1W ′
(f |W ′)∗cW , . . . , ι∗W ′kW ′(f |W ′)

∗cW )

= (J ◦ I)((f |W ′)∗cW ) = (f |W ′)∗cW .

We conclude that

k∑
j=1

deg(Ωj , f, y)cΩ = τΩW ′(f |W ′)∗cW = deg(Ω, f,W )cΩ = deg(Ω, f, y)cΩ.

The proof is complete.
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Chapter 4

Väisälä’s theorem

4.1 Statement

We prove the following version of Väisälä’s theorem. This version is equiv-
alent to the version in the introduction if we take as granted that discrete
and open sets preserve the cohomological dimension. See Borel [Bor60]
and Engelking [Eng78] for discussion on various definitions of dimension
and e.g. Church–Hemmingsen [CH60] for discussion on the mappings and
dimension.

We recall two definitions before the statement of Väisälä’s theorem.

Definition 4.1.1. A discrete and open map f : X → Y is a branched cover.
The branch set Bf of a branced cover is the set

Bf = {x ∈ X : f is not a local homeomorphism at x}.

Definition 4.1.2. A subset A ⊂ X separates X locally at x ∈ X if there
exists a neighborhood U of x so that, for each neighborhood V ⊂ U of x,
the set V \A is not connected.

Theorem 4.1.3. Let f : U → V be a discrete and open map between open
sets in Rn. Then the branch set Bf has no interior and does not locally
separate U at any point.

The proof is in two steps. In the first step we show that intBf = ∅. This
is the easier part of the proof. In the second step we show that Bf does
not locally separate U . This is harder and we use all the theory we have
developed. In the course of the proof of Theorem 4.1.3, we show that fBf
has no interior (Theorem 4.2.5), and hence also f−1fBf has no interior,
since f is open. We are not aware of purely elementary proof for the fact
that fBf does not locally separate V , and we do not discuss this here.

Before discussing the proof, we record an important corollary of Väisälä’s
theorem.
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Theorem 4.1.4. Let f : U → V be a discrete and open map between open
sets in Rn. Let x ∈ U be a point and Ux a normal neighborhood of x in U .
Then, for each z ∈ Ux, the local indices i(z, f) and i(x, f) have the same
sign and

|i(x, f)| = max
x′∈Ux

#f−1f(x′) ≥ |i(z, f)|.

Proof. Let z ∈ Ux and let Uz be a normal neighborhood of z contained in
Ux. Let x′ ∈ Uz \ f−1fBf be a point; note that f−1fBf has empty interior.
Then, by Lemma 3.2.9 and the summation theorem (Theorem 3.3.14),

i(x, f) = deg(Ux, f, f(x)) = deg(Ux, f, f(x′)) =
∑

x′′∈f−1(x′)∩Ux

i(x′′, f).

and

i(z, f) = deg(Uz, f, f(z)) = deg(Uz, f, f(x′)) =
∑

x′′∈f−1(x′)∩Uz

i(x′′, f).

Since Ux \ Bf is connected by Väisälä’s theorem, the function x′ 7→ i(x′, f)
is constant in Uf \ Bf by Lemma 3.3.13. Thus i(x, f) and i(z, f) have the
same sign. Moreover, |i(x, f)| ≥ |i(z, f)|.

Since f is a local homeomorphism at each point f−1f(x′) ∩ Ux, the
remaining claim |i(x, f)| = maxx′∈Ux #f−1f(x′) follows now from the obser-
vation that |i(x′′, f)| = 1 for each x′′ ∈ f−1f(x′) ∩ Ux.

Regarding local separation, we have the following general lemma.

4.2 The branch set has no interior

We begin the proof of Väisälä’s theorem by showing that the branch set has
no interior. We formulate this result as a theorem in the case of n-manifolds.

Theorem 4.2.1. Let f : M → N be a discrete and open map between n-
manifolds. Then intBf = ∅.

For the proof we recall two general observations.

Observation 4.2.2. The branch set of discrete and open map is a closed
set.

Remark 4.2.3. Note that, the image of the branch set need not be closed.
This is however the case if the mapping is, in addition, proper.

Observation 4.2.4. Let f : U → V be a discrete and open map between
open sets in Rn, and let D ⊂ M be an open set. Then f |D : D → V is
discrete and open, and Bf |D = Bf ∩D.
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Proof of Theorem 4.2.1. Suppose intBf 6= ∅. Then there exists a pre-compact
open set U ⊂ Bf . Hence g = f |U : U → fU is a discrete and open map so
that #g−1(y) < ∞ for each y ∈ fU . For each k ≥ 0, let Mk = {x ∈
U : #g−1g(x) ≤ k}. Then

⋃
k≥0Mk = U and, by the Baire category theo-

rem1, there exists smallest k0 ∈ N for which intMk0 6= ∅.
Let V = intMk0 , x1 ∈ V , and consider the restriction g|V : V → gV . To

complete the proof it suffices to show that g|V is a local homeomorphism
at x1. Indeed, since g|V = f |V , V is open in U , we have that f is a local
homeomorphism at x1. This is a contradiction, since x1 ∈ Bf .

Let {x1, x2, . . . , xk0} = g−1g(x1). For each j = 1, . . . , k0, we fix a neigh-
borhood Uj of xj satisfying Uj ∩ Ui = ∅ for each j 6= i. Then

⋂
j fUj

is a neighborhood of g(x1) and W = U1 ∩ g−1(
⋂
j fUj) is a neighborhood

of x1. We show that the restriction g|W is injective. Let x ∈ W . Then
#g−1g(x) ∩ Uj ≥ 1 for each j = 1, . . . , k0 and #g−1(g(x)) = k0. Thus
g−1g(x) ∩ U1 = {x}. Since g|W is injective and open, we conclude that
g|W : W → gW is a homeomorphism. The proof is complete.

Using the fact that Bf has empty interior, we obtain also that fBf has
empty interior. It is interesting that this result is not a trivial consequence
of Theorem 4.2.1.2

Theorem 4.2.5. Let f : M → N be a discrete and open map between n-
manifolds. Then intfBf = ∅.

Proof. Let Ω ⊂ M a pre-compact normal domain in M and g = f |Ω : Ω →
fΩ. We show first that intgBg = ∅.

Let y ∈ gBg and let G be a neighborhood of y. It suffices to show that
G \ fBf 6= ∅.

Since Ω is pre-compact, g−1(y) = {x1, . . . , xm}. Let V ⊂ G be a domain
for which the components W1, . . . ,Wm of g−1V are normal neighborhoods
of points x1, . . . , xm, respectively. Then the sets W1, . . . ,Wm are pair-wise
disjoint and gWi = V for each i = 1, . . . ,m. Let W ′i = Wi \ Bg for each
i = 1, . . . ,m.

Clearly W ′i is open and dense in Wi. Further, since g is open, gW ′i is
open. We show that gW ′i is also dense in V for each i = 1, . . . ,m.

Let y′ ∈ V and D be a neighborhood of y′ in V . Let i ∈ {1, . . . ,m}.
Since g−1D∩Wi is open and intBg = ∅, there exists, x′i ∈ g−1D∩W ′i . Thus
g(x′i) ∈ D. Hence gW ′i ∩D 6= ∅. Thus gW ′i is dense in V .

Since each gW ′i is open and dense in gWi, we have, by Baire’s theorem,
that

⋂m
i=1 gW

′
i is dense in V . In particular, there exists z ∈

⋂m
i=1 gW

′
i ∩D.

1By the Baire category theorem a locally compact Hausdorff space is not a countable
union of nowhere dense closed sets.

2The argument given here, which nicely avoids the use of dimension theory, is due to
Rami Luisto.
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Since g−1D =
⋃m
i=1(g−1D ∩Wi), we have

g−1(z) ⊂
m⋃
i=1

W ′i =

m⋃
i=1

(Wi \Bg) ⊂ Ω \Bg

Thus z ∈ D \ gBg. Since D ⊂ G, we conclude that intgBg = ∅.
We show now the general case. Since M is σ-compact, there exists a

countable collection {Ωi}i≥0 of pre-compact normal domains of f in M for
which Bf ⊂

⋃
i Ωi. Let gi = f |Ωi : Ωi → fΩi. Then fBf =

⋃
i giBgi . Since

each giBgi is closed in fΩi and intgiBgi = ∅, we have, by Baire’s theorem,
that intfBf = ∅.

4.3 The branch set does not separate locally

The proof of the remaining part of Theorem 4.1.3 is based on the idea that
we may divide Bf into two parts: to points in which Bf locally separtes
(bad part) and to points at which Bf does not locally separate (good part).
Of course, the idea is to show that the bad part is empty. Having this idea
in mind, we state first a general lemma regarding local separation.

Lemma 4.3.1. Let X be a locally connected space, and A ⊂ X a closed
subset for which intA = ∅ and X \A is not connected. Let

FA = {x ∈ X : A separates X locally at x}.

Then X \ FA is not connected and FA ⊂ A.

Proof. Since A is closed and X locally connected, FA ⊂ A. Thus it suffices
to prove that X \ FA is not connected.

Since X\A is not connected, there exist non-empty and pair-wise disjoint
open sets U1 and U2 in X for which X \A = U1 ∪U2. Let Vi = (intUi) \FA
for i = 1, 2. Since Ui ⊂ intUi and FA ∩ Ui = ∅, we have Ui ⊂ Vi for i = 1, 2.

We show now that X \ FA = V1 ∪ V2. Since intA = ∅,

X = U1 ∪ U2 ∪A = U1 ∪ U2.

Let x 6∈ FA. Then there exists a connected neighborhood V of x contained
in X\FA for which V \A is connected. Thus either V \A ⊂ U1 or V \A ⊂ U2.
Hence either x ∈ intU1 or x ∈ intU2. Thus X \ FA ⊂ V1 ∪ V2 and hence
X \ FA = V1 ∪ V2.

To prove that V1 and V2 are pair-wise disjoint, we show first that ∂U1 ∩
∂U2 ⊂ FA for i = 1, 2. Let x ∈ ∂U1 ∩ ∂U2, U a neighborhood of x in X, and
let V ⊂ U be a connected neighborhood of x. Then V ∩ Ui 6= ∅ for i = 1, 2.
Hence V \A = (V ∩ U1) ∪ (V ∩ U2) is not connected. Thus x ∈ FA.

Since

V1 ∩ V2 =
(
intU1 ∩ intU2

)
\ FA ⊂ (∂U1 ∩ ∂U2) \ FA.

we have that V1 ∩ V2 = ∅. We conclude that X \ FA is not connected.
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We record also a simple non-separation lemma for further use.

Lemma 4.3.2. Let X be a locally connected space, A ⊂ X a closed subset
having empty interior and which does not locally separate X at any point.
Then, for each domain U in X, the set U \A is connected.

Proof. Suppose U \ A is not connected. Let W be a component of U \ A
and W ′ = U \W . Note that W ∩W ′ ⊂ A and W ∩W ′ 6= ∅.

Let x ∈ (∂W ) ∩ A. Since x does not locally separate X, there exists a
neighborhood Ux of x for which Ux \ A is connected. Since intA = ∅, we
have that Ux∩W = ∅ and Ux∩W ′ 6= ∅. Since W is a component and Ux \A
is connected, we have (Ux \A) ⊂W . This is a contradiction. Thus U \A is
connected.

We begin now the proof with an important observation, which ties maps
of local degree 1 to homeomorphisms.3

Lemma 4.3.3. Let f : U → V be a discrete and open map between domains
in Rn Suppose that Bf does not locally separate U at any point, let Ω be
normal domain in U for which |µ(Ω, f, y)| = 1 for each y ∈ fΩ. Then
f |Ω : Ω→ fΩ is a homeomorphism.

Proof. Since f |Ω is a closed and surjective, it suffices to show that f |Ω is
injective.

Since Bf does not locally separate U at any point, we have, by Lemma
4.3.2, that Ω\Bf is connected Thus, since f |Ω\Bf

is a local homeomorphism,
the function Ω \Bf → Z, x 7→ i(x, f), is either the constant function x 7→ 1
or the function x 7→ −1. Thus, for y ∈ fΩ \ (f |Ω)Bf |Ω ,

1 = |µ(Ω, f, y)| =

∣∣∣∣∣∣
∑

x∈f−1(y)

i(x, f)

∣∣∣∣∣∣ = #
(
f−1(y) ∩ Ω

)
Thus f |Ω\Bf

is injective.
We show now that g is injective. Let x1 and x2 be points in Ω for

which g(x1) = g(x2), and let G1 and G2 be neighborhoods of x1 and x2,
respectively. By Theorem 4.2.5, (f |Ω)Bf |Ω has empty interior. Thus (gG1 ∩
gG2) \ gBg 6= ∅. By injectivity of f |Ω\Bf

, we have that G1 ∩G2 6= ∅. Thus
x1 = x2 and f |Ω is injective.

The key observation in the study of the bad part of Bf is to show that
there is no folding in a generalized sense. The following argument is the key
of the proof of Theorem 4.1.3.

3The statement can be read to say that if Bf does not separate, there is no folding.
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Theorem 4.3.4 (Väisälä’s no-reflection lemma). Let U be a domain in
Rn and let U1 and U2 be pair-wise disjoint open subsets in U for which
∂UU1 = ∂UU2 and clUU1 ∪ clUU2 6= U . Then there is no homeomorphism
f : clUU1 → clUU2 for which f |∂UU1 = id.

Proof. We begin with an observation. Let ιi : Ui → U1∪U2 and ῑi : clUUi →
clUU1 ∪ clUU2 be inclusions. Note that ∂U (U1 ∪ U2) = ∂UU1 = ∂UU2.

Let ∂ : Hn−1
c (∂U (U1 ∪ U2)) → Hn

c (U1 ∪ U2) and ∂i : H
n−1
c (∂UUi) →

Hn
c (Ui), for i = 1, 2, be the connecting homomorphisms in the exact se-

quences of pairs (clU (U1 ∪ U2), ∂U (U1 ∪ U2)) and (clUUi, ∂UUi) for i = 1, 2,
respectively. By Theorem 1.9.4, the diagram

Hn−1
c (∂U (U1 ∪ U2))

∂ // Hn
c (U1 ∪ U2)

ι∗i
��

Hn−1
c (∂UUi)

∂i // Hn−1
c (Ui)

commutes, that is, ∂i = ι∗i ◦ ∂.
Suppose there exists a homeomorphism f : clUU1 → clUU2 for which

f |∂UU1 = id. Since f(∂UU1) = ∂UU2, the restriction g = f |U1 : U1 → U2 is a
homeomorphism. By Theorem 1.9.2, the diagram

Hn−1
c (∂UU1)

∂1 // Hn
c (U1)

Hn−1
c (∂UU2)

(g|∂UU1
)∗

∂2 // Hn
c (U2)

g∗

OO

commutes. Thus ∂1 = g∗ ◦ ∂2.
Let now

I : Hn
c (U1 ∪ U2)→ Hn

c (U1)⊕Hk
c (U2)

be the isomorphism c 7→ (ι∗1c, ι
∗
2c). Then

I ◦ ∂ = (ι∗1 ◦ ∂, ι∗2 ◦ ∂) = (∂1, ∂2) = (g∗∂2, ∂2) = (g∗, id) ◦ ∂2.

In particular, ∂ is not surjective. Indeed, let a ∈ Hn
c (U2) be a non-zero

element and suppose that there exists c ∈ Hn−1
c (∂U (U1 ∪ U2)) for which

(I ◦ ∂)(c) = (0, a). Then

(0, a) = (g∗∂2c, ∂2c) = (g∗a, a),

which is a contradiction, since g∗ is an isomorphism. Hence (0, a) is not in
the image of I ◦ ∂ and hence ∂ is not surjective.

Since clU (U1 ∪ U2) 6= U , we have Hn
c (clU (U1 ∪ U2)) = 0 by Corollary

2.5.2. Thus ∂ is surjective by exactness of the sequence

Hn−1
c (∂U (U1 ∪ U2))

∂ // Hn
c (U1 ∪ U2) // Hn

c (clU (U1 ∪ U2)).

This is a contradiction and the proof is complete.
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Theorem 4.3.4 will be applied together with the following observation on
local degree. We pass here from the setting of manifolds to domains in Rn.
We apply this lemma locally in the proof of Theorem 4.1.3.

Proposition 4.3.5. Let f : U → V be a proper discrete and open map
between domains in Rn and let A ⊂ U be a closed set separating U and
satisfying #f−1f(x) = 1 for each x ∈ A. Let Ω be a component of U \ A.
Then Ω is a normal domain and deg(Ω, f, y) = ±1 for all y ∈ fΩ.

A bulk of the proof of this proposition is a verification of several prop-
erties of the mapping f . We separate these verifications as a lemma. The
proof is similar to results related to normal domains. This is not a coinci-
dence. Essentially we compensate the lack of pre-compacness of the domain
Ω by the assumption that f is proper.

From now on, the closure and boundary of a subset is understood with
respect to subdomains in Rn, and not in terms of the ambient space Rn.
This is emphasized in the notation.

Lemma 4.3.6. Let f : U → V , A ⊂ U , and Ω be as in Proposition 4.3.5.
Then f |Ω : Ω→ fΩ is a proper and closed mapping for which fΩ is a com-
ponent of V \ fA. Moreover, Ω is a normal domain and the restriction
h = f |∂UΩ : ∂UΩ→ ∂V fΩ is a well-defined homeomorphism.

Proof. Since f−1fA = A by assumption, we have fΩ ⊂ V \ fA. We show
first that f |Ω : Ω → fΩ is proper. Let E ⊂ fΩ be a compact set. Then E
is closed in V \ fA. Hence f−1E is closed in U and has empty intersection
with A. Since Ω is closed in U \ A, we have that f−1E ∩ Ω is closed and
hence compact. Thus f |Ω : Ω→ fΩ is a proper map.

We also record at this stage also that f |Ω is a closed map and that fΩ
is a component of V \ fA. Indeed, let E ⊂ Ω be a closed set. Then clUE
is closed in U . Let E1 ⊂ E2 ⊂ · · · be an exhaustion of clUE by compact
sets. Since each fEi is compact and f is proper, fclUE =

⋃
i fEi is closed.

Thus fE = fclUE ∩ fΩ is closed in fΩ. Since f is both open and closed,
we conclude that fΩ is a component of V \ fA.

We observe also that f(∂UΩ) = ∂V fΩ. Indeed, since f is open, we have
∂V fΩ ⊂ f(∂UΩ). On the other hand, since Ω is a component of U \ A, we
have ∂UΩ ⊂ A. Thus Ω ∩ f(∂UΩ) ⊂ fΩ ∩ fA = ∅. Hence f(∂V Ω) ⊂ ∂V fΩ.

We show now that the restriction h = f |∂UΩ : ∂UΩ→ ∂V fΩ is a homeo-
morphism. Since ∂UΩ ⊂ A and f |A is injective, the map h = f |∂UΩ : ∂UΩ→
∂V fΩ is injective.

Since f is closed, we have fclUΩ = clV fΩ. Thus ∂V fΩ ⊂ fclUΩ \ fΩ =
f∂UΩ. Hence f∂UΩ = ∂V fΩ. This proves the surjectivity. Thus h : ∂UΩ→
∂V fΩ is a continuous closed bijection. Thus h is a homeomorphism.

Proof of Proposition 4.3.5. Having Lemma 4.3.6 at our disposal, the local
degree deg(Ω, f, y) is well-defined for each y ∈ fΩ. Let h = f |∂UΩ : ∂UΩ →
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∂V fΩ and g = f |Ω : Ω → fΩ be restrictions of f . By Lemma 4.3.6, h is a
homeomorphism. Moreover, deg(Ω, f, y) = deg(Ω, f, fΩ) = deg g. It suffices
to show that g∗ : Hn

c (fΩ)→ Hn
c (Ω) is surjective.

By assumption, U \A is not connected and hence clEΩ is a proper closed
subset of U . Thus, by Corollary 2.5.2, we have that Hn

c (clUΩ) = 0. By the
exact sequence of a pair (clUΩ, ∂Ω) and Theorem 1.9.2, the diagram

Hn−1
c (∂UΩ)

∂ // Hn
c (Ω) // 0

Hn−1
c (∂UfΩ)

h∗∼=

OO

∂ // Hn
c (fΩ)

g∗

OO

commutes. Thus the connecting homomorphism ∂ : Hn−1
c (∂UΩ) → Hn

c (Ω)
is surjective. Since h∗ is an isomorphism, we conclude that g∗ ◦∂, and hence
also g∗, is surjective.

Proof of Väisälä’s theorem. It suffices to consider the case that U is a pre-
compact domain in Rn. Let f : U → V be a discrete and open map. Since U
is pre-compact, each pre-image f−1(y) is a finite set for y ∈ V . By Theorem
4.2.1, Bf has no interior points.

We show that Bf does not separate U locally at any point. Suppose
towards contradiction that Bf separates U locally at some point and let
S ⊂ Bf be the subset of Bf containing all such points. In particularly,
S 6= ∅.

The main part of the proof is to show that there exists a domain D ⊂ U
with the following properties:

1. D ∩ clUS 6= ∅ and f |D∩clUS is injective,

2. f |D : D → fD is closed,

3. for each component W ⊂ D \ clUS, the restriction f |clDW : clDW →
f(clDW ) is a homeomorphism.

Suppose, for a moment, that we have found such a domain D. We
complete the proof as follows.

Since clUS∩D 6= ∅, there exists x ∈ S∩D ⊂ Bf∩D. Since f |D : D → fD
is closed and surjective but not a local homeomorphism at x, we conclude
that f |D is not locally injective at x. Thus there exists two points x1 and
x2 in D for which f(x1) = f(x2). Since f |D∩clUW is a homeomorphism for
each component W ⊂ D \ clUS, there exists two components W1 and W2 of
W ⊂ D\clUS for which fW1 and fW2 are contained in the same component
of f(W \ clUS). Since f |Wi is both open and closed by assumptions, we now
have that fW1 and fW2 are the same component of f(W \ clUS). Thus we
have a homeomorphism

h = (f |clDW2)−1 ◦ (f |clDW1) : clDW1 → clDW2.
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Since ∂DW1 ⊂ clDS and f |clDS is injective, we have that h|∂DW1 = id.
By Theorem 4.3.4, W1 and W2 are the only components of D \ clUS and
D \ clUS = W1 ∪ W2. Since fW1 = fW2, f(D \ clUS) has exactly one
component and f |Wi : Wi → f(D \ clUS) is a homeomorphism for i = 1, 2.

Since D = W1 ∪W2 ∪ clDS and fW1 = fW2, we have

fD = fW1 ∪ f(clDS).

This is a contradiction, since f(clDS) ∩ fW1 = ∅ and f(clDS) is not open.

It remains to find such a domain D. For each i ∈ N, let Ei = {x ∈
clUS : #f−1f(x) ≤ i}. Then clUS =

⋃
i∈NEi. Thus, by Baire’s theorem,

there exists smallest integer i0 ∈ N for which Ei0 has non-empty interior in
clUS; note that i0 ≥ 2. Let x1 ∈ intEi0 and f−1f(x1) = {x1, . . . , xi0}.

Let V ⊂ U be an open set for which V ∩ clUS = intclUSEi. Let now
V1, . . . , Vi0 ⊂ W be pair-wise disjoint neighborhoods of x1, . . . , xi0 and set

Ω = V1 ∩
(
f−1

⋂i0
i=1 fVi

)
. Then #f−1(f(x))∩Ω = 1 for each x ∈ Ω∩ clUS.

Since x1 ∈ clUS, there exists x0 ∈ Ω ∩ clUS and a connected neigh-
borhood G ⊂ Ω of x0 for which G \ clUS is not connected. By Lemma
3.3.8, there exists a normal neighborhood D ⊂ G of x0. By Lemma 3.3.4,
f |D : D → fD is a closed map. Now D \ clUS is not connected. Indeed, if
D\clUS is connected then D\clUS is contained in a component of G\clUS,
but this is a contradiction since G is a neighborhood of x.

By construction, D∩clUS 6= ∅ and f |D : D → fD is closed. Furthermore,
since D ⊂ Ω, we have that f |D∩clUS is injective. Thus it remains to show
that, for each component W of D \ clUS, the restriction f |clDW : clDW →
f(clDW ) is a homeomorphism.

Let W be a component of D \ E. Then, by Proposition 4.3.5, g =
f |W : W → fW is a closed mapping and fW is a component of fV \f(E∩V ).
Moreover, y 7→ deg(W, f, y) is either constant function 1 or −1 in fW . By
Lemma 4.3.3, we now conclude that f |W : W → fW is a homeomorphism.

Since f |∂DW : ∂DW → f(∂DW ) is a homeomorphism, we conclude that
f |clDW is a homeomorphism.

This concludes the proof of Väisälä’s theorem.
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