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Preface

These are revised lecture notes for the course “Degree theory and branched
covers” lectured for the first time at the University of Jyvaskyld Fall 2015.
The purpose of these lecture notes is to introduce the necessary theory for the
proof of the Chernavskii-Véiséld’s theorem, see [Vai66]; see also Chernavskii

[C64].

Theorem (Viisila, 1966). Let f: M — N be a discrete and open map
between n-manifolds M and N for n > 3. Then the branch set By of f has
topological dimension at most n — 2 and dim By = dim fBy = dim f_lfo.

A discrete and open map' is called a branched cover. Recall that a map
is discrete if preimage of a point is a discrete set, and a map is open if
image of an open set is open. A point x € M in the domain of a mapping
f: M — N is a branch point if f is not a local homeomorphism at x. The
branch set By is the set of all branched points of f.

Viiséld’s theorem is fundamental in the theory of these mappings. It
yields as a corollary that the branch set does not locally separate the domain
of the map; the same holds of course for the image of the branch set. As a
corollary we obtain

This fact, on the other hand, shows that a branched cover between man-
ifolds is either orientation preserving or orientation reversing; some authors
assume branched covers to be orientation reversing. In similar vein, Vaisala’s
theorem justifies the name “branched cover”:

Corollary. Let f: M — N be a branched cover between n-manifolds. Then
f is either orientation preserving or reversing.

In fact, as we will later see, a branched cover between manifolds is locally
a completion of a covering map.

The proof of Viisald’s theorem requires a substantial amount of prelimi-
nary material. The main argument uses local degree theory of proper maps.
In order to define the local degree we discuss first (compactly supported)
Alexander—Spanier cohomology, which we use to define (local) orientation

'In these notes map and mapping are synonymous and typically refer a continuous
map.



and the local index of a brached cover. The classical expositions on this
theory are Spanier [Spa66] and Massey [Mas78], which we mainly follow.

The realistic goal of the course is to prove a version of Viisld’s theorem
stating that By and fBy have no interior and do not locally separate man-
ifolds M and N. The degree arguments follow then from Borel [Bor60] and
Church-Hemmingsen [CH60].
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Chapter 1

Alexander—Spanier
cohomology

In this chapter we discuss the definition and basic properties of Alexander—
Spanier cohomology. The use of Alexander—Spanier cohomology in the proof
of Viisald’s theorem stems from the good properties of this cohomology with
respect to closed sets. To emphasize this aspect we compare it to the more
familiar singular cohomology to highlight the differences.

The compactly supported Alexander—Spanier cohomology H(X) is the
homology of a (co)chain complex (C¥(X),d*) which is a quotient complex
of a (co)chain complex (®%(X), %) of k-functions in X. More precisely, we
have a commutative diagram

50 s 5 5
0 — PYX) —— P¢(X) —— PZ(X) — PI(X) —— -

0—— CO(X) —s (X)) —L> 02(X) —Es o3(x) L

where the vertical arrows are quotient maps, and H¥(X) = ker d* /im d*~!

It should be noted that we do not discuss the (non-compactly supported)
Alexander—Spanier cohomology H*(-) at all in these notes and merely refer
to Spanier [Spa66] for details.

1.1 Space of k-functions

To emphasize the generality of the theory, we assume at this stage only that
X is a topological space. To obtain viable theory, more conditions are added
in the later sections (and, in the end, we consider actually open and closed
sets in Euclidean spaces).

Definition 1.1.1. For k € N, a k-function on X is a function X*+1 —



Z. We denote by ®*(X) the abelian group of all k-functions on X. For
completeness, we define ®*(X) = {0} for k < 0.

Remark 1.1.2. A more meticulous author would use here notation ®*(X;Z).
For our purposes the coefficients play very little role before discussion on
orientation. Thus we fix Z as our coefficient ring; see Spanier [Spa66] and
Borel-book for more general treatment. Note, however, that replacing the
coefficients ring Z by the field R, we obtain vector spaces ®*(X;R).

Remark 1.1.3. In some sources (e.g. Massey [Mas78]), k-functions are
assumed to have finitely many values. This restriction plays, however, no
role in our arguments. As a particular consequence of the restriction to
finitely many values is that a finitely valued k-function ¢: X*¥*' = 7Z has a
unique representation

O =Axa, + -+ AnXxan

with M1, ..., Am € R and the pair-wise disjoint sets Ay, ..., Ay C XFHL

1.1.1 Local equivalence of k-functions

It is crucial to notice that there is no assumption on continuity of k-functions
or for the map f: X — Y. The topology of X comes forth in the notion of
local triviality, which is a key concept in the theory.

For the definition, we denote

A ={(z,...,x) e XFz e X)

the k-diagonal of X; note that, trivially, A’;’( C X*t1 for each k € N,
AY = X, and A% =0 for k < 0.

Definition 1.1.4. Two k-functions ¢: X**1 — Z and ¢: X**1 — 7Z are
locally equivalent if there exists a neighborhood W of A’;( in X**! for which

dlw = Y|w.

A k-function ¢ is locally trivial if ¢ is equivalent to the zero function X*+1 —
Z, (1'1, R ,ka) — 0.

The following lemma gives a partial answer why this terminology is used.

Lemma 1.1.5. Let ¢ and vy be k-functions on X. Then ¢ and ¢ are locally
equivalent if and only if for each x € X there exists a neighborhood U of x
in X for which ¢|gr+1 = V|yrt.

Proof. Suppose ¢ and 1 are locally equivalent and = € X. By local equiva-
lence, there exists a neighborhood W of A% for which ¢|yw = 9| . Since the



product topology of X**! is generated by products of open sets in X, there
exists a neighborhood U of x for which U € W. Then | k41 = ¢|grs1.

To the other direction, let, for each x € X, the set U, be a neighborhood
of z in X for which @[ k1 = ¥| k41, and set W= U,cx Uk+l. Then W is
a neighborhood of A% in X**1 and ¢| = ¢|w. Thus ¢ and ¥ are locally
equivalent. 0

It is vital to not confuse locally trivial functions with the zero functions.

Example 1.1.6. Let X = {z,y} be a Hausdorff space consisting of two
points. Then the function ¢: X' — Z defined by ¢(x,y) = é(y,x) = 1,
d(z,7) = Y(y,y) = 0 is a locally trivial 1-function, since the 1-diagonal A
is open in X2.

In what follows, we denote
DE(X) = {¢ € D*(X): ¢ is locally trivial}.

Observation 1.1.7. ' Local equivalence of k-functions is an equivalence
relation.

Observation 1.1.8. Two k-functions ¢ and v in ®*(X) are locally equiv-
alent if and only if ¢ — ) is locally trivial. Furthermore, ®§(X) is a (neces-
sarily normal) subgroup of ®*(X).

1.1.2 Support of a k-function

The chains in compactly supported Alexander—Spanier cohomology are equiv-
alence classes of compactly supported k-functions. For this reason, we in-
troduce now the notion of a support spt(¢) of a k-function ¢.

Definition 1.1.9. Let & € N. A k-function ¢: X* — Z is not supported
at © € X if there exists a neighborhood U C X of x for which ¢|yx = 0.
The set null(¢) = {x € X: ¢ is not supported at x} the nullset of ¢. The
complement of null(¢) in X is the support spt ¢ of ¢ in X.

Now it is important to notice that the nullset and the support of a k-
function are subsets of the underlying space X and not of the product space
X*+1 Note also that Example 1.1.6 gives an easy example of a non-zero
k-functions having empty support.

Observation 1.1.10. Let ¢ € ®*(X). Then the nullset null(¢) is open and
the support spt(¢) is closed. If k = 0, the support spt(¢) is the usual support
of a function, that is, spt(¢) = {x € X: ¢(x) # 0}.

!The observations are worthy of their name, easy to prove from definitions. Facts, on
the other hand, may need elaborate arguments.



Locally equivalent k-functions have the same support. We state this as
a lemma.

Lemma 1.1.11. Let ¢, € ®¥(X) be locally equivalent k-functions. Then
spt(¢) = spt(t)).

Proof. The claim is equivalent to the claim null(¢) = null(¢). Since local
equivalence is an equivalence relation, it suffices to show that null(¢) C

null(v)).
Let € null(¢). Then there exists a neighborhood U of x for which

¢|yr+1 = 0. Since ¢ and v are locally equivalent there exists a neighborhood
W of A% for which ¢|w = ¥|w. By the definition of product topology, there
exists a neighborhood V' of x for which V**! ¢ WNU**!. Thus 9|y x+1 = 0
and x € null(v). O

Definition 1.1.12. A k-function ¢: X*+t1 — Z is compactly supported if
spt(¢) is compact.

We denote
P (X) = {p € DF(X): spt(¢) is compact}.

Observation 1.1.13. For each k € Z, ®*(X) is a subgroup of ®*(X).

1.1.3 Coboundary

The chains in Alexander—Spanier theory are given by the equivalence classes
in ®*(X)/®k(X). As a preparatory step we consider a coboundary operator
on the level of k-functions.

Definition 1.1.14. The coboundary operator for k-functions is the homo-
morphism 6% : ®¥(X) — ®F*1(X) defined by

k+2
6k(¢)(x17 sy xk?-i—?) = Z(_l)é+1¢(x1’ ey TY—1, X1y -y xk+2)7
/=1
where z1,... 2540 € X. For completeness, we define §¥ = 0: ®*(X) —

OFH(X) for k < 0.

Convention 1.1.15. To simplify notation, we denote the homomorphism
8% simply by § to unless it is important to emphasize the domain and range.

Example 1.1.16. Let X be a point, that is, X = {a}. We calculate
§: OF(X) — OF1(X) in this case.

For eachk € N, X¥ = {(a,...,a)} is also a point and hence ®*(X) is iso-
morphic to Z, where the isomorphism is Z +— ®*(X), m — ((a,...,a) — m).
Let ¢ € ®¥(X) be the generator of ®*(X) satisfying ¢p(a,...,a) =



For each k € N, we have

k2
Opr(T1,. . s Thy2) = Z(—l)“l%(iﬁh---a@:xkﬂr?)
=1
k+2 1+ (_1)k+1
— (_1)€+1> or(a,...,a) = —————
P ;
1+ (1)1

= 5 Prr1(T15 -5 Thy2)-

Thus
| 41, Kk is odd,
00k = { 0, k is even.

In particular, § is an isomorphism for k odd and the zero map for k even.

Example 1.1.17. Let X be a space and F € ®°(X), that is, F: X — Z is
a function. Then

0F(z,y) = F(y) — F(x)
for each x,y € X. Similarly,

82F(z,y,2) = OF(y,z) —6F(z,2) + 0F(x,y)
= F(z)—F(y) — (F(z) = F(z)) + (F(y) — F(z)) =0

for all x,y,z € X. Note that, condition §F(x,y) = 0 implies
F(y) = F(z)
for each x,y € X, that is, F' is a constant function.

Remark 1.1.18. The previous example is one of the reasons why we do
not take the homology of the complex @L(X) as the compactly supported
Alexander—Spanier cohomology of X. Indeed, the homology of the complex

P (X) = (CIDIC“(X),é)keZ does not satisfy the additivity axiom, which states

that the homology of a disjoint union is a direct sum.
Example 1.1.19. For ¢ € ®'(X) condition 6 = 0 gives the equation
0=0(x,y,2) = P(y, 2) — ¥(x,2) + ¥ (2,y)
i.e. the cocycle condition
Y(x,2) = p(z,y) + 1y, 2)
for each x,y,z € X.

A typical calculation, common to all homology/cohomology theories,
shows that 6 = 0. We leave the verification of this fact to the interested
reader.

10



Observation 1.1.20. For each k € Z, 6511 0 6% = 0, that is,
6k+1 (6k¢)(‘r17 SRR 7mk+2) =0
for every x1, ..., x40 € X.

A fundamental observation is that the coboundary of a k-function has
smaller support. We formalize this as follows.

Lemma 1.1.21. Let k € Z and ¢ € ®*(X). Then spt(6p) C spt(¢).
Proof. Let © € null(¢). Then there exists a neighborhood U C X of x for
which ¢|x+1 = 0. Thus, for z1, ..., x50 € U, we have

k+2

6k¢)($1,...,l‘k+2) — Z(il)z—i_lgb(xlv'"711:@—171’5-&-1""7xk‘+2)
/=1
k+2

= D Glures (@1 et T rg2) = O,
/=1

Thus z € null(6¥(¢)). O

Corollary 1.1.22. For each k € Z,
SOE(X) C ®E(X) and 0DF(X) c dF(X).
Example 1.1.23. Let X =R and F': R — Z,

. 1, >0
0, z<0

In particular, spt(F') = [0,00). On the other hand,

1, <0<y,
0F(z,y) =F(y)—F(x)=q 0, x,y>0o0rzy<0,
-1, z>0andy<D0.

Suppose x # 0. Then (x,x) is contained either in (0,00)x (0, 00) or (—oo,00)
and 0F |2 = 0 where U is either of these open sets. Thus null(6F) D R\{0}.
Since clearly {0} C spt(6F), we conclude that spt(0F) = {0}.

Having the coboundary operator and notion of support at our disposal,
we have a topological characterization for the kernel of §°. Recall that a
function F': X — Z is locally constant if for each z € X there exists a
neighborhood U of z in X for which F|y: U — Z is constant.

Lemma 1.1.24. Let F € ®°(X), that is, a function F: X — Z. Then
spt(6F) = 0 if and only if F: X — Z is locally constant.

Proof. Suppose first that spt(6°F) = ), that is, (6F) = X. Let z € X.
Then there exists a neighborhood U of x in X for which §F|U? = 0. Thus
F(y)—F(x) =0F(z,y) =0for all y € U. Hence F|y is constant. The other
direction is similar. O

11



1.2 Algebraic intermission

We recall some basic algebraic notions and facts. Let GG be an abelian group.

1.2.1 Quotient spaces

Given a subgroup H C G, the coset g + H of g € G is the set {v+w €
G: h € H}. The set G/H of all cosets {g+ H: g € G} is a partition of G
and it induces an equivalence relation ~pg on G; we define g ~pg ¢ if and
only ifg—¢' € H.

Observation 1.2.1. The addition +: G/H x G/H — G/H
(g+H)+ (¢ +H)=(9+4)+H
forg+ H, g+ H € G/H, is well-defined and (G/H,+) is an abelian group.

Convention 1.2.2. Typically the element g+ H of G/H is denoted also by
[g] suppressing the subgroup H from the notation. We follow this convention
in forthcoming sections.

Observation 1.2.3. Let f: G — G’ be a homomorphism and H < ker f a
subgroup. Then there exists a unique homomorphism f: G/H — G’ satisfy-

ing
G ! el
g% /
G/H

Moreover f is an isomorphism if fG = G' and H = ker f. (Note that no
condition on normality is needed, since G is abelian.)

1.2.2 Chain complexes

Definition 1.2.4. A sequence G4 = (G, ay)kez of abelian groups and
homomorphisms ag: G — Gg41 is a chain complex if a1 0o o, = 0. The
homology H.(Gy) of G4 is the sequence (Hy(G4))rez where

Hp(Gy) = ker ak/im p—1

for each k € Z.

Example 1.2.5. The sequences
O'(X) = (D"(X), 6" rez  and  BL(X) = (PE(X), ") ez

are chain complezes.

12



Remark 1.2.6. Note that im oy C ker ag, since o o a1 = 0.

Definition 1.2.7. Let Gy = (G, ax) and Gy = (Hg, Bx) be chain com-
ﬂlexes. A sequence fyu = (fi: Gk = G} )kez is a chain map fyu: Gy — G%E
i

G —2 Gy

fkl lkarl

G?ﬂ Br G;{)+1

comiutes.

Example 1.2.8. Pull-back homomorphisms f': ®*(Y) — ®*(X), and their
restrictions f': ®F(Y) — ®5(X) and f': ®¥(Y) — ®¥(X), are chain maps.

Lemma 1.2.9. Let Gy and Gy be chain complezes and fy: Gy — Gy a
chain map. Then, for each k € 7Z, there exists a well-defined linear map

fo = fuet Hy(Gy) — Hi(GY) satisfying fue([v]) = [fu(v)].

Proof. Since f, is a chain map, fix(keray) C ker fx and im fy o ap_1 C
im B;_1. Thus we have a diagram

ker ay e ker S

v»—)[v}l \ \wa[w]

ker ay /im a1 e ker B /im k1
xk

1.2.3 Exact sequences

Definition 1.2.10. Let A, B, and C be abelian groups and f: A — B and
g: B — C homomorphisms. A sequence

A—f>B49>C

is exact at B if ker g = im f.

A basic result on exact sequences is the Five Lemma?®.

Fact 1.2.11. Let

f1 f2 f3 fa

Ay As As Ay Ag
ih& %lhg lhs %lhz; ihs
Bl g1 B2 g2 33 g3 B4 94 B5

2Typically the introduction of the Five Lemma is followed by saying “Chace the dia-
gram.”
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be a commutative diagram of abelian groups and homomorphisms having
exact rows. Suppose that hy and hy are isomorphisms. Suppose also that hq
s surjective and hs is injective. Then hs is an isomorphism.

A sequence

A#iB#iC#

of chain complexes and chain maps is ezxact if

AL T By Ik o

is exact.
Definition 1.2.12. A sequence

0 A B C 0

of abelian groups and homomorphisms is a short exact sequence if it is exact
at A, B, and C.
A sequence

Ap_1 Ay, App1 —— -

of abelian groups and homomorphisms is a long exact sequence if the se-
quence is exact at each Ay.

Example 1.2.13. Let f: V — W be a linear map. The sequence

0—>ker fsV —Tsimy 0

s a short exact sequence.

The short and long exact sequences of chain complexes are defined sim-
ilarly.

Observation 1.2.14. Let Gy = (G, ay) be a chain complex. Then Hy,(Gy) =
0 if and only if the sequence

Ap—1 Qe
Gk*l - Gk - Gk+1

1s exact at Vj,

Observation 1.2.15. Let

0 A B 0

be an exact sequence. Then f is an isomorphism.

14



Indeed, since the sequence is exact, ker f = {0} and im f = B.

A beautiful fact, which motivates for us the whole discussion in this
section, is that short exact sequence of chain complexes yields a long exact
sequence in (co)homology.

Fact 1.2.16. Let

S 9
0— A# B#

Cy—0

be a short exact sequence of chain complexes (and chain maps). Then there
exists homomorphisms O: Hy(Cy) — Hpt1(Ag) (so-called connecting ho-
momorphisms) for which

f* * 0,
o Hy(Ay) —> Hy(By) > Hy(Cy) —> Hyp1(Ay) — -
is a long exact sequence.

Idea of the proof: Show that the homomorphism Hy(Cy) — Hii1(Ag),
[c] — | fﬁzlﬂkg;%lc] is well-defined and satisfies the required properties by
chasing the commutative diagram

9#

0 Ay By, Ch 0
T#
0 Agt1 Bgy1 —= Cgp1 —=0

O
Finally, we remark the construction of the long exact sequence is natural.

Fact 1.2.17. Let

T4 9#

0 Ay By Cu 0
£ 9,

0—= Ay —"= B, —~Cl) —=0

be a commutative diagram of chain complexes and chain maps having exact
rows. Then the diagram

* * 8
s Hi(Ay) —T Hi(By) 2 Hi(Cp) — 2 Hyyr(Ay) — -

Thi Thi Thi Thl
fi gl
* *

0

commutes.
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1.2.4 Products and sums

Given a family of sets (X;);cr, formally the elements of the product [],.; X;
are functions f: I — (J;c; X satisfying f(i) € X; for each ¢ € I. In what
follows, however, we denote the elements of [[,.; X; as ordered families
(74)ier € [1;er Xi, where z; € X; for each i € 1.

Given abelian groups (G;)ier, the direct product of the groups (G;)ier is
the abelian group [[;.; G; with group operation given by

(9i)ier + (9i)ier := (9i + })icr-

for all (gi)ier, (97)ier € [1;er Gi-

The direct sum @, ; G; of abelian groups {G;}icr is the subgroup of
[Lic; Gi consisting of the elements (g;);e; having finite support, that is,
elements (g;)ics for which the set {i € I: g; # eq,} is finite.

We finish with an observation on direct sums of chain complexes.

Observation 1.2.18. The complex (C¥({U) & CH(V),d & d)kez is a well-
defined chain complex and the homomorphism

Hy(C;(U) @ CH(V)) = HE(U) @ H¢(V), [(a,0)] = ([al, [b]),
1s a well-defined isomorphism.

Remark 1.2.19. All the results in Section 1.2 hold if we consider, instead
of abelian groups and group homomorphsms, R-modules and R-module ho-
momorphisms, where R is a commutative ring; note that abelian groups are
Z-modules. We do not need this generality in what follows.

1.3 Cochains and cohomology

The Alexander—Spanier k-cochains are defined as equivalence classes of k-
functions modulo locally trivial k-functions. The formal definition reads as
follows.

Definition 1.3.1. The elements of the quotient space
CH(X) = &"(X)/DG(X)

are called (Alexander—Spanier) k-cochains and the space C*(X) as the space
of (Alexander—Spanier) k-cochains in X . Similarly, the elements of

Ci(X) = OF(X)/DF(X)
are compactly supported k-cochains and Cf(X ) is the space of compactly

supported (Alezander—Spanier) k-cochains in X.

16



Remark 1.3.2. Since ®)(X) = {0} by Observation 1.1.10, the quotient
maps ®°(X) — C%(X) and ®%(X) — CU(X), ¢ — [¢], are isomorphisms.

Remark 1.3.3. Let ¢ and 1 be k-functions so that [¢] = [¢] € C*(X).
Then ¢ — v € ®F(X). Thus, by Lemma 1.1.11, spt(¢) = spt(1).

Definition 1.3.4. The support spt(c) of a cochain ¢ € C*(X) is spt(¢) for
a k-function (and hence any k-function) ¢ in c.

1.3.1 Coboundary

It is a direct consequence of Lemma 1.1.21 that the coboundary operator
§F: ®F(X) — ®*1(X) descends to a coboundary operator d*: C¥(X) —
C**1(X) on cochains. We leave the details of this fact to the interested
reader.

Lemma 1.3.5. For each k € 7 there exists a linear map d*: C*(X) —
CHY(X) for which d*[¢] = [6%(#)] for all ®*(X). In particular, d*T'od® = 0
for each k.

Proof. Since d®(X) C ®FT(X), there exists a unique homomorphism
dF: ®F(X)/BE(X) — OFF1(X)/DETH(X) for which the digram

q)k:(X) &* (I)k'H(X)

¢H[¢]l \ lmw

BE(X) /BE(X) - <= b 1(X) /B (X)

commutes. Moreover, for each ¢ € ®*(X),
(" o d")([g]) = d*TI([8%¢]) = ["16%¢] = 0.
Thus d* o d* = 0. O

Combining Lemma 1.3.5 and Corollary 1.1.22 we obtain the following
important observation.

Lemma 1.3.6. For each k € Z, the restriction
dg = dk|c§(X)3 Ce(X) = CEHY(X).
of d* is well-defined and the sequence
CH(X) = (CE(X), dg ez

s a chain complez.
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Proof. For the first claim, it suffices to observe that, for each ¢ € ®¥(X),
spt(d[¢]) = spt([6¢]) = spt(d¢) C spt(e)

is compact. The second claim follows from the fact that d*+1d* = 0. O

Convention 1.3.7. Although it would formally more appropriate to denote
the restriction dk\cf(x) with a different symbol, in what follows, we merely

denote d: C*(X) — C*1(X) and CF(X) = (C*(X), d)pez.

Definition 1.3.8. A cochain ¢ € C¥(X) is a k-cocycle if de = 0, and a
k-coboundary if there exists b € C*~1(X) for which db = c.

We record a simple observation on 0-cocycles, for further use, as lemma.

Lemma 1.3.9. Let F': X — Z be a O-function for which d[F] = 0. Then F
1s locally constant.

Proof. Let z € X. Since [0F] = d[F] = 0, there exists a neighborhood U of
x for which §F |2 = 0. Then, for each y € U,

F(y) — F(x) =0F(z,y) =0.
Thus F' is locally constant. O

Example 1.3.10. Let [¢p] € CL(X) be a cocycle, i.e. [§¢] = d[)] = 0. Let
xz € X. Since 6 is locally trivial, there exists a neighborhood U of x for
which 6p|ys = 0. Thus, for x,y,z € U,

o(z,y) = ¢(z,2) + ¢(2,y);
cf. BExample 1.1.19.

1.3.2 Cohomology H!(-)

Since ker d¥ C imd*~! for each k € Z, we have well-defined quotient spaces

Hk(X):keI‘dk/imdk_lz {[d)] ECf(X) dk[@ﬂ :0}
’ ’ ’ {d"1[y] € CH(X): [y] € Ce™H(X)}

for each k € Z.

Heuristically, H*(X) measures the amount of non-trivial solutions of the
equation d*[¢] = d¥[¢'] i.e. the number different solutions [¢] and [¢/] for the
equation d[¢] = 0 for which the equation [¢] — [¢'] = d*[¢] does not hold.
In terminology of Section 1.2, H¥(X) is the homology H,(C¥(X)) of the
chain complex C¥ (X).

Definition 1.3.11. For k € Z, the abelian group H(X) is the kth com-
pactly supported Alexander—Spanier cohomology group of X. The elements
of Hf(X ) are called compactly supported Alexander—Spanier cohomology
classes of X.
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Examples

We consider now some standard examples. Starting from one point, as is
commonly done.

Example 1.3.12. Let X be a point. Then

Z, ifk=0
k ~ ) )
H:(X) = { 0, otherwise.

Indeed, we observe first that in this case, ®§(X) = {0} and ®*(X) = ®F(X).
Thus we may identify C*(X) with ®*¥(X) and d*: C*(X) — CFY(X) with
6F: ®F(X) — ®¥(X). By Ezample 1.1.16, the diagram

0 —=CX) 2= C(X) L= C2(X) 2= C3(X) — -

0 Z 0 7z—4 .7 0 7

commutes. Thus, ker d® 2 7 and im d* = ker d**1 for k # 0.

Example 1.3.13. Let X be a compact connected space. Then H2(X) = Z.

Indeed, let F': X — 7Z be the constant function 1. Since X is compact,
F € 9%(X). Since spt(F) # 0, [F] # 0 in ®%(X)/®Y(X) = C2(X). Since
d[F] = [6F] = 0, [F] € kerd’. Finally, since C;71(X) = {0}, we have that
imd~t =0 and [¢] # 0 in H(X). Thus HY(X) # {0}.

We show now that if c € HO(X) then ¢ = m[F)] for some m € Z. The
claim follows from this observation. Let [c] € H)(X) and G € ®(X) for
which ¢ = [G] in H)(X). Since [0G] = d[G] = dc = 0 and G: X — Z
is a function, we conclude that G is localy constant function. Since X is
connected, G is a constant function and hence an integer multiple of F'.

Example 1.3.14. Let X be a connected non-compact space. Then H?(X) =
0.

Indeed, let [c] € HY(X) and F € ®%(X) a representative of c. Since
[6F] = dc =0, we have §F € ®}(X). Thus F is a locally constant function.
Since X is connected, F is a constant function. Since spt(F') is compact
and X is non-compact, we conclude that F = 0. Thus H)(X) = 0.

1.3.3 H(R)~Z

By Example 1.3.14, H)(R) = 0. We show next that H}(R) & Z; note that
it is not clear at this point that H*(R) = 0 for k > 1 (although that will be
the case). For the importance of this result (and the length of its proof), we
record this example as a theorem.
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Theorem 1.3.15. We have
HYR) = Z.
To simplify the proof, we separate an auxiliary lemma.

Lemma 1.3.16. Let [¢)] € C1(R) be a cocycle, that is, d[1)] = 0. Then there
exists a function Fy € ®°(R) for which [¢] = d[Fy] in C1(R).

Proof. Let 1 € ®'(R) be a representative of c. Since §v is locally trivial,
there exists a covering % of R by open intervals so that (dv)|ys = 0 for
each U € % . Then, for each U € % and x,y,z € U,

We define a function Fy,: R — R as follows. We fix first a basepoint
yo € R. For y € R, let y1,...,yr = y be a (monotone) sequence having the
property that, for each i = 1,...,k, there exists U; € U so that [y;—1,yi] C

U,;. We set
k

Fyly) = v(yi1,v1)-
i=1

By (1.3.1), the value Fy(y) does not depend on the choice of the sequence
Yis- -5 Yk

It remains to show that 1) and §F, are locally equivalent. Let U € %
and z,y € U. We may assume that yy < y < z, the other cases are similar.
Let y1,...,yx = = be a monotone sequence defining F,(x) as above. Then
Yi,---, Yk, y is a valid sequence to define Fyy(y). Thus

0Fy(z,y) = Fy(y) — Fy(z) = ¢(z,y).

This completes the proof. O

Proof of Theorem 1.3.15. Let F': R — R be the characteristic function of
R4, i.e. the function F' = X[g o). Since spt(6F) = {0}, the cochain ¢ = [§F]
is compactly supported, that is, ¢ € C}(R). Since de = d[§F] = [06F] = 0,
the cochain c is a cocycle, and ¢ represents a cohomology class in H}(R). It
suffices to show that [c] generates H!(R).

Step 1: The class [c] is non-trivial. Suppose towards contradiction that
[c] = 0. Then there exists a cochain [G] € C2(R) for which ¢ = d[G].
Since ¢ = [§F], we conclude that d[F] = d[G] in C*(X). Thus F — G is a
constant function by Lemma 1.3.9. Since G is compactly supported, this is
contradiction.

Step 2: The class [c] generates the cohomology group H}(R). Let [¢] €
H!(R) and v € ®L(R) a representative of ¢. By Lemma 1.3.16, there exists
a function Fy,: R — Z for which [¢)] = d[Fy]. Since ¥ and §F; are locally
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equivalent, we conclude that 0 F;, has compact support and that F, is locally
constant in the complement of the support of vb. We fix M > 0 for which
the interval [—M, M| contains the support of ).

By adding a constant to function F if necessary, we may assume that
spt(Fy) C [=M,00). Let also A € Z be the value of Fy, in [M, 00).

Let f: R — Z be the function f = F, — AF. Then spt(f) C [-M, M].
Indeed, for x < —M, we have f(x) = Fy(x) — AF(z) = 0 and, for x > M,
f(x) = Fy(z) = AF(z) = A - X =0.

Since
d—Xe = [¢] = Ao¢| =[6Fy] — A\[OF]
= [0Fy = AF] = [5(Fy = AF)] = [6f] = d[f],
we have
('] = [ = A + Ale] = [d[f]] + Ale] = Ald]
in H!(R). This completes the proof. O

1.4 Pull-back

Typically a continuous mapping induces a pull-back in cohomology. In the
case of compactly supported cohomology it is natural that the mapping is
also proper. Recall that a continuous mapping f: X — Y is proper if each
compact set £ C Y has a compact pre-image f~1E.

We develop the pull-back homomorphism in three steps. First, for k-
functions, than cochains, and finally for cohomology. Since the construction
of the pull-back is standard, the necessary steps are listed as observations.
Note that, for k-functions, we do not formally need even continuity.

Definition 1.4.1. Let f: X — Y be a map. The pull-back homomorphism
f': ®*(Y) = ®*(X) is the homomorphism ¢ — f'(¢), where f'(¢): X*+1 —
R is the function

F@) (@1, ze41) = $(F(21), -, f(2rr1))-
for each ¢ € ®*(Y) and x1,..., 2541 € X.

Lemma 1.4.2. Let f: X — Y be a continuous map and ¢ € ®*(Y). Then
spt f1(¢) C [~ spt(e).

Proof. Let y € null(¢) and x € f~!(y). Since f is continuous, there exists
a neighborhood V of x so that fV is contained in a neighborhood U of
y so that @|yre1 = 0. Hence f'(¢)|lye+1 = 0 and = € null(f'(¢)). Thus
f~Y(null(¢)) € null(f'(¢)). Hence

spt(f(9)) = X \ null(f1(9)) € X \ /" (null(9)) = /" spt(e).
This concludes the proof. ]
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Corollary 1.4.3. Let f: X — Y be a continuous map, and let ¢: YFT1 — 7
and ¥: Y — 7 be locally equivalent k-functions. Then f'¢ and f'i are
locally equivalent. In particular, f'®E(Y) C ®&(X).

Corollary 1.4.4. Let f: X — Y be a proper continuous map. Then
FOEY) C 2E(X).

Remark 1.4.5. The inclusion spt(f'¢) C f'spt(¢) may be strict. Indeed,
let X =R2, A =R x {0}, ¢: R2 = R be the characteristic function ¢ =
Xr2\a, and 12 A — X the inclusion. Then ¢ € ®°(R?) and spt(¢) = R?.
On the other hand, t'¢ = 0 and spt(v'¢) = 0.

The coboundary operator ¢ and the pull-back f' clearly commute.
Observation 1.4.6. Let f: X =Y be a map and ¢ € ®*(Y). Then

(80 ) (@) = (' 20)(9)-
In particular, the pull-back f': ®*(Y) — ®¥(X) decends as a pull-back
f#: CHY) — CF(X).
Lemma 1.4.7. Let f: X — Y be a continuous map. Then there exists a
homeomorphism f#: CF(Y) — CF(X) satisfying f#[¢] = [f'¢]. Further-
more, if f is proper, the restriction f7: C*(Y) — CF(X) is well-defined.

Proof. By Corollary 1.4.3, f'®5(Y) C ®F(X). Thus there exists a homo-
morphism f#: ®¥(Y)/®k(Y) — ®F(X)/®E(X) satisfying

where vertical arrows are quotient maps. Similar application of Corollary
1.4.3 gives also the other claim. O

It is straightforward to see that the coboundary operator d commutes
with f#. We record this as an observation.

Observation 1.4.8. Let f: X — Y be a continuous map. Then

CH(Y) —L> oM (Y)

f#l i f#

Ck(X) 7014:—&-1()()

commutes. In particular, f#: C#(Y) — C#(X) is a chain map. If in
addition the map f is proper, f#: C’f(Y) — C’f(X) is a chain map.
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Finally, a proper continuous map induces a pull-back in cohomology.

Observation 1.4.9. Let f: X — Y be a proper continuous map. Then there
exists a homomorphism f*: H*(Y) — H*(X) satisfying f*[c] = [f*¢].

The pull-back f* is natural in the following sense.

Observation 1.4.10. Let f: X — Y and g: Y — Z be proper continuous
mappings. Then

(go f)" = fog": HI(Z) = H.(X).

Furthermore, id* = id: H}(X) — H}(X). In particular, if f: X — Y s
a homeomorphism, the homomorphism f*: HX(Y) — HX(X) is an isomor-
phism.

We finish this section with two simple observations on inclusions and
closed sets.

Lemma 1.4.11. Let X be a space and A C X a closed subset. Then the
inclusion v: A — X is a proper map. In particular, v induces the pull-back
(exa)*: HY(X) — H:(A).

Proof. Let E C X be a compact set. Then E N A is closed in E. Hence
1~Y(E) = EN A is compact. Thus ¢ is proper. O

Lemma 1.4.12. Let X be a compact connected space and A C X a con-
nected closed subset. Then the inclusion v: A — X induces an isomorphism
o HO(X) — HO(A).

Proof. Since X and A are compact and connected, H2(X) = ([xx]) and
H?(A) = {[xa]), where xx and x4 are characteristic functions of X and A,
respectively; note that we tacitly identify C?(-) = ®%(-). Since (¥ xx = xa,

we have

Clxx] = [L#XX} = [xal.

Thus the claim follows. O

1.5 Push-forward

Regarding our discussion, the push-forward of cohomology classes is a key
notion in what follows. Push-forward induced by an inclusion is an oper-
ation familar from many compactly supported cohomology theories. Here,
heuristically, on the level of k-functions it can be seen as the zero exten-
sion. Formally, however, the most straightforward zero extension leads to
unwanted increase of support of k-functions. To overcome the unwanted
phenomenon, consider auxiliary neighborhoods of supports. On the level of
cochains these choices of supports have no role.

To obtain reasonable theory, some assumptions on the space X are
needed. In this section we assume that X is locally compact and Haus-
dorff.
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Inclusions

Let X be a space and A C X a subset. In what follows, we denote
txa: A— X

the inclusion map A — X.

Remark 1.5.1. The reader may wonder the unnatural order in the sub-
script. This choice stems from the composition rule, namely, for A C B C
X, we have

LXA =LXBOLBA: A— X,

i.e. cancellation in the middle.
We make first some observations on a pull-back induced by an inclusion.

Observation 1.5.2. Let A C X be a subset. Then the pull-backt': ®F(X) —
®'(A) inclusion map v: A — X is the restriction map

L!: ¢ — ¢’Ak+1.
Lemma 1.5.3. Let U C X be an open subset. Then
spt(vxp¢) = spt(¢) N U.

for every ¢ € ®*(X). In particular,

spt(Lf(Uc) =spt(c)NU
for each c € CF(X).

Proof. We show that null(ty;;¢) = null(¢) N U. Clearly, spt(ty;¢) C
spt(¢) NU. Let now = € null(¢'¢). Then there exists a neighborhood W of
z in U so that (:'¢)|yyw+1 = 0. Since W is open in X, we have that

Plyr+r = (L!¢)’Wk+1 = 0.

Thus z € U N null(¢) and null(ty;;¢) = null(¢) N U. The second claim
follows immediately. O

1.5.1 Push-forward of k-functions

As mentioned in the introduction to this section, we defined the push-
forward of compactly supported k-functions using auxiliary neighborhoods
of supports. Let U C X be an open set and let

RE(X,U) = {¢ € ®5(X): spt(¢) C U}.
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Remark 1.5.4. The reader may wonder the name R¥(X,U) instead of the
more natural ®¥(X,U). We follow here the naming convention in Massey
[Mas78], which is followed also in followed also in the forthcoming sections,
where we denote ®F (X, U) the kernel of the (txu)' in ®F(X).

Note that,
op(X) = | RE(X,U),
U
where U ranges over the open subsets of X. Note also that, clearly, the sets
RF(X,U) are not disjoint and that, given a k-function ¢ € ®*¥(X) there no

canonical choice for the neighborhood U of the support of ¢. Finally, note
that R¥(X,U) is a subgroup of ®*(X).

Definition 1.5.5. Let U and V be open sets in X for which V C U. The
homomorphism (LXU)!V . RF(U, V) — ®F(X) is defined by

. ’ k+1
(LXU)!V¢($) :{ (>)<7V (r)ote) zt}eleeriSe

for ¢ € RE(U, V).

The reason for the auxiliary set V is that the mere zero extension

Ok (U) — ®F(X) does not resepect the support of k-functions.?.

Example 1.5.6. Let X =R, U = R\ {0}, and let E: ®¥(X) — ®*(X) be
the zero extension of k-functions, that is,

¢(x), x €U

0, otherwise

Bole) = {

for ¢ € ®F(U.

Consider now the O-function F': U — Z, x v~ x/|z|. Then 6F (x1,x2) =
F(x2) — F(x1) # 0 for x1z2 < 0 and 0F(x1,22) = 0 for z1xz9 > 0. In
particular, spt(6F) = (.

Then spt(E(6F)) = {0}. Hence E®Y(U) ¢ ®J(X). Moreover, for z > 0,

OE(0F)(—x,2,0) = E(F)(x,0)— (ESF)(—z,0)+ E(0F)(—x,x)
= dF(—z,z)=F(z)— F(—z) =2.

Thus 0E(0F) # E(00F) = 0.

It is important to notice that the push-forward (:x)}” does not commute
with the coboundary § as the following example reveals.

3We thank Toni Annala and Eerik Norvio for pointing out mistakes in the earlier
version and for suggestions.
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Example 1.5.7. Let X =R, U = R\ {0}, and V =R\ [-1,1]. Let also
F: U — Zj be the function F' = X3 o)-
Let © > 2. Then

(txv)/ 6F(0,2) = xv2(0,2)6F(0,z) = 0.
On the other hand,
3(exv)! F(0,2) = (exv)! F(z) = (txv)! F(0) = xv () F(2) =0 = F(z) = 1.

Thus (S(LXU)!V 7& (LXU)!V(S.

In what follows, we show that — on the level of cochains — the push-
forward does not depend on the set V' and the commutativity holds. The
first result is that the push-foward operator (v XU)!V preserves the support
of k-functions.

Lemma 1.5.8. Let V C U be open sets in X satisfying V. C U, and ¢ €
RE(U,V). Thenspt(txu)! ¢ = spt¢. In particular, (uxy)) ®5(U) C ®F(X).

Proof. We show first that spt((txy)! ¢) C spt¢. Let € U \ spt(¢). Then,
in particular, x € null(¢). Hence there exists a neighborhood W of z in U
for which ¢|yr+1 = 0. Then

(LXU)!V<Z5\W'€+1 = X(VmW)k+1¢|Wk+1 = 0.

Since U is open in X, we have that W is open in X. Thus z € null((txv)! ¢),
and spt((txp)) @) C spt(e). -

Suppose now that © € X \ U. Then W = X \ V is a neighborhood
of z in X. Since W N VEFL = § we have (!5 )1¢|yss1 = 0. Thus
z € null((t%)19) also in this case, and spt((t%y)i1d) C spt(e).

To show that spt(¢) C spt((cX)19), let = € spt(¢) and W a neighbor-
hood of z in X. Since V' is a neighborhood of spt(¢), we have that W NV is
a neighborhood of z in X, and hence also in U. Since x € spt(¢), we have
that ¢|(an)k+1 # 0. Thus

(Ly{U)!¢’(WﬁV)k+1 = Xvk+1’(WmV)k+1¢\(WmV)k+l = ¢’(Wm/)k+1 # 0.

Thus z € spt ((t)19). O

1.5.2 Push-forward of cochains

In spirit of the previous section, let U C X be an open set and let

QE(X,U) = {c € CI(X): spt(c)}.
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Note that now QF(X,U) is the image of R¥(X,U) under the quotient map
PF(X) — Ck(X), that is,

QE(X,U) = {[¢]: C*(X): ¢ € RE(X,U)}.

Thus Q%(X,U) is a subgroup of C¥(X) and C¥(X) a union of the sets
QF(X,U) when U ranges over all open sets in X.

By Lemma 1.5.8, homomorphisms (vxy)) : RE(X,U) — RF(X,V) de-
cend to homomorphisms (LXU)Lt QF(X,U) — QF(X,V) for which the dia-
grams

exu)
REU, V) 22k RE(X, V)
¢'—>[¢]l ¢H[¢]i
(exv)l

QEU.V) —QEX.V)
commute.
Lemma 1.5.9. Let U and V be an open sets in X for which V.C U. Then
1. for each c € Q%(U,V), (LXU)#(LXU)ic =c, and
2. for each c € QF(X,V), (LXU);(LXU)#C =c.

Proof. For the first claim it suffices to show that, given ¢ € ®¥(U, V), we
have that ¢ — (1xv) (txv)) ¢ € ®E(U). Let € UKL, Then

0, x € VktL
¢(x), otherwise

é(z) — (txv) (txv )Y d(x) = ¢(x) — xyre (2)p(z) =

Clearly, V C null(¢ — (txv)' (txv)) ¢). Suppose z ¢ V. The = ¢ spt(e).
Thus there exists a neighborhood W of = in U for which ¢|yx+1 = 0. Then,
clearly,

(¢ - (LXU)!(LXU)IV(ﬁ) [y = 0.

Thus X\V C null(¢—(exv) (exv)) #). We conclude that ¢—(vxrr) (exv)) ¢ €
®%(U). This proves the first claim.

For the second claim, it suffices to show that ¢—(tx7)) (txv) ¢ € PE(X).
Let z € X", Then

¢ — (txv)! (txv)'d = ¢ — xyri16.
An analogous argument as above now yields the claim. O

Corollary 1.5.10. Let U, V, and W be open sets in X for which V.C U
and W C U. Then, for each c € QX(U, V)N QKU W),

(LXU)gc = (LXU)Q/C.
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Proof. Let ¢ € Q¥(U,V)NQ¥ (U, W). Since QX(U, V)NQ¥(U, W) = QX(U, VN
W), we have, by Lemma 1.5.9,

(cxv)e = (xv) <(LXU)#(LXU)£QWC)

= ((LXU)g(LXU)#) (exv) i e = (exv)y™e.

Similarly, (txv)} ¢ = (exv)y™ e. The claim follows. O

Definition 1.5.11. Let U be an open set in X. The homomorphism
(exv)g: CE(U) = CE(X)

defined by (txp)gc = (LXU)ic for each ¢ € Q¥(U,V) and open set V satis-
fying V C U, is the push-forward induced by the inclusion txy: U < X.

By Lemma 1.5.9, the push-forward (1xp)4 is a right inverse of (1xy ).
More precisely, we have the following result. For its importance, we record
it as a proposition.

Proposition 1.5.12. Let U be an open set in X. Then
#(

(exv)” (exv)y =1id

and
(exv) 4 (exv) ¥l gr(x,oy = id.

Proof. The first claim follows directly from Lemma 1.5.9. Indeed, let ¢ €
Ck(U) and let V be an open set for which ¢ € Q¥(U, V). Then

(LXU)#(LXU)#C = (LXU)#(LXU);C =c.

Similarly, the second claim follows from Lemma 1.5.9. Indeed, let ¢ €
Q'g(X, U). Since (txy)#c € CF(U), there exists an open set V for which
V C U and (txy)*c € CF(U,V). Thus

(txv)#(exv) e = (xv) 4 (exv) e =c.

The claim follows. O

1.5.3 Push-forward in cohomology

It remains to show that the homomorphism (¢x7)4: ctU) —» CcF(X) is
a chain map. Although this follows almost immediately from the previous
proposition, we record it also as a proposition for its importance.

Proposition 1.5.13. Let U be an open setin X. Then d(txu)4 = (txv)pd.
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Proof. Let ¢ € C¥(U). Then d(txv)xc € QH1(X,U). Thus, by Proposition
1.5.12,
(txv)gde = (uxu)pd ((LXU)#(LXU)#C>
= (LXU)#(LXU)#d(LXU)#C = d(LXU)#C.
The claim follows. O

The push-forward in cohomology has a special role in the theory. For
this reason, we introduce also here the commonly used notation for this
operator.

Definition 1.5.14. For an open set U C X, the homomorphism
Txu = (ixv)«: HI(U) = HZ'(X)

is called the push-forward (in compactly supported Alexander—Spanier coho-
mology) induced by the inclusion U — X.

We note in passing that the composition of inclusions U < V and V —
X yields the following composition rule.

Observation 1.5.15. Let U C V C X be open sets. Then

Txu = (txv)« = (Lxv o Lyy)« = TXV 0 TVU.

Since the push-forward is induced by an inclusion, it is natural to expect
that, on the cohomological level, push-forward and pull-back with a proper
map commute in a suitable sense. This is indeed the case and we record in
the form of the following lemma.

Lemma 1.5.16. Let f: X — Y be a proper map, V C Y a domain, and
U = f~'V. Then, for each k € Z, the diagram

(flu)*

HE(V) HE(U)

TYV TXU

*

HE(Y) —— H}(X)
commutes.

Proof. Recall that (1xy)4: CHU) — Q¥X,U) and (tyv)y: CH(V) —
QF(Y,V) are isomorphisms, where Q¥(X,U) = {c € C¥(X): spt(c) c U}.
The inverses of (txy)x and (tyv)y are (txp)™: Q¥(X,U) — CK(U) and
(tyv)#: QF(Y, V) — CK(V), respectively.
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Since f is proper and U = f~!'V, we have that f#Q¥(Y,V) Cc Q¥(X,U).
Thus

f#o(yv)s (exv)4 © (xv)¥ o f# 0 (yv)y
(exv)4 o (f o exv)¥ o (tyv)4
(exv)4 © (wy o flu)* o (byv)#
(exv)g o (

LXU #

40 (flo)* o (yv)® o (tyv)s = (txv)# o (flo)*

as homomorphisms C¥(V) — C¥(U). Hence

f* OTyy = TXU © (f‘U)*

The claim follows. O

1.6 Compact supports of cohomology classes

Since elements of H}(X) are called compactly supported cohomology classes,
it is reasonable to consider the meaning of this statement more closely. Since
cochains which are coboundaries have non-trivial support, it is easy to get
convinced that a cohomology class does not have a well-defined support.
It turns out, however, that each cohomology class in H*(X) is compactly
contained in a pre-compact open subset of X if X is locally compact.

Lemma 1.6.1. Let X be a locally compact space and a € HF(X). Then
there exists a pre-compact open subset U C X and b € HF(U) for which
a < TXU(b).

Proof. Let u € C¥(X) be a cochain representing a, that is, @ = [u]. Since
spt u is well-defined and compact, there exists a pre-compact open set U con-
taining spt u, that is, U is compact and sptu C U. Since u € Q’j(X, U) and
QF(X,U) = (1xu)#C*(U), there exists v € C¥(U) for which (1xy)4(v) = u.
Thus 70/ ([o]) = [(tx0)4(0)] = [u]. 0

We also have the following result which heuristically states that if a
cocycle ¢ € C¥(U) is a coboundary in C*(X) then it is coboundary already
in C*(W) for some pre-compact open set W. Again, we need to assume
that X is locally compact.

Lemma 1.6.2. Let X be a locally compact space, U C X a pre-compact
open subset, and a € ker Txyr. Then there exists a pre-compact open subset
V C X containing U so that a € ker Ty .

Proof. Let uw € C¥(U) be a cochain representing a. Since [(txp)gu] =
7xv(a) = 0, there exists v € C*¥~1(X) for which (txp)gu = dv. Let V be
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a pre-compact open neighborhood of spt(u) U spt(v). Then v € QF(X,V),
(txv)¥v € CE(V), and

d(va)#v = (va)#dU:(va)#(LXU)#u

= (exv)¥ (exv)#(vu)pu = (o) su.

Hence
(vv)sa = [(cvu)gu] = [d(exv) o] = 0.

1.7 Cohomology of disconnected spaces

As another application we record again easy but important result on coho-
mology of disconnected spaces. The two fundamental observations, on level
of k-functions and cochains, are the following.

Observation 1.7.1. Let X be a space, % = {U;}ien a covering of X with
mutualy disjoint open sets, and ¢ € ®F(X). Then ¢ is locally equivalent to
the k-function

b =Y Hlyrnr = > (exvhilexe,)'¢.
iel ieA
In particular, [¢] = [bd4] as k-cochains in C¥(X). Furthermore, for c €
CE(X),
c= Z(LXUZ.)#(LXUZ.)#C.

el

Observation 1.7.2. Let X be a space, % = {U;}ien a covering of X with
mutualy disjoint open sets, i € A, and ¢ € ®F(U;). Then

(LXUj)!(LXUi)!¢ = { 85: j#i
In particular, for (c;)ica € @ HF(U;),

(exv)® D (exv,) e = ¢
iEA

for each j € A.

Theorem 1.7.3. Let X be a space and % = {U;}ien a covering of X by
mutually disjoint open sets U; C X. Then

J: @Hg(Uz)%Hg(X), (CZ‘)Z'EAHZTXUZ'C%
€A 1EA
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is an isomorphism and

I: HY(X) = @ HEU), ¢~ ((txv,) c)iea-
icA

18 its inverse.

Proof. To check that J is well-defined, it suffices to note that there are
finitely many non-zero terms in the sequence (¢;);ep. Clearly, J is a homo-
morphism.

To show that I is well-defined, let [c] € H¥(X). For each i € A, the
set U; is both open and closed, and hence ¢y, is proper. Since spt(c) is
compact, there exists finitely many ¢ € A for which spt(c) NU; # (. Thus I
is well-defined. Clearly, I is a homomorphism.

Let [c] € HF(X). Then

(JoDld =Y mxv,(txt;)*[c] = [Z(LXUi)#(LXUi)#C] = [c].

[ISHN

Let ([ci])iea € Dica HE(U;). Then

(Lo J)([ci])iea = ((LXU]-)*ZTXUZ-[%])
JEA

iEA

= ([(LXUj)#Z(LXUi)#CiD = ([¢j])jen-
JEA

(IS

Thus I is the inverse of J, and J is an isomorphism. 0

1.8 Retraction of the support

In this section we prove a result which apprears rather techinical at the first
glance but turns out to be an important ingredient in the proof of the long
exact sequence for a pair.

Heuristically, the result we prove states that, given a k-function which
is locally trivial over a closed subset, we may retract a support away from
A using a coboundary. We formulate now the result more formally. Let,
from now on in this section, X be a locally compact and second countable,
Hausdorff space.

We denote

(X, A) = {¢ € D¥(X): §| 4o+ is locally trivial}
for each k € Z and

DX, A) = (@’;(X, A), 5) .
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the corresponding complex. Note that RL(X, X \ A) is a subcomplex of
P! (X, A). Indeed, if spt(¢) C X \ A, then A C null(¢) and ¢| 4r+1 is locally
trivial as a k-function in ®F(X, A).

Note also that ¢|r+1 is locally trivial if and only if spt((sax)'¢) = 0.

Theorem 1.8.1. Let X be locally compact, second countable, and Hausdorff
and let A C X be a closed subset. Let ¢ € ®F(X, A) be a k-function for
which 6¢ € RFI(X,X \ A). Then there emists 1 € RF(X,X \ A) and
p € @YX, A) for which

¢ =19+ op.

Before moving to the proof of this theorem, we record its consequence
on the level of cochains.
Let
CE(X, 4) = ker ((1xa)* s CE(X) = CE(4))

for each k € Z, and let again

CH(X, 4) = (CE(X, 4),d)
keZ

be the corresponding complex. Clearly, c¥ (X, A) is the image of ®(X, A)

under the quotient map ®.(X) — CZ (X). Since Q¥ (X;U) is the image of

R.(X,U) under the quotient map ®%(X) — C#(X), we have, in particular,

that Q¥ (X, X \ A) is a subcomplex of C¥ (X, A).

Theorem 1.8.2. Let X be a locally compact, second countable, and Haus-
dorff space, and let A C X be a closed set. Then the inclusion i: Qf&(X, X\
A) — C¥(X, A) induces an isomorphism

iv: Hy(QF (X, X \ A)) — Hy(CF(X, A)).

Proof. For injectivity, suppose a cycle [¢] € Q¥(X, X \ A) is a boundary in
C¥ (X, A). Then there exists [¢] € CF~1(X, A) for which [¢] = d[¢'] = [64).
Thus 9 and d¢ are locally equivalent and ¢ = 66 + 3, where 3 € ®&(X). In
particular, 6¢ € RE(X, X \ A).

Since ¢’ € ®¥(X, A) and 66 € RF1(X, X \ A), there exist, by Theorem
1.8.1, %' € RF(X, X\ A) and p’ € ®¥~1(X, A) for which ¢/ = ¢/ +6p'. Hence

p=20("+6p")+ 8 =3¢ +B.

We conclude that [¢] = d[)'], where [¢/] € Q¥ 1(X, X \ A). Thus [¢/] is a
boundary in Qfé (X, X \ A). This proves the injectivity.

For surjectivity, let [¢] € C¥(X, A) be a cycle, that is, d[¢] = 0. Then
8¢ is locally trivial, and hence ¢ € RF(X, X \ A). Since ¢ € ®¥(X, A) and

33



5¢ € RF(X, X \ A), there exist, by Theorem 1.8.1, 1) € RF(X, X \ A) and
p € ®F=1(X, A) for which ¢ = ¢ + dp. Thus

51 = 8(6p — 6) = 56,

Thus
dli] = 6] = [~06] = —d[g] = 0.

We conclude that [1] is a cycle in QF(X, X \ A). Since [p] € CF (X, A) and
[¢] = [¢] + d[p], we have that [¢] and [¢)] represent the same homology class
in H,(C¥ (X, A)). This proves the surjectivity. O

The proof of Theorem 1.8.1 is based on choice of a perturbation of the
identity X — X and a related chain homotopy operator on the level of k-
functions. We begin with these preliminaries and the proceed to the proof
of the theorem.

1.8.1 Chain homotopy

We begin by showing that an induced homomorphism f': ®*(X) — ®*(X)
is chain homotopic to the identity. We introduce the following notations.
Let f: X — X be a mapping (not necessarily continuous). For each k € N
and i =1,...,k, we denote

F’lf Xk — Xk+1> (.’,Ul,...,ﬂfk) — (f('rl)a 7f($l)7$27$k)

and i
Dy: ®8(X) —» & 1(X), ¢ Y (1) o F/;

i=1

for k <0, we set Dy = 0 for completeness.

In particular, for ¢ € ®F(X),
k .
(Dpd) (@1, ) = D (1) (F (1), F@) i, 2k
i=1

for (z1,...,z) € X*.
The main proposition is that the mapping Ds: ®'(X) — ®'(X) is a
chain homotopy.

Proposition 1.8.3. Let f: X — X be a (non-continuous) map. Then, for
each k € 7,
id — f' = 6Dy + Dpd: oF(X) — F(X).
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Proof. Let ¢ € ®*(X) and z1,...,2541 € X. Then

k+1
(ODd) (w1, s psr) = D (=17 (D) (@, ... Ty, 1)
j=1
and
k+1 '
(Df5¢)($1, L) xk-l—l) = Z(—l)z+1((5¢)(f($1)7 cee f(zl)a Liyenos xk-l—l)‘
=1
On the other hand, for each j =1,...,k+ 1,
(quﬁ)(l'l, ey gy Thy)
- Z DG (1), oo @)@ s Eo - Thi)
- kJrl o
+ 3 (DTG f @), f (@) f @) T T)
i=j+1
and
(6¢)(f( ) "7f(x’b) x’u"ka-i-l)
—Z 1)+ -,ﬁ%\')?---,f(ii),%',---wkﬂ)
k+1 '
+ Z(_l)(3+1)+1¢(f(x1)7 R f(xl)v Ly enny @7 o 7xk+1)
j=t
Thus
(5Df(f))(£61, .. karl) (Df&ﬁ)(%h . 7$k+1)
k+1
:Z( J+1Z Z+1d) ,f($i),:1}i,...,fj,...,I‘kH_l)
=1
’ k+1 k+1 ' /\
+Z j+1 Z 1)Z¢(f($1)77f<xj)7 '7f(xi)7xi7"'7$k+l)
i=j+1
k+1 B -
+Z( H_IZ j+1¢ a 7f($])7 .,f(ﬂfi),l’i?...,xk_;'_l)
=1
k+1 ' k+1
+Y (DY 1 O(f (@), @)y @i, Ey oy Thg)
i=1 j=i
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By rearranging the double sums, we obtain

(6Ds@) (1, fﬁk+1) (Dyég)(x1, ..., Tpy1)
_Z H_](b ) ...,f(xi),xz-,...,@-,...,:EkJrl)

1<J

SO @),y f @)ooy f(@)s i)
1>]

-I-Z D p(f ),...,@,...,f(xi),xi,...,xk+1)
1<t

_Z Z+J¢ )a"'uf(xi)vxiu'”7@5"'7‘%]{:-1—1)
j>i

k+1

:Z¢ Jf(@ic1), @iy Tpy)

kJrl

PILCCURH ORI

(251'17-- xk+1) ¢(f($1)77f(xk+l))
<1d f )1‘1,...,xk+1).

This completes the proof. ]

1.8.2 Small perturbation of the identity

We move now to the second tool in the proof of Theorem 1.8.1 — small per-
turbation of the identity. We recall some terminology related to coverings.

Recall that a covering ¥ refines covering % if for each V' € ¥ there
exists U € % for which V' C U, and that a covering % of X is locally
finite if for each x € X there exists a neighborhood W for which #{U €
U:UNW # 0} < 0.

A Hausdorff space is paracompact if each open covering has a locally
finite refinement. Our space X is paracompact.

Fact 1.8.4. Locally compact, second countable, and Hausdorff spaces are
paracompact.

Indeed, a locally compact, second countable, and Hausdorff space is both
regular [Dug78, Theorem XI.6.4] and Lindel6f [Dug78, Theorem XI1.7.2]. A
fortiori, regular Lindel6f spaces are paracompact [Dug78, Theorem VIIIL.6.5].

The reason to emphasize paracompactness are the star refinements; see
[Dug78, Theorem VIII.3.5]. Given a covering % of X, a star of U € % in
U istheset U =\ {U' € % : U'NU # 0}. A star #* of % is the covering
U ={U*:Uec%}.
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Fact 1.8.5. FEach open covering of a paracompact space has a locally fi-
nite star refinement, that is, for each open covering % of X there exists a
covering ¥V for which ¥* is a locally finite refinement of % .

To define (non-continuous) mappings f: X — X, we consider as small
perturbations of the identity id: X — X, we need some auxiliary notations.

Let # be a covering of X and A C X a closed subset. We denote
Wy ={W eW:WnA=#(D}. Also, given any subcollection #' C #', the
notation (#”)* refers to the collection {W* C X: W' € #'}, where W* is
the star of W in #'.

Definition 1.8.6. Let # be a covering of the space X and A C X a closed
subset. A mapping f: X — X is an (#/, A)-perturbation (of the identity) if

L flavx\yw, = id, and
2. for each W € #4, fW C W*N A, where W* is the star of W in #'.

Each covering of X and each closed set in X there exists a perturbation
of the identity.

Lemma 1.8.7. Let # be a covering of X and A C X. Then there erists a
(W, A)-perturbation f: X — X.

Proof. First, for each W € #4, let zyww € W N A, and for each x € X, let
Wy € # be a neighborhood of x. We define now f by

LL’*—>{ TW,, T € (UWA)\/L

x, otherwise

Then, clearly, f|a =id and f|x\j», = id.

Let now W € #4 and x € W. Then W, N W # () and hence W, C W*,
where W* is the star of W in #. Since f(x) € W,, we conclude that
fW c W*. Thus the mapping f is a (#', A)-perturbation of the identity. [

We record now basic properties for a perturbation of the identity f: X —
X and the associated chain homotopies Dy: ®'(X) — ®'(X) in the case of
locally finite coverings having pre-compact elements. We begin a statement
on the supports, which holds without additional assuptions on covers.

In the following lemmas, delicate considitions regarding the covering #
are imposed to the k-functions in ®*(X). These conditions are necessary as
the following example reveals.

Example 1.8.8. Let X =R and A=7. Let also W = {(x — L,z +1): z €
Z}. Let ¢ € ®1(X) be the 1-function satisfying ¢(x,x—1) = 1 for each x € Z
and ¢(x,y) = 0 otherwise. Then spt(¢) = 0. Let also f: X — X be the map
for which f(x) be the integer part of x € R. Then f is a (# ', A)-perturbation
and spt(j”d)) = 7. In particular, f'¢ is not compactly supported.
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Lemma 1.8.9. Let # be an open covering of X, A C X a closed subset, and
f: X — X a (W, A)-perturbation. Let also ¢ € ®*(X) be a k-function for

which ¢|(w+nay+1 = 0 for each W € Wy. Then spt(f'o) C cl (U W ¢> \A.

Proof. We show first that A C null(f'¢). Let z € A and let W € # be an
element containing z. Let also x1,...,x5+1 € W. Since W € #4, we have
that (f(z1),..., f(xre1)) € (W)L Thus

flé(@r,. . xin) = ¢(f(a1),- ., fzr41)) = 0.

Hence f!d)\(W*)kH =0 and z € null(f'¢).

It remains to show that spt(f'¢) C clU%Et s Let z & cdy Wt
W € # a neighborhood of z.

Suppose first that W € #4. Let V. =W \ clU % and (z1,...,2541) €
VFHL Then (f(x1),..., f(zre1)) € (WHFFI N AL and

flo@r, ... ani) = ¢(f(@1),. .., f(@ri1)) =0

by assumption |y «nays+1 = 0. Hence x € null(f'¢).

Suppose now that W ¢ #4. We observe that W N J#; = 0. Indeed,
otherwise, there exists W’ € #; for which W N W' # @ and then W C
(W")* C U#;, which is a contradiction.

Since = ¢ spt(¢), there exists a neighborhood V' of = contained in W for
which ¢|yx+1 = 0. Thus f|w = id and ¢|yr+1 = 0. Hence

f!¢|vk+1 - (ﬁ‘vkﬁ-l - 0

Hence z € null(f'¢). O

& and

Regarding the mapping properties of the chain homotopy Dy we have
the following lemmas.

Lemma 1.8.10. Let # be an open covering of X, A C X a closed subset,
f: X = X a(#,A)-perturbation. Let ) € ®¥(X) be a k-function satisfying
Y(weyr+1 =0 for each W € Wy. Then

spt(D 1) C cl (U wa) \ A.

Proof. We show first that A C null(¢p o F}) foreach i =1,...,k. Let z € A
and let W € # be a neighborhood of = in X. Let also z1,...,2; € W.
Since W € #4, we have

Fl (w1, an) = (F@1), - F@), mi, ) € (W) xWHTHL € (e)kH

and
(w oﬂf)(xl, . ,$k) =0.
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We conclude that z € null(¢ o Fif ). Hence A C null(¢ o Fif ) for each
i=1,...,k. Thus spt(Ds) C Ule spt(¢ o sz) C X\ A

It remains to to show that spt(y o F;) C cl (U %;w> for each i =
1,...,k.. Let x ¢ clUV/s”f)w and W € # a neighborhood of x. Let also
ie{l,....k}.

Suppose first that W € #4. Let V.= W\clU ¥ and (z1,...,2%) € vk,
Then (f(z1),..., f(x:),x, ..., xx) € (W*)FH1 and

¢°F¢f($1>---7$k) = ¢(f(x1), ..., f(xi), zi,..., ) =0

by the assumption @y «k+1 = 0. Hence z € null(¢ o Ff)

Suppose now that W & #4. Similarly as in Lemma 1.8.9, we observe
that W N U#, = 0. Since = ¢ spt(¢), there exists a neighborhood V' of
x contained in W for which ¢|;x1 = 0. Thus f|lw = id and ¢|y w1 = 0.
Hence

¢ 0 F [yt = ¢lynin = 0.

Hence x € null(¢ o Fif ). The claim follows. t

Lemma 1.8.11. Let # be a open covering of X, A C X a closed subset,
f: X = X a(#,A)-perturbation, and ¢ € ®*(X) be a k-function for which
(txA)'e is locally trivial. Then (1x4)'Dy¢ is locally trivial.

Proof. Let ¢ € ®(X) be a k-function for which (1x4)'¢ is locally trivial.
It suffices to show that ¢ o Fif’Ak is locally trivial for each i = 1,...,k. Let
x € A. Since ¢|4x+1 is locally trivial, there exists a neighborhood V' of z in
A for which ¢|y w1 = 0.

Let i € {1,...,k}. Since f|4 = id, we have

¢o Fl vk = ¢lyrs =0

for eachi =1,..., k. Thus Ds¢|yr = 0. Hence Ds¢|4x is locally trivial. O

1.8.3 Proof of the retraction theorem (Theorem 1.8.1)

Let ¢ € ®¥(X, A) be as in the claim, that is, ¢ s+1 = (tax)' is locally
trivial and §¢ € R¥1(X,U). We begin by constructing a covering # of X
associated to ¢|gx+1, ¢, and d¢.

First, for each z € A, we fix a pre-compact neighborhood V, of z in X
for which ¢[(y,nayk+1 = 0. Then ¥ = {Vy},e4 U{X \ A} is an open covering
of X. Note that, given V € ¥4, there exists x € A for which V =V, and
hence ¢[(ynaprt1 = 0.

Second, for each = ¢ spt(d¢), let V. be a neighborhood of z in X for
which 66|y k2 = 0. Then 7" = {V}oaq59) U {X \ cl(null(0¢))} is a
covering of X. Again, note that, if V' € ¥’ meets null(d¢), then V' C
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null(6¢) and there exists x € null(6¢) for which V' = V. Hence 0¢|(yr+2 =
0.

Third, for each & |J #pt¢, let V) be a neighborhood of  in X for
which @k = 0. Then 7" = {V}ogspig U {U #epto} is a covering of
X.

Since X is paracompact, there exists a locally finite cover # of X which
is a simultaneous star refinement of ¥, ¥’, and ¥”, that is, given W € #
there exist Ve ¥, V' € ¥/, and V" € ¥" for which W* c VNV 'NV". Let
f: X — X bea (#,A)-perturbation.

It suffices to show that

(i) f'¢ € RE(X,0),
(ii) Dyd¢ € R¥(X,U), and
(iii) Dyg € F-L(X, A).

Indeed, by Proposition 1.8.3,
|
o= (f'o+ Ds09) +6Dso.

Thus we may take 1) = f'¢ + D¢ép and p = Dyep.

To show (i), let W € #4. Then there exists V € ¥ for which W* C V
and ¢|(yaper1 = 0. Thus ¢[y«nayp+1 = 0. By Lemma 1.8.9, spt(f'p) C
l (U 9 ¢) \ A. Since cl (U 9 ¢) is compact, we have f'¢ € R¥(X,U).

To prove (ii), let again W € #4. Since # is a star refinement of #”, there
exists V' € ¥’ containing W. Since V' N A # (), we conclude that V' = V]
for some z ¢ spt(d¢). Since 6|1y~ = 0, we have also 6|y «yr+2 = 0. Thus
spt(Dydgp) C cl (U WSZ‘JM) \ A by Lemma 1.8.10. Since cl (U %;t5¢> is

compect, we have Dd¢ € RE(X,U).
For the proof of (iii), we observe first that, since (1x4)'¢ is locally trivial,
so is (LXA)!qub by Lemma 1.8.11. Thus to show that D¢ has compact

support, it suffices to show that spt(Ds¢) C cllJ W o Let © & clUJ Yt o

and W € # a neighborhood of z. Then there exists &’ € AJ #ipty for
which W* C V;/. Since ¢|»yk+1 = 0 we conclude that ¢[y«er1 = 0. Let
(x1,...,2) € WE. Then, for each i =1,...,k,

Fl-f(:m,.--,%k) = (f(z1)y. -, f(xi), x4y .. ) € (W*)kH.

Hence Dy|yy+yx = 0 and @ € null(Dy¢). Thus spt(Dyd) C clU%, 4
Hence Dy¢ € ®k=1(X, A). This completes the proof of Theorem 1.8.1.
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1.9 Exact sequence of a pair

As discussed in the beginning of Section 1.8, our main interest for Theorem
1.8.1 stems from the proof of the exact sequence of a pair (X, A) for a closed
subset A C X.

Theorem 1.9.1. Let X be a locally compact and second countable Hausdorff
space and A C X a closed subset. Then there exists, for each k € Z, a
homomorphism 0: H¥(A) — HETY(X \ A) for which the sequence

(1.9.1)

e HE(X O\ A) PV HE(X) 2% HE(A) % HEP (X A)
18 exact.

The interesting aspect in the sequence (1.9.1) is that contains only of
Alexander—Spanier groups of spaces, and there are no relative groups in
the sense that none of the groups is defined as the homology group of a
quotient complex. In the proof this is reflected by the fact that there is no
(immediate) short exact sequence which implies this long exact sequence.

Structurally it is also an interesting aspect that both the push-forward
7xy and the pull-back ¢%; are induced by inclusions, here X \ A — X and
A — X, respectively.

The connecting homomorphism 0y : H(A) — HX(X \ A) in (1.9.1) is
defined as follows.

Recall that the pull-back L?E(UZ Q¥ (X,U) — C¥(U) is an isomorphism of
chain complexes. Let (txp)s: Hypr (QF (X,U)) — HFL(U) be the isomor-
phism in homology induced by L}%U; note that H*(U) = H,(C¥(U)). Recall
also that, by Theorem 1.8.2, the inclusion j: QZ# (X,U) — c¥ (X, A) of com-
plexes induces an isomorphism j,: Hy 1 (Q¥ (X,U)) — Hk+1(C'f(X, A)).

Let now 0,: HE(A) — H;,1(C¥(X,A)) be the connecting homomor-
phism in the long exact sequence

k k O #
(19.2)  —— HF(X) —> HF(A) —="Hy.01 (CF (X, A) —
induced by the short exact sequence
g
(1.9.3) 00— CF(X, A)—= Ck(X) X5 CF(A) —0.

The connecting homomorphism dy: H¥(A) — HF(X \ A) is now the
homomorphism for which the diagram

HE(A)= == == - = H{H(U)

ia;@ NT(’/XU)*

Hk+1(0f(Xa A)) %HHI(Q?{(X’ U))
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commutes, that is,
(1.9.4) O = (txv)« 075 L o0,

Proof of Theorem 1.9.1. Since Q¥(X,U) is contained in the kernel of (tx )%,
we may factorize (1x4)": CF(X) — CF(A) through C¥(X)/Qk(X,U), that
is, we have the diagram

. #

7
-
ql -7
- L

CH(X) JQE(X, 1)

CE(A)

where q: C¥(X) — C¥(X)/Q¥(X,U) is the natural quotient map.
Thus the diagram

0 —> Q¥(X, U) s CF(X) —1CH(X) /QE(X,U) —=0

a |
#

0 —— CF(X, A)—> OF(X) —=4 Ok(A) 0

J

where j: Q¥(X,U) — C¥(X,A) is an inclusion, has exact rows and all
squares commute.

By naturality of the long exact sequence in homology, the diagram
(1.9.5)

e HE(X) —= Hy(CHX)/QE (X, U)) % Hyyy (QE (X, U)) ——

id lu %lj*

- HE(X) HE(A) % e (CF(X,A) ——

commutes. Since the Alexander—Spanier cohomology H[(-) is the homol-
ogy of the complex CZ (-), we have H*(X) = H,(C¥(X)) and H*(A) =
H*(C’f (A)). Thus, by the Five Lemma, 7, is an isomorphism.

We combine now all relationships of H}(A), H}(U) and H(X) into one
diagram
(1.9.6)

HE(U) HE(X) HE(A) HFL(U)

Ju ~
= (L )*/ l]*l / \La/ /
T - ) * (xv)woii !

H(Q¥ (X, 1)) H,(CH(X)/Q¥ (Xx,U)) Hy1 (CE (X, A))

Ok

<\ IR

where all triangles commute. The top row in (1.9.6) is exact by (1.9.5). This
completess the proof of the exactness of (1.9.1). O

42



Naturality of the long exact sequence of a pair

We discuss now some naturality statements for the exact sequences of a pair.
The first one is almost obvious.

Theorem 1.9.2. Let A C X and B C Y be closed sets so that there exists
a homeomorphism f: X —'Y for which fA = B.* Then the diagram

HR(X\ A;Z) Ts HE(X;Z) —2 > HE(A;Z) — 22 HFL(X \ A;2)

T(fX\A)* Tf* T(fA)* T(fX\A)*
HY(Y \ B;Z) s HE(Y; Z) — 2> HY(B;Z) —22 HF(Y \ B;Z)

where rows are exact sequences of pairs (X, A) and (Y, B), commute.

Proof. The first square commutes by Lemma 1.5.16 and the second by the
composition law for the pull-back. Thus it remains to show that the square

HE(A;Z) —2 HEY(X )\ A;2Z)
T(fA)* T(fX\A)*
HE(B; 2) —22 BV \ B;2)

commutes. Since the connecting homomorphism 9; and isomorphisms j,
and (txy )« are natural in the definition of Jy the claim follows from the
observation that the diagram

04

H*(A;7) HIPH X\ A Z)
k\ N (txu)«
Hiei (CF (X, 4)) <~ — Hiopa (QF (X,0)
(fla)* (f#|cf(y,3))*Tf—V :T(f#le(Y,W)* (Fx\a)*
Hyr(CE (Y, B) = — Hen QY (Y, V)
o, (tyv)«
HE(B;2) o HF(Y \ B; Z)

commutes. O

A typical version of the naturality of the long exact sequence of a pair
reads as follows.

4Typical terminology is that f is a homeomorphism of pairs f: (X, A) = (Y, B).
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Theorem 1.9.3. Let A and B be closed subsets of X for which A C B, and
let U=X\A and V =X\ B. Then the diagram

e HE(X\ B) 2V HE(X) 2 R (B) — %2 HMY (X O\ B) > -

c
lTUV
*

e RO\ A) U g () XA g B R X\ A)

id J/L}}A TUV
c

where the rows are exact sequences of pairs (X, A) and (X, B), commutes.

Proof of Theorem 1.9.3. The squares

HE(X\ B) 2 HE(X) 2% HY(B)

iTUV

HF X\ A) EYs HR(X) XA R (A)

commute by the composition laws.
To see that the square

HY(B) —2%2 HF(X \ B)
\LLZB TUV

g
HE(A) —= HFP (X )\ 4)
commutes, we begin with an observation that the square

QFI(X, V)22~ ChH(X, B)

bk

QN (X, U)— CETL (X, A)

of inclusions is well-defined and commutes. Similarly, the triangles in the
diagram

CéHl(V) (exv)# Qk+1 V)
(Lov)g CH1(X)
W \)
Ck’+1 k+1
(exu)? Qe U)
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commute; indeed, the one on left by composition law and the one on the
right trivially. Further, we note that the commuting diagram

I
0 —— C¥(X, B)— C¥(X) = C§(B) —=0

C

#

0 —= CF(X, A)—> CF(X) X4 Ok (A) 0

induces a diagram in homology

a/

- —— Hy(CE(X, B)) — HE(X) — Hf (B) — Hy1 (CE(X, B)) —

/

e H(CK(X, A)) — HE(X) — HE(A) — 2 Hy 1 (CH(X, A)) —

which commutes and has long exact sequences as rows.
Thus the diagram

HE(W) <V Qa0 V) Y25 Hy (X, B)) 2— HE(B)

\LTUV l/\* ln* L*AB\L
7 a/
H(U) <0k, QX 0) 2225 i (G2 (X, A)) A— HE(A)
commutes. Since 94 = (ixu)« 0 (ja)y L0y and 95 = (ixv )« o (jp);y ! 0 I,

we have obtained that the square

25 gh(B)

c

HEH(V)
UV VaB
HIH\(U) 24— HE(A)
commutes. This concludes the proof. O

We record one more variant of the naturality of the long exact sequence
of a pair for further use.

Theorem 1.9.4. Let U C X be an open set, W = X \ 0U, and A = 9U.
Then the diagram

HF(X\ oU) Y s HF(X) 24 i HFOU) —% Hk+1(X \ U)

c
L*
wU
* U

i@vu lL;U
T — 9]
H}U) ——— H}U) —> HE(0 > HEPL(U)

commutes.
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Proof. The first square commutes by Lemma 1.5.16 and the second by the
composition law. Thus it suffices to prove that the last square commutes.
By naturality of the long exact sequence (1.9.2), the diagram

8/
HE(A) o Hir (CF (X, A))
|t
. v 4
HE(A) Hy1 (CH (U, A))

commutes. Since the diagram

QF (X, W) — o (x,0u)

XU

U) ———C¥(U,0U)

commutes, we also have

()X = V0% ).

XU XU
Finally, since the diagram
R
QE (X, W) = CEW)
L#l lL#
XU wuU
Q¥ (U, U) p ct ()
‘Tu
commutes, we have that
v (Ew)s = (20T

Combining these observations, we have

* X * 7# - X /
wude = tyu© (LXW)* 0 jy 00

= (o (F )oY 0t = ()0 iT o ()08

= ()00l = oY

This completes the proof. O
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1.10 Homotopy property

An important property of (any) cohomology theory is that homotopic maps
(in suitable sense) induce the same homomorphism on the level of cohomol-
ogy. For the compactly supported Alexander—Spanier cohomology this holds
for properly homotopic maps.

Definition 1.10.1. Proper continuous maps fp: X — Y and fi: X — Y
are properly homotopic if there exists a proper map F': X x[0,1] — Y which
is a homotopy from fy to fi, that is, F(z,0) = fo(x) and F(z,1) = fi(z)
for each z € X.

In this section, we denote I = [0, 1]. Given spaces X and Y, a mapping
F: X xI —Y,and t € I, we also denote X; = X x {t} € X x I and
F;: X — Y the map x — (z,t).

Remark 1.10.2. Note that a mapping F': X x I =Y is proper if and only
if each map Fy: X — 'Y 1is proper.

We define the proper homotopy equivalence as usual.

Definition 1.10.3. A proper continuous map f: X — Y is a homotopy
equivalence if there exits a proper map g: Y — X (called homotopy inverse
of f so that g o f and f o g are properly homotopic to identities idx and
idy, respectively.

The homotopy property of the compactly supported Alexander—Spanier
cohomology now reads as follows.

Theorem 1.10.4. Let X and Y be locally compact Hausdorff spaces and let
fo: X =Y and f1: X =Y be properly homotopic maps. Then

fo = fi+ Ho(Y) = H(X).

Corollary 1.10.5. A homotopy equivalence f: X — Y induces an isomor-
phism f*: HX(Y) — HX(X) in cohomology.

Proof. Let g: Y — X be a homotopy inverse of f. Then f*og* = (go f)* =
id% =id and g* o f* = (f o ¢)* = id} = id. O

We begin the proof of Theorem 1.10.4 with an observation. For ¢ = 0, 1,
let h;: X — X x I be the inclusion x — (z,7). Let now F': X x I — X is a
proper homotopy from fy to fi. Then F o h; = f; and

ff = (Fohy)" =hioF*

for ¢ = 0,1. Thus it suffices to prove the following proposition.
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Proposition 1.10.6. For i = 0,1, let h;: X — X x I be the inclusion
x> (x,4). Then
ho="h1: H(X xI) = H;(X).

We begin by introducing some notation. For each t € I, let
hy: X - X xI, xw (x,t),

and let j;: X — X, and i;: Xy — X x I be the homeomorphism z — (x,t)
and inclusion, respectively. So, formally, h; = i; o j; for each t € I.
Let also
p: X xI—X, (x,t)— x.

Thus we have the diagram

XX,

S

X x I

of maps, where j; is a homeomorphism. Since all the maps in the diagram
are proper, we have also a commutative diagram

in cohomology, where j; is an isomorphism. Note also that
hiop" = (poh)" =idx =id

for each t € I.
Homomorphisms p* and h; are homologically ortogonal in the following

sense.5

Lemma 1.10.7. For eacht € I,
H¥(X x I) =im p* @ ker h}.

Proof. We show first that im p* Nker hj = {0}. Let ¢ € im p* Nker h}. Then
there exists ¢ € H¥(X) for which p*(¢/) = c. Since h} o p* = id, we have
that

¢ = WP ()) = Bi(0) = 0.

®Recall that, if U and V are subgroups of W, then W = U @ V if UN'V = {0} and
U+V=W.
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Thus ¢ = p() = 0 and im p* Nker b} = {0}.
To show that H¥(X x I) = im p* + ker h}, let ¢ € H*(X x I). Then

hi(c = p*(hi(e))) = hi(c) = (hi © p") (i (c)) = hy(c) — hi(c) = 0.

Thus
¢ = p*(hi () + (c — p* (R (e))) € im p* + ker hi.

This completes the proof. ]

The main idea of the proof of Proposition 1.10.6 is that, for each ¢ €
HFE(X x I), the map I — H¥(X), t — h}(c), is locally constant, and hence
constant, since I is connected. This is immediately true for classes in the
image of p*. Indeed, we have the following lemma.

Lemma 1.10.8. Let ¢ € im (p*: H¥(X) — HF(X x I)). Then
hic = hjc
for each t € 1.

Proof. Let ¢ € HF(X) be a cohomology class and ¢ = p*(¢) € H¥(X x I).
Since hj o p* =id = h{j o p*, we have

hi(c) = hi(p*(c) = ¢ = hg(p™ (<)) = hg(c).
The claim follows. O

We are now ready for the proof of Proposition 1.10.6.

Proof of Proposition 1.10.6. Let ¢ € H¥(X x I). We show that, for each g
has a neighborhood J in I satisfying hic = hj c for each t € J. Since I is
connected, a standard covering argument then implies the claim.

Let tp € I. By Lemma 1.10.7, there exists a € imp* and b € ker hy;
for which ¢ = a + 0. Since hja = hja for each t € I by Lemma 1.10.8 it
suffices to find an interval J C I containing tg in its interior for which we
have hib = hy b = 0 for all t € J. Further, since hi = j; oy and j; is
an isomorphism, it suffices to find an interval J C I, containing tg in its
interior, for which ;b =iy b =0 for each t € J.

Consider the exact sequence of the pair (X x I, Xy,)

,i*
o >'H§((XXI)\XtO)TL>H§(Xx])LHf(XtO)L...
By assumption, b € kerif . Thus there exists by € HF ((X x I)\ Xy,) for

which 73,(b1) = b. Since b is a cohomology class in complactly supported
cohomology there exists, by Lemma 1.6.1, a pre-compact open subset U C
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(X x I)\ Xy, for which by is in the image of the push-forward 7 x. . Let
by € H?(U) for which by = T((XXI)\XtO)U(bQ)'

Since U is compact and Xy, N U = (), there exists a closed interval
J C I containing t( in its interior for which (X x J)NU = ). Indeed, let
p: X x I — I to be the projection (z,t) + t. Then p(U) is compact and
to & p(U). Thus there exists a closed interval J which contains tq in its
interior and does not meet p(U).

Let 7 = T(X x (I\J))U and b3 = TU(bQ) S Hf(X X (I \ J)) By the
naturality of the exact sequence of a pair (Theorem 1.9.3), we have the
commuting diagram

B

e HE((X x (I J)) s HF(X x T) —2 HF(X x J) s

iT id i'ﬁo
iy O

.
= HE((X x 1)\ X)) > HF (X x I) —%—> HF(X;,) —— -

where rows are exact sequences of pairs (X x I, X x J) and (X x I, Xy,),
homomorphisms 7, 7, and 7; are the corresponding push-forward homo-
morphisms, and i5: X X J — X x I and k,: Xy, — X x J inclusions.

By the composition laws and commutativity of the diagram, we have

77(b3) = (74 07)(b3) = (715 0 7 0 7')(b2) = T(x xpyv (b2) = b.

Let t € J. We have the commutative diagram

o HF((X x (I\ J)) 2 HE(X % T) — HF(X x J) %

iT id lni
. o

= HE((X x I)\ X¢) B HF (X % I) —— H}(X,)

where the rows are now exact sequences of pairs (X x I, X x J) and (X x

I, X;), homomorphisms 7, 7 and 7; are the corresponding push-forward

homomorphisms, and i5: X X J <— X x I and k;: Xy < X X J inclusions.
Then

iy (b) = i (1 (b3)) = (k¢ 0 i7)(7s(b3)) = 0.
Thus b € kerij for each ¢ € J. This concludes the proof. O

1.11 Mayer—Vietoris sequence

The Mayer—Vietoris sequence enables us to calculate the cohomology of a
union U UV from cohomologies of the (open) subsets U and V of X. The
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statement reads as follows. The exact sequence is called the Mayer—Vietoris
sequence.

Theorem 1.11.1. Let U and V' be open sets in X for which X = U UV,
and let

@: HY(UNV) = HE(U)® HE(V), cw (Townv)e Tvunvye)

and
Y HYU) @ HE(V) — HE(X), (a,b) = 7xva — Txvb.

Then, for each k, there exists a homomorphism A: H¥(X) — HMY(UNV)
for which the sequence

¥

—SHEU N V) —5 HEU) & HYV) " BN X) —> HFY (U NV) —

1S exact.
In the proof, we use the partition of unity.

Fact 1.11.2. Let % be a finite open cover of a locally compact Hausdorff
space X. Then there exists a partition of unity {;}icz with respect to U,
that is,

1. for each i € I, there exists U; € % for which spt(y;) C U;

2. each x € X has a neighborhood W, C X for which

#{i€T: ¢ilw, #0} < o0, and

3. ZiEZ Y; = 1.

The Mayer-Vietoris sequence stems from a short exact sequence for chain
complexes.

Lemma 1.11.3. Let U and V be open sets in X for which X = U UV, and
denote W =U NV. Let also

I:CEW) = ChU)a Cl(V), e ((ww)x(c), (vw)x(c)

and
J: CE(U) @ CE(V) = C(X),  (a,b) = (exv)g(a) = (exv)#(b)
be homomorphisms. Then the sequence
0 —— CEW) —= CEU) ® CE(V) "> CE(X) —0

15 exact.
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Proof. Since (tyy )4 and (tyw )4 are injective, the homomorphism I is in-
jective. Thus it suffices to show that the sequence is exact at C*(U) @ CF(V)
and that J is surjective.

By the composition law of the push-forward, we have

JoI = (uxu)go (tow)g — (xv)go (vw)g = (txw)g — (txw)g = 0.

Thus im I C ker J.

Suppose (a,b) € ker J. Then (txp7)4(a) = (exv)#(b). Since spt((txv)4(a)) C
U and spt((txv)#(b)) C V, we conclude that spt((txr)#(a)) = spt((exv)#(b)) C
UNV =W. Thus a € Q%(U, W) and b € Q¥(V,W). Let ¢, € C¥(W) and
cp € C¥(W) be such that (tyw)y(ca) = a and (cyw)(cp) = b. Since

(exw)g(ca) = (exv)#((ow)#(ca)) = (exv)#((bvw)g(en)) = (exw)#(cp),

and (txw )4 is injecive, we conclude that ¢, = ¢p. Thus

I(ca) = ((ww)#(ca), (vw)4(ca)) = (a, (vw)p(e)) = (a,b).

Hence ker J C im /.
To show the surjectivity of J, let ¢ € C¥(X). We also fix ¢ € ®¥(X) so
that ¢ = [¢]. We construct ¢y € ®%(X,U) and ¢y € ®F(X, V) for which

[pu] = [pv] = [8] = c.

Then, for a = (1xv)*([pr]) € CE(U) and b = (1xv)7([pv]) € CE(V), we
have
J(a,b) = (uxv)y(a) — (txv)4 () = [pu] — [¢v] =c.

Let {\y,A\v} be a partition of unity on X with respect to the cover
{U,V} of X satisfying spt(\y) C U and spt(\y) C V. Let 7: X*1 5 X
be the projection (z1,...,2541) — x1 and let ¢y = (Ay o m)¢ and ¢y =
—(Ay o )¢ be k-functions in ®¥(X). Since

spt(ou) C spt(Ay) Nspt(¢) and  spt(oy) C spt(Ay) Nspt(e).

we have ¢y € ®F(X,U) and ¢y € OF(X, V).
We show that [¢p] = [¢y] — [¢pv]. Let x € X. Then there exists a
neigborhood B of x for which A\y|gr+1 + Ay |gr+1 = 1. Thus

dulprin — ovlprin = ((Avom)@) prir — (—(Av o m)d)| gri1
= ((Av+Av)om)|gr19lprrr = dprra.

Thus x € null(¢ — (¢ — ¢v)). Hence [¢] = [¢py] — [¢v]. This concludes the
proof. O
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Proof of Theorem 1.11.1. By Lemma 1.11.3, we have a long exact sequence

L2 HEUN V) —=HEC(U) @ C (V) HE(X) —L B U NV) —

in homology. Let now 6: H.(C}(U) @ C*(V)) — HFU) @ HF(V) be the
natural isomorphism. Then the diagram

o 2ghunv)—EHNCHU) @ O (V) — HFNX) — L HH (U NV) —
ol
o 2HNUNY) — - BN @ HY(V) - BF(X) — L HM U AV ——
commutes. OJ

93



Chapter 2

Orientation of domains
Euclidean spaces

2.1 Goals

The goal of this chapter is to provide the existence of the so-called orien-
tataion classes. More formally, the goal of this section is to establish the
following theorem.

Theorem 2.1.1. Let U be a connected open set in R™. Then HI'(U) = Z
and the push-forward ey : HX(U) — HZ(R™) is an isomorphism.

Corollary 2.1.2. Let V. C U C R" be open sets. Then tyyv: HI (V) —
H(U) is an isomorphism.

Proof. Since tTgny = Trry © Ty, the claim follows. O

Having these results at our disposal, we may define an orientation class
of a domain.

Definition 2.1.3. Let U be a domain® either in R™ or in S”. A choice of
generator ¢y € H'(U) = Z is called an orientation (class) of U. Domains
V C U are consistently oriented if Tyy(cv) = cp.

As one step of the proof of Theorem 2.1.1, we show that all higher
cohomology groups H¥(U) for k > n of an open set U in R” vanish.

Theorem 2.1.4. Let U C R™ be an open set. Then H*(U) =0 for k > n.
Similarly, if V. C S™ is an open set, then HE(V) =0 for k > n.

As an important corollary of this vanishing result, we have a correspond-
ing result for closed sets. For its importance, we regard it also as a theorem.?

! An open and connected subset is called a domain.
2This result is NOT true for the singular cohomology, see Barratt and Milnor Proc.
Amer. Math. Soc. 13 (1963), 293-297.
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Theorem 2.1.5. Let n > 1 and A C S™ be a closed set which is not the
whole sphere. Then HF(A) =0 for k > n.

The corresponding (general) results hold also for nmanifolds and we
disucss them in a separate section in the end of this chapter.

Theorem 2.1.1 is proved in three steps. First we calculate cohomology
groups H}(R™) and H}(S™) of R™ and S", respectively. Then we show in
Theorem 2.1.4 that higher cohomology groups (k > n) of open sets in R"
and S™ are trivial and discuss its applications to closed sets in R™ and S™.
Then we are ready to prove Theorem 2.1.1.

2.2 Cohomology groups of Euclidean spaces

In this section, we calculate the cohomology (rings) of the Euclidean n-space
R™ and the n-sphere S"; recall that S” = {z € R""!: |z| = 1}. The results
(as expected) read as follows. We restrict ourselves to the case n > 1. For
n = 0, we have that R? is a point and S is a disjoint union of two points.
Thus the following results hold with the exception that HO(S?) = Z2.

Theorem 2.2.1. Letn > 1. Then

Z, fork=n
k ny o~ Y
He(RY) = { 0, otherwise.
Corollary 2.2.2. Letn > 1. Then
Z, fork=0,n
k n\ ~v Y )
H:(S") = { 0, otherwise.

The underlying fact behind the proof of Theorem 2.2.1 is the triviality
of the cohomology of an n-cell. Interestingly, this fact is a mere observation
and we state it as such.

Observation 2.2.3. Let mg € B", then the inclusion t: {x¢g} — B" is a
proper homotopy equivalence. In particular, /*: H(B™) — H}({zo}) is an
isomorphism and we have

i = b)) = { )

otherwise.
Finally, one more lemma before the proof of Theorem 2.2.1.

Lemma 2.2.4. Let n > 1 and xo € B". Then the push-forward homomor-
phism T: Hf(B”i\ {x0}) — HF(B™) is an isomorphism for each k > 0. In
particular, H¥(B™\ {x0}) =0 for all k > 0.
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Proof. Since D = B™\ {zo0} is not compact, HY(B™\ {z9}) = 0. By the
exact sequence of the pair (B™,{x¢}), we have

_ Or—1 _ * 9
= H{ ({wo}) —— HE (D) — HE(B") —— Hf ({wo}) =+
where 7 = 7np is a push-forward and ¢ = tn 1,1 an inclusion.
Since H:({xo}) = 0 for £ > 0, we have
0 — H¥(D)—" H¥(B") —0

for k > 1. Thus the claim holds for k& > 1.
To prove the claim for k = 1, it suffices to show that H!(D) = 0. We note
first that H2(D) = 0 and H}(B") = 0. Thus we have the exact sequence

0 —— HY(B") —> H({zo}) -2~ H:(D) —0

where ¢ is an isomorphism by Observation 2.2.3. Thus kerd = HY({xo})
and 0 = 0. Hence H}(D) = imd = 0.
The second claim now follows immediately. O

Having Lemma 2.2.4 at our disposal, we are ready for the proof of The-
orem 2.2.1. For the proof, we record a fact.

Fact 2.2.5. Forn > 1, there exists a homeomorphism m: S™\ {e,4+1} — R"
(called stereogrphic projection) for which w(S+) = R, where

o R} ={(x1,...,2p): R": z, = £|zy]|}, and

o St ={(1,--- Ynt+1) €S": yn = £|ynl}.
In particular, S™ is a one-point compactification of R™.

Proof of Theorem 2.2.1. Since R is a point, the claim holds for n = 0. Let
n > 1 and suppose that the claim holds for n — 1.

Let R} = {(x1,...,2,) € R": &, = £|z,|} be as in Fact 2.2.5. Then
R? NR™ = R"! x {0} ~ R Let also Dy = R} \ (R? NR™). Then
D+ ~ R". Moreover, Rt ~ B"\ {x¢}, where x¢ € dB".

Let A =R"! x {0} and t1: A < R% an inclusion. By the long exact
sequence of a pair (R}, A), we have the exact sequence

*

HE(RL) s HF(A) — 2% HF1(Dy) —T> HFI(RE)
By Lemma 2.2.4,

HE(RY) = HE(B"\ {xo}) =0
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for k € Z. Thus, for k € Z, we have
0—— HE(4) =2 HEF (D) —0
Thus 0y,: H¥(A) — HFT(D.) is an isomorphism for all k& € Z. Thus
HERY) = HE(A) = HE (Dy) = HEY ()
for all k € Z. O]

Proof of Corollary 2.2.2. We know that H2(S™) = Z by connectedness and
compactness. We also know that R™ ~ S§™\ {e,,+1}. Thus it suffices to show
that H*(S"\ {eni1}) = HE(S™) for k > 0.

We have the exact sequence

HE Y ({eni1}) —55 HES™\ {ensn}) T HE(S") —5 HE({eni1})

of the pair (S™, {en+1}), where ¢: {e,+1} < S™ is an inclusion.

For k > 1, 7 is clearly an isomorphism. For k = 1, /*: H)(S") —
H?({en41}) is an isomorphism by Lemma 1.4.12. Thus dy = 0. Since
H!({en11}) = 0, we have

0 —= H(S" \ {ent1}) — H;(S") —=0

and 7: HX(S"\ {ens1}) — H}(S") is an isomorphism. O

2.3 Vanishing above top dimension: open sets

We prove now the vanishing of higher cohomology in the case of open sets
of R”. The argument reduces to the case of cubical open sets. An open
set @ C R™ is a dyadic cube if there exists v € Z™ and k > 0 for which
Q = 2"%v 4 (0,27%)". Let D(R™) be the set of all dyadic cubes in R”.

Definition 2.3.1. An open set U C R" is cubical if there exists a finite
subset C C D(R™) so that elements in C are pair-wise disjoint (i.e. QNQ" = 0
for Q # Q') and U is the interior of the set UQeC Q. We call C an dyadic
partition of U.

Theorem 2.1.4. Let U C R" be an open set. Then H¥(U) = 0 for k > n.
Similarly, if V C S" is an open set, then H¥(V) = 0 for k > n.

Proof. The second claim follows immediately from the first and thus it suf-
fices to show that H¥(U) = 0 for an open set U C R” and k > n.

The proof is an induction by dimension. Suppose that n = 1. Since
components of (non-empty) open sets in R are open intervals, and open
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intervals are homeomorphic to R. By Theorem 2.2.1, the claim follows for
n=1.

Suppose now that, for n > 1, the claim holds for all open sets in R"~!.
We prove the claim first for cubical sets in R™.

Since a dyadic cube is homeomorphic to R”, we conclude that the claim
holds for each dyadic cube in R™. Suppose now, for £ > 1, the claim holds in
R"™ for all open cubical sets which have a partition into k dyadic cubes. Let U
be an open cubical set having a dyadic partition D with k4 1 elements. Let
now @ € D be a dyadic cube having the smallest diameter. Set D' = D\{Q}
and let U’ be the interior of the set (Jgcp Q. Let A=(QNU)\ Q. Then
A is closed in U and open in 0Q).

We have, by the exact sequence of the pair (U, A), that the sequence

(2.3.1) HFU\ A) = HFU) > HF(A)

is exact, where ¢: A < U is an inclusion and 7 is the push-forward.
Since U\ A = U'UQ and U' N @ = (), we have, by the induction
assumption and the fact ) ~ R", that

HYU\A) = HFU") ® HE(Q) =0

for k > n.

On the other hand, A C 9Q is open and 9Q ~ S*™ 1. If A = 9Q, we
conclude that H¥(A) = H¥(S" 1) =0 for k > n. If A # 0Q, then A is
homeomorphic to an open set in R”. Thus H¥(A) = 0 for k > n by the
induction assumption. Then, by (2.3.1), H¥(U) = 0 for k > n.

We complete now the induction step by considering an open set U C R™.
Let k > n and ¢ € H¥(U). Then there exists an open set V' C U so that V
is compact and ¢ € im 7. Let now C C D be a finite collection of pair-wise
disjoint dyadic cubes for which V is contained in W = int UQec Q. Then
c € im7yw = {0}. Thus H¥(U) = 0 for all k > n. This completes the
induction step and the proof. O

2.4 Vanishing above top dimension: closed sets

We use now Theorem 2.1.4 to prove the vanishing of the higher cohomology
of the closed sets. More precisely, we prove the following.

Theorem 2.1.5. Let n > 1 and A C S” be a proper? closed subset. Then
HE(A) =0 for k > n.

For the proof of Theorem 2.1.5, we record an observation.

3In the sense that A # S"
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Observation 2.4.1. Let A C R"™ be a compact set. Then the inclusion
map t: A — R™ is properly homotopic to a constant map. Further, let
A C S™ be a closed set which is not the whole sphere and xy € S\ A. Then
t: A= S"\ {xo} is properly homotopic to a constant map A — S™ \ {zo}.

Proof of Theorem 2.1.5. Let j: A < S™ be an inclusion. By the exact se-
quence of the pair (S", A), we have

HR(S™) — > HE(A) —% HF(SP\ A) > HEFL(S™),

where HF(S") = H¥(S") = 0 for k > n. Thus, for k > n, Op: HF(A) —
HEFL(S™\ A) is an isomorphism and H¥(A) = 0 by Theorem 2.1.4.

For k = n, we argue as follows. Let zg € S" \ A and ¢: S” \ {zo} — S"
an inclusion. Then

S"\ {zo}

where t: A — S" \ {zo} is an inclusion. Since ¢ is properly homotopic
to a constant map by Observation 2.4.1, the pull-back ¢*: H*(S" \ {z0}) —
H(A) is the zero map. Hence j* = (t*oi* = 0, and 0,,: H*(A) — H?T1(S™\
A) is an isomorphism. Thus H(A) = 0 by Theorem 2.1.4. O

Corollary 2.4.2. Let A C R" be a closed subset. Then H¥(A) = 0 for
k> n.

Proof. Let w: S™\ {en+1} — R™ be the stereographic projection and A" =
7 LA, If A’ is compact, then H¥(A) = H¥(A’) = 0 for k > n by Theorem
2.1.5. Suppose A’ is not compact. Then A’ = A’ U {e, 11} is compact and
HF(A") =0 for k > n. For n > 2, it follows now from the exact sequence

9 . —
HE ({ens1}) = HE(A') ——= HE(A) —> HE({en+1})
of the pair (A’, {e,11}) that 7: H?*(A’') — H*(A’) is an isomorphism.
For n = 1, we use again Lemma 1.4.12 to observe that .*: HY(A) —
H?({en41}) is an isomorphism. Thus 7: H(A) — H!(A’) is an isomor-
phism. Thus, for n > 1, the claim now follows from Theorem 2.1.5. ]

2.5 Push-forward in the top dimension

In this section we finish the proof of Theorem 2.1.1.

Theorem 2.1.1. Let U be a connected open set in R". Then H(U) = Z
and the push-forward mgny: H}(U) — H2(R™) is an isomorphism.
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The corresponding result for the n-sphere is an immediate corollary.

Corollary 2.5.1. Let U C S™ be an open set. Then tsny: HX(U) — HX(S™)
18 an isomorphism.

Proof. We may assume that U # S™. Let 9 € S\ U. By the long exact se-
quence for the pair (S™, {zo}), the push-forward 7: H?(S"\{zo}) = H(S")
is an isomorphism. Since S\ {xo} is homeomorphic to R", we conclude that
the push-forward 7(sn\ (zoyv: He(U) — HX(S"™ \ {zo}) is an isomorphism.
The claim now follows. O

An important corollary of Theorem 2.1.1 is that closed subsets of do-
mains in R™ do not carry higher cohomology. We record this corollary as
follows.

Corollary 2.5.2. Let U C S™ be a domain and A C U a proper closed
subset in U. Then HF(A) =0 for k > n.

Proof. We may assume that U is a proper subset of S™. Let £ > n and
consider the exact sequence

HNU\ A) ~— HEU) "> HEF(A) —2 HETY(U \ A).

For k > n, H¥(U) = 0 and H¥*'(U \ A) =0, since U and U \ E are proper
open subsets of S”. Thus H¥(A) = 0 by exactness.

Suppose now that k = n. Since U\ A # () and U is connected, the
push-forward 7: H'(U \ A) — H(U) is surjective. Thus ¢* is the zero map
by exactness. Since H»"1(U \ A) = 0, we conclude that H?(A) = 0. O

Heuristically, Theorem 2.1.1 stems from the observation that each Eu-
clidean ball contained in the domain U carries the nth compactly supported
cohomology of U. More precisely, we show the following lemma and propo-
sition.

Lemma 2.5.3. Let B be a Fuclidean ball in R™. Then the push-forward
Trep: HI'(B) — HI(R™) is an isomorphism.

Proposition 2.5.4. Let U be a domain in R™ and B C U a Euclidean ball
compactly contained in U. Then tyg: HY(B) — HMU) is surjective.

Having these results we easily finish the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Let B be a Euclidean ball compactly contained in
U. By Lemma 2.5.3, the push-forward ryp: H'(B) — H}(R") is an isomor-
phism. Since Tpnp = TReyTU B, the push-forward mgey: H}(U) — HI(R™)
is surjective. Since Top: HJ'(B) — H[(U) is surjective by Proposition 2.5.4
and Trnp has trivial kernel, we have that mgny: HX(U) — H(R™) is injec-
tive. Thus Tgny is an isomorphism and H*(U) is infinite cyclic. O
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It remains to prove Lemma 2.5.3 and Proposition 2.5.4. We begin with
a sharper version of Lemma 2.5.3.

Lemma 2.5.5. Let B be a Euclidean ball compactly contained in the Fu-
clidean unit ball B", that is, B C B™. Then the push-forward Tgng: H?(B) —
H!(B™) is an isomorphism. Furthermore, Tpnp: H}(B) — H(R™) is an
isomorphism.

Proof. Let A = B™\ B. We observe first that the inclusion +: S"71 — A
is a proper homomotopy equivalence. Indeed, let xy be the center of B and
p: A — S™! the radial projection from zg to S?~!. Then pot = idgn-1
and ¢ o p is properly homotopic to id 4.

Since ¢ is a proper homotopy equivalence, we have that *: H'(A) —
H?(S™1) is an isomorphism. Thus, by the naturality of the exact sequence
of pairs, the diagram

* L

22 0N (A)

| ) |

_ L*fn n— Tgn gn — L*’n n—
HY =N (B") 25 (5 S HE (B) 255 Hi (BY) 22 HE (57 )

[

commutes. Since H?(B") = H?(A) = H?(S" ') = 0 and «* is an isomor-
phism, 7.5 is an isomorphism by the 5-lemma.

The second statement follows by an analogous argument; consider A =
R™\ B and the set A’ = R" \ B" in place of S"~1. O

For the proof of Proposition 2.5.4 we show that all Euclidean ball com-
pactly contained in U carry the same cohomology. More precisely, we prove
the following.

Lemma 2.5.6. Let U be a domain in R™. Each push-forward typ: H}(B) —
H!(U), where B is a Euclidean ball compactly contained in U, has the same
1mage.

Proof. Let B and B’ be dyadic cubes compactly contained in U for which
BN B’ # (). Then there exists a Euclidean ball By, compactly contained in
BN B'. Then, by Lemma 2.5.5, we have that

imTUB = imTUBO = imTUB/.
Since U is connected, the claim follows. O

Lemma 2.5.7. Let B ={By,..., B} be finite collection of Fuclidean balls
in R™ having connected union V. = |JB, and let B be a Euclidean ball
compactly contained in V. Then typ: H'(B) — H}(V) is surjective.
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Proof. By Lemma 2.5.5 the claim holds for £ = 1. Suppose now that the
claim holds for all collections of k balls. Let B be a collection of k£ + 1
balls having connected union V. Let also B be a Euclidean ball compactly
contained in V. Let Bj,...,Bgs1 be such a labeling of balls in B that
collection B' = {Bi,..., By} has connected union V' = (JB'. Let also
B’ be a ball compactly contained in V' N Biy1. Then, by the induction
assumption, Ty g HY(B') — H(V') is surjective. Note that, the push-
forward 7, pr: H!(Bgy1) is surjective by Lemma 2.5.5.

We show now that 7y : HXN(V') — H}(V) and 1vp, ,: H(Bgy1) —
H!(V) are surjective. Let ¢ € H}(V).

Since H?*1 (V' N By41) = 0, we have, by the Mayer-Vietoris sequence,
that the homomorphism ¢: H}(V'Y®H(Bgt1) — HX(V), (a,b) — Tyyra—
TV B4, b, is surjective. Thus there exists a € H(V') and b € H}'(Bjy1) for
which 7yya — 1y, b=c.

Since Ty pr and 7, p are surjective, there exists o’ and ' in H(B')
for which 7y pra’ = a and 7p, , g’ = b. Thus

TVV/(CL - TV’B’b,) =Tvy'a — TVB’b/ =Tyvy'a — TVBk+1b =cC
and

! !
TVBkH(TBkHB/a —b) =1ypad —1vp, b="Tyvia—T1yB,,  b=cC

Thus 7y, and 7y, ,, are surjective.

We consider now two cases. Suppose first that B C Bgyq. Then the
claim follows from the surjectivity of 7yp, , and Lemma 2.5.5. Suppose
now that BNV’ # (). Then there exists a Euclidean ball B” compactly
contained in V' N B. By induction assumption, 7y/p~ is surjective. Thus
Typr = Tyy © Tyrpr is surjective. Since Ty pr = Typ o Tgpr, we conclude
that 7y p is surjective. This completess the proof. O

Proof of Proposition 2.5.4. Let ¢ € H(U) be a cohomology class. Then
there exists a finite collection B of Euclidean balls compactly contained in
U for which ¢ is in the image of 77y, where V' = | B. Let B’ be a Euclidean
ball compactly contained in V. By Lemma 2.5.7, ¢ is in the image of 1y p-.
Thus, by Lemma 2.5.6, c is in the image of 1y p. O

2.6 Excursion: Cohomological dimension and sep-
aration in Euclidean spaces

As an application of Theorem 2.1.1, we consider cohomological dimension
of closed sets in Euclidean spaces. The defintion of the cohomological di-
mension reads as follows.
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Definition 2.6.1. The cohomological dimension dimy X of space X is at
most n if H¥(U) = 0 for all k > n and each open set U C X. The space X
has cohomological dimension 7 if it has cohomological dimension at most n
and it does not have cohomological dimension at most (n — 1).

Clearly, the Euclidean space R™ and all its open subsets have cohomo-
logical dimension n. Similarly, closed sets having non-empty interior have
cohomological dimension n. Closed sets with empty interior, on the other
hand, have cohomological dimension at most n — 1. We record this as a
lemma.

Lemma 2.6.2. Let A C R" be a closed set having empty interior and U C A
open in A. Then HE(U) = 0 for allk > n—1. In particular, dimz A < n—1.

Proof. We may assume that U is connected. Let V' C R™ be a connected
open set in R™ for which VN A =U. Since VN Aisclosedin V and VNA
is a proper subset of V, we have, by Corollary 2.5.2, that H*(V N A) = 0
for kK > n — 1. The claim follows. O

Closed codimension 1 subsets in R™ have an interesting elementary char-
acterization. They are exactly the sets that locally separate R™. More for-
mally, we have the following definition and theorem.

Definition 2.6.3. A subset F C X separates X locally around x € X if for
each neighborhood U of x there exists a connected neighborhood V' C U of
x for which V' \ E is not connected. A subset E separates X locally if E
separates X locally at some point z € X.

Theorem 2.6.4. Let A C R™ be a closed subset having empty interior.
Then dimz A = n — 1 if and only if A separates R™ locally.

Proof. Note that, since A has empty interior, dimy A < n — 1. Thus we
consider two cases: first that dimy A = n — 1 and then dimy A <n —1

Suppose first that dimy A < n — 1. Let V be a domain in R™. Then
U=VnNAisopenin Aand H? }(U) = 0 by the dimension assumption.
By the exactness of the sequence

(2.6.1) Hy Y (U) 2> HY(V\ A) T H}(V) —“> HZ(U),

the push-forward 7: H(V \ A) — H(V) is an isomorphism. Hence V' \ A
is connected. Hence A does not locally separate R™.

Suppose now that dimy A = n — 1. Then there exists a domain U in A
for which H? Y(U) # 0. Let V be a domain in R" for which VN A = U.
Then (again) by the exactness of (2.6.1), we have that H(V'\ A) 2 Z. Thus
V'\ A is not connected. Let V' be a component of V \ A and V" =V \ V',
Since OV'NV C A and A has empty interior, we conclude that V" # (). Let
reVNV’NV. Then x € A.
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We show that A separates R™ locally at z. Suppose towards contradiction
that A does not locally separate R™ at . Let B, a Euclidean ball centered
at x and contained in V. By assumption, B, \ A is connected. Since (B \
A)NV' =B, NV' # (), we have that B, \ A C V’ by connectedness. This is
a contradiction, since (B, \ A)NV" = B, NV" # (. Thus A separates R"
locally at x. O
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Chapter 3

Degree

We recall from Chapter 2 that, given a domain U C R™, the choice of a
generator of H'(U;Z) is called an orientation (class) of U. In this section,
we assume that we have fixed an orientation class cgn € H'(R™) and, for
each domain U C R™, an orientation ¢y € H}(U) satisfying cgn = mrnpycy.

Remark 3.0.5. From the point of view of definitions, it suffices to fix an
orientation class for each domain in R™. However, in proofs, we use re-
peateadly use the fact that, for a subdomain V' of a domain U, we have the
relation Tyycy = cpy.

3.1 Global degree

Since a proper mapping U — V induces a pull-back homomorphism H (V') —
H!(U) and groups H(U) and H (V) are infinite cyclic, we may give the
following definition.

Definition 3.1.1. The degree deg f of a proper mapping f: U — V between
domains in R™ is the (unique) integer A € Z satisfying

ffev = Ay

We say that a proper mapping f: U — V is orientation preserving if
deg f > 1, and orientation reversing if deg f < —1. Note that, a proper map-
ping f is neither orientation preserving nor orientation reversing if deg f = 0.
Note also that, since a homeomorphism has an inverse, it has either degree
1or —1.

Since the composition of proper mappings is proper, we have the follow-
ing product rule for the degree.

Lemma 3.1.2. Let f: U =V and g: V — W be proper mappings between
domains in R™. Then deg(g o f) = deg(g) deg(f).
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Proof. Since

deg(go flev = (gof)ew = frg"ew = f* ((degg)ey)
= (degg)f*cy = (degg)(deg f)cy,

the claim follows. O

A similarly easy observation is that, since properly homotopic maps in-
duce the same pull-back in cohomology, they have the same degree. We
record this as an observation.

Observation 3.1.3. Let f: U — V and g: U — V be properly homotopic
mappings. Then deg f = degg.

3.2 Local degree

The definition of the local degree is based on the notion of an admissible
domain.

Definition 3.2.1. Let f: X — Y be a map and Q2 C X a pre-compact
domain. A domain W C Y is (f,Q)-admissible if W C Y\ f(092). A point
y €Y is (f,Q)-admissible if y & f(09).

Remark 3.2.2. Although it is not emphasized in the definition, given a pre-
compact domain Q, we are mostly interested in an (f,Q)-admissible domain
contained in fQ. Hence it is typical to assume, in the context of the local
degree, that the mapping f is, in addition, an open map. Formally, of course
this is not necessary.

The fundamental role of the admissible domains is highlighted by the
following lemma, which states that restrictions to admissible domains are
proper mappings.

Lemma 3.2.3. Let f: X — Y be a map, Q C X a pre-compact do-
main, and let W CY be an (f,Q)-admissible domain. Then the restriction
fl-1wna: W nQ = W is a proper mapping.

Proof. Let E C W be a compact set. Since () is pre-compact, it suffices
to show that f~1E N Q is closed in X. Since W is (f,)-admissible, we
have that f~'W N 9Q = 0, and, in particular, f'E N 9Q = 0. Thus
FTIENQ = f"'ENQis closed. The claim follows. O

To simplify notation, given a pre-compact domain @ C X and an (f, 2)-
admissible domain W C Y, we denote D(2, f,W) C X the pre-image
W N Q. Note that, D(Q2, f,W) may be empty. In that case, the re-
striction of f to D(Q, f, W) is the so-called empty map.

Having Lemma 3.2.3 at our disposal, we are ready to give the definition
of the local degree of a mapping with respect to an admissible domain.
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Definition 3.2.4. The local degree deg(Q), f,W) of a map f: U — V be-
tween Fuclidean domains with respect to a pre-compact domain 2 C U and

an (f,Q)-admissible domain W C V is the integer A\ € Z satisfying

(3.2.1) (Tap@, ) © (flp@,rw)*) ew = Acq.

Remark 3.2.5. This cumbersome definition is more reasonable after ob-
serving that the open set D(Q), f, W) need not be connected, and hence the
group H}(D(Q, f,W)) is a priori only a direct sum of infinite cyclic groups.
Consider for examplke the mapping z + 2> for Q = B2(0,1) and W =
B?(1/2,1/4). Heuristically, the role of the push-forward Tap,f,w) i (3.2.1)
is to sum up the degrees of mappings f|p: D — V for different components
D of D(Q, f,IV).

We proceed now to define the local degree at an admissible point. For
this reason we show that the local degree deg(f2, f, W) depends only on the
component Y \ f(99) containing W. We formulate this result as follows.

Proposition 3.2.6. Let f: U — V be a map, Q@ C U a pre-compact domain
in U, and let W1 C Wa C fQ\ f(0R) be (f,2)-admissible domains. Then

deg(Qa fa Wl) = deg(Qv f? WQ)

Proof. Let W = W1 N Wa. Then W is an (f,Q) admissible domain, and it
suffices to show that deg(2, f, W;) = deg(Q, f,W) for i = 1,2. Let D =
W nNnQand D; = f7'W;NQ for i = 1,2. Then f|p = (fp,)|p and, by
Lemma 1.5.16,

u,u(fIp) ew = (fIp,) Tw.w (ew) = (f|p,) ew;.
for i = 1,2. Hence
deg(Q7 f7 W)CQ == TQD(f‘D)*CW

= 1ap, (Tp,p(fID;) ew;)
= TQDi(f’Di)*cDi = deg(Qv fa Wi)CQ

for ¢ = 1,2. The claim follows. O

Having Proposition 3.2.6 at our disposal, we may define the local degree
at an admissible point.

Definition 3.2.7. Let f: U — V be a map between domains in R" and
Q C U a pre-compact domain. Given an (f,2)-admissible point y € Y,
the local degree deg(Q2, f,y) € Z of f at y with respect to € is the integer
satisfying

deg(Q7 e y) = deg(Qv I W)7

for any (f,2)-admissible domain W C Y containing y.
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Remark 3.2.8. If an (f,2)-admissible point y € V is not in the image of
Q, then D(Q, f,W) = QN f~1W = 0 for the component W of V' \ f(09).
Thus H}(D(Q, f,W)) =0 and deg(Q?, f,y) = 0.

We finish this section with a trivial (but important) observation that the
local degree is locally constant at admissible points.

Lemma 3.2.9. Let f: U — V be a map,  C U a pre-compact domain.
Then the function deg(, f,-): V' \ f(09) — Z,

y — deg(€2, f,y),

1s locally constant.

Proof. Let W be a component of V'\ f(9€) and y;,y2 € W. Then

deg(Qa fa yl) = deg(Qv f7 W) = deg(Qa f7 y2)

by definition. The claim follows. O

3.3 Local index of discrete and open maps

In this section we add more assuptions to our mapping in order to define
the local index at a point. The main difference to the previous discussion
is that the local index is defined in the domain of the mapping instead of
target and that there is no need to consider admissibility of the point— the
index can be defined at each point of the domain. To define the local index,
we consider first the notion of normal domains and neighborhoods.

For the basis of the discussion, we recall a simple lemma.

Lemma 3.3.1. Let f: U — V be an open mapping between FEuclidean do-
mains and let Q@ C U be a pre-compact domain. Then 0fQ C f(09).

Proof. Since  is pre-compact, f(2) is compact and hence closed. Thus

of(Q) C f(Q) C f(Q) = f(Q) U £(09).

It suffices to show that 9f(2) N fQ = 0. Suppose y € 9f(Q) N fQ. Then
there exists x € Q for which f(z) = y. Since f is an open map and  is
open, we conclude that y = f(z) is an interior point of f. This contradicts
the assumption y € 9f(€2). The claim follows. O

It not however, true in general that 0fQ = f(09Q); take for example the
mapping z — 23 in the complex plane C and consider the upper half disk
Q= {x+iy: 22 +y?> <1, y > 0}. The domains which satisfy the condition
0fQ = fOQ are called normal domains.
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Definition 3.3.2. Let f: X — Y be an open mapping. A pre-compact
domain Q is a normal domain (for the mapping) f if f(OQ) = 9f<.

Normal domains exist in abundance.

Lemma 3.3.3. Let f: U — V be an open mapping between Euclidean do-
mains, Q a pre-compact domain, and let W be a component of fQ\ f(09).
Then each component D of f~'W NQ is a normal domain.

Proof. Since () is pre-compact, we have that D is pre-compact and dfD C
f(0D). Thus it remains to verify that f(0D) C 0fD.

Let x € D. Then f(x) € fD. Suppose f(x) € fD. Then, by continuity,
there exists a connected neighborhood G of = contained in f~'fD = f~1W.
Since D is a component of f~'W, we conclude that z is an interior point of
D. This is contradiction. Thus f(z) &€ fD and f(z) € 9fD. O

The restriction of an open mapping to a normal domain is a proper and
closed map.

Lemma 3.3.4. Let f: U — V be an open map and W a normal domain in
U. Then flw: W — fW is a proper and closed map.

Proof. We verify first that f|y is proper. Let E C fW be a compact
set. Since E is compact and fW is open, we have that 9fW N E = .
Since W is a normal domain, f~'E N OW = (). Since f~'E is closed in
Uand flENW = fFlEN(WUOW) = f~'ENW, we conclude that
(flw) 'E = fT'ENW is closed in W. Since W is pre-compact, (f|w) *E
is compact.

Suppose now that A C W is a closed set in W. Since W is pre-compact,
A is compact and fA is closed. Thus fA = fA by continuity and the
definition of the closure. Since A\ A C OW and f(ANOW) C ofW, we
have that

FANfW = FANfW = (FAN fW) U (F(A\ A) N fW) = fA.
Thus fA is closed in fWW. The claim follows. O

We obtain local surjectivity of the restrictions of open maps to normal
domains as a corollary. We record this observation as follows.

Corollary 3.3.5. Let f: U — V be an open mapping between Fuclidean
domains, Q@ C U a pre-compact domain, and D C fU \ f(0Q) a domain.
Then, for each component W of f~*D N Q, the restriction fly: W — D is
surjective.

Proof. By Lemma 3.3.3, W is a normal domain and by Lemma 3.3.4 the
restriction f|y is a closed map. Thus fW is open and closed in D. Since
D is connected, we conclude that D = fWW. O
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To define the local index of a discrete and open mapping, we change now
our point of view and discuss normal neighborhoods of points.

Definition 3.3.6. Let f: X — Y be a discrete and open map and let x € X.
A pre-compact domain Q C X is a normal neighborhood of :Ei(with respect
to mapping f if  is a normal domain for f and f~1(f(x)) NQ = {z}.

Remark 3.3.7. The relation of normal neighborhoods and admissible points
is obvious. For a normal neigbhborhood Q2 of x we have f(x) ¢ f(02). Thus
f(x) is an (f,Q)-admissible point.

Since the existence of a normal neighborhood implies discreteness of the
pre-image fiber at that point, it is natural to consider the existence of normal
neighborhoods for points under the assumptions that the mapping is both
discrete and open. Similarly as normal domains for open mappings also the
normal neighborhoods exist in abundance for discrete and open maps.

Lemma 3.3.8. Let f: U — V be a discrete and open map, v € X, and
a pre-compact neighborhood of x in U. Then there exists a normal neigh-
borhood W C Q of x. Moreover, if D C fW is a neighborhood of f(x) then
f'DNW is a normal neighborhood of .

Proof. Since f is discrete, there exists a neighborhood D of x, compactly
contained in €, for which f~!(f(z)) N D = {x}. Since f(x) € f(0D), there
exists a component V of fD \ f(9D) containing f(x). Let now W be the
component of f~'V containing . Then W is a normal domain by Lemma
3.3.3 and satisfies f~1f(z) N W = {z}.

For the second statement, let D C fW be a connected neighborhood of
f(z). Since W is a normal domain, D N f(92) = (). Hence, by Corollary
3.3.5, the restriction f|r-1pnpy : f'DNW — D maps the components of
f71D map surjectively on D. Since f~1f(z) N W = {x}, we conclude that
f~'D is connected. Hence f~'D N W is a normal neighborhood of x. O

The local index of a discrete and open map at a point is the local degree
of the restriction of the map to a normal neighborhood. The following lemma
shows that the local index defined this way is well-defined.

Lemma 3.3.9. Let f: U — V be a discrete and open map between Fuclidean
domains and x € U. Suppose 21 C Qo are normal neighborhoods of x. Then

deg(Ql)fa f(x)) = deg(QZa f: f(LU))

Proof. We observe first that, by Lemma 3.3.8, f~1fQ; N Qy is a domain.
Since 1 C f~1fQ; and € is a normal domain, we conclude that f~!fQ; N
Qo = Q1. Let now W = fQ;.

70



Since the restrictions f; = f|;-1wna,: W nQ; — W fori=1,2 are
the same map and, in particular, fycw = 70, o ffcw, where 2 = F~wnQ,,
we have

deg(Q2, f, f(z))ca, = deg(Q2, f,W)eq, = Ta,a(f2) ew
= 10,0, (To,(f1) ew) = To,0, (deg(1, f, W)eq,)
= deg(Qbfv W)CQ2 = deg(Qbf?f(x))CQQ'
The proof is complete. ]

Definition 3.3.10. Let f: U — V be a discrete and open map between
domains in R™. The local index i(z, f) of f at x € U is the integer satisfying

i(x, f) = deg(Q, f, f (),
where €2 is a normal neighborhood of x.

The local index of the map is merely the degree of a restriction of the
map to a normal neighborhood.

Lemma 3.3.11. Let f: U — V be a discrete and open map between Fu-
clidean domains, x € U, and 0 a normal neighborhood of x in U. Then

i(z, f) =deg(fla: Q@ — fQ).

Proof. Since 2 is a normal neighborhood, fQ is (trivially) an ( f, 2)-admissible
domain and D(, f, fQ) = Q. Hence deg(Q, f, fQ) = deg(fla: Q2 — fQ).
Thus

The claim follows. ]

As an immediate consequence we obtain a useful product formula for the
local index.

Corollary 3.3.12. Let f: U — V and g: V — W be discrete and open
mappings between Euclidean domains. Then, for each x € U,

i(z,go f) =i(f(x), 9)i(z, f).

Proof. Let £ be normal neighborhood of x with respect to the mapping go f
and let ' = f(Q). Then Q is a normal neighborhood of x with respect to
the mapping f and Q' = £ is a normal neighborhood of f(x) with respect
to g. Thus

i(z,gof) = deg((ge f)la: Q= (g0 f)Q)

deg(glra: fQ— (go f)Q)deg(flo: Q@ — fQ)
= i(f(z),9)i(x, f).
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We also note, as an observation, that the local index of a local homeo-
morphism is locally constant.

Lemma 3.3.13. Let f: U — V be a local homeomorphism between domains
in R™. Then the function x — i(x, f) is either the constant function 1 or
—1.

Proof. Let x € U. Since f is a local homeomorphism, there exists a normal
neighborhood W of x so that f|y: W — fW is a homeomorphism. Since,
for each 2’ € W i(a/, f) = deg(W, f, fW) = i(x, f), the function x — i(z, f)
is locally constant. Moreover, since f is a local homeomorphism, i(z, f) =
deg(W, f, fW) = £1 at each x € U. O

We finish this section, and the discussion on the degree theory, with the
summation formula for the local index.

Theorem 3.3.14. Let f: U — V be a discrete and open map, 0 C U a
pre-compact domain, and y € V' \ f(02). Then

> i(w, f) = deg(, f,y).

zef~1(y)NQ

Remark 3.3.15. We would like to note that this summation formula gives
a simple method to calculate a local (but also global) degree of a discrete
and open map. The reader may want to consider maps z — 2, re™ —
re'™t and their products as examples. Or piece-wise linear maps between

manifolds.

Proof of Theorem 3.3.14. Since f is discrete and € is compact, the set
f~(y) is finite. Let {z1,...,21} = f~'(y). For each j € {1,...,k}, we
fix a normal neighborhood €2; C € of z; having the property that the sets
Q; are pair-wise disjoint. Let W C V be a neighborhood of y which is
(f,€j)-admissible for each j = 1,...,k, ie. W C V' \ U?Zl f(0%;). Let
also W; = AW NQ; and f; = f|WJ’ Wi — W for each j.Finally, let
W' = f~'W n Q. By Corollary 3.3.5, each component of f~'W N maps
surjectively on W. Thus W’ = Ule Wi
Having these notations at our disposal, we have

k k
D ilw, f) = deg(y, fry) =Y deg(Q, f, W)

zef~1(y) J=1 j=1

by the definition of local degree at a point.
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By the definition of local degree, we have

k k
> deg(Qy, £, W)ca = Y 7aq, (deg(Qy, f,W)cq,)

j=1 j=1

k
= > g, (TQjW]fffCW>

j=1

k k
* *
= Taw: fjew = Taw > Tww! fjew
Jj=1 J=1

Since W' is a disjoint union of domains W7,..., W/, we have, by The-
orem 1.7.3, that the homomorphism J: @?:1 HR(W)) — HX (W), (¢j) =
E;?:l TWwiCs, is an isomorphism and the homomorphism I: H*(W') —
@?:1 H (W), ¢ = (tyy0), 18 its inverse. Since f]W/OLW]/_W, = f|WJ4: Wi —

J
W, we have L*W]{W, o(flw)* = [} for each j =1,... k. Thus

k
ZTW’W;f;CW = J(fiew,..., frew)
i=1

= J(L’{/V{W,(ﬂwf)*cw, ey L;Véwl(f‘W/)*Cw)
= (JoD)((flw)ew) = (flw') ew.
We conclude that

k

> " deg(, f,y)ca = aw (flw) ew = deg(Q, £, W)cq = deg(€, f,y)cq.
j=1

The proof is complete. O
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Chapter 4

Vaisala’s theorem

4.1 Statement

We prove the following version of Viiséla’s theorem. This version is equiv-
alent to the version in the introduction if we take as granted that discrete
and open sets preserve the cohomological dimension. See Borel [Bor60)]
and Engelking [Eng78] for discussion on various definitions of dimension
and e.g. Church—-Hemmingsen [CH60] for discussion on the mappings and
dimension.

We recall two definitions before the statement of Vaiséla’s theorem.

Definition 4.1.1. A discrete and open map f: X — Y is a branched cover.
The branch set By of a branced cover is the set

B; ={x € X: f is not a local homeomorphism at z}.

Definition 4.1.2. A subset A C X separates X locally at x € X if there
exists a neighborhood U of = so that, for each neighborhood V' C U of =,
the set V' \ A is not connected.

Theorem 4.1.3. Let f: U — V be a discrete and open map between open
sets in R™. Then the branch set By has no interior and does not locally
separate U at any point.

The proof is in two steps. In the first step we show that int By = ). This
is the easier part of the proof. In the second step we show that By does
not locally separate U. This is harder and we use all the theory we have
developed. In the course of the proof of Theorem 4.1.3, we show that fB;
has no interior (Theorem 4.2.5), and hence also f~'fBy has no interior,
since f is open. We are not aware of purely elementary proof for the fact
that fBy does not locally separate V', and we do not discuss this here.

Before discussing the proof, we record an important corollary of Vaisala’s
theorem.
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Theorem 4.1.4. Let f: U — V be a discrete and open map between open
sets in R"™. Let x € U be a point and U, a normal neighborhood of x in U.
Then, for each z € Uy, the local indices i(z, f) and i(z, f) have the same
stgn and

[i(z, f)] = max # [ f(2") > |i(z, f)].

z' €Uy,

Proof. Let z € U, and let U, be a normal neighborhood of z contained in
U, Let 2/ € U, \ f_lfo be a point; note that f_lfo has empty interior.
Then, by Lemma 3.2.9 and the summation theorem (Theorem 3.3.14),

i(z, f) = deg(Us, f, f(x)) = deg(Us, f, f(2")) = S i ).
zef~1(z")NUy

and

iz, f) = deg(Us, f. f(2)) = deg(Us. f, f(&)) = > i(a, f).

e f-H(a")NU,

Since U, \ By is connected by Viiséld’s theorem, the function 2’ — (2, f)
is constant in Uy \ By by Lemma 3.3.13. Thus i(x, f) and i(z, f) have the
same sign. Moreover, |i(z, f)| > |i(z, f)|-

Since f is a local homeomorphism at each point f~!f(z') N Uy, the
remaining claim |i(z, f)| = maxy ey, #f 1 f(2') follows now from the obser-
vation that |i(z”, f)| = 1 for each 2" € f~1f(2') N U,. O

Regarding local separation, we have the following general lemma.

4.2 The branch set has no interior

We begin the proof of Viisald’s theorem by showing that the branch set has
no interior. We formulate this result as a theorem in the case of n-manifolds.

Theorem 4.2.1. Let f: M — N be a discrete and open map between n-
manifolds. Then intBy = ().

For the proof we recall two general observations.

Observation 4.2.2. The branch set of discrete and open map is a closed
set.

Remark 4.2.3. Note that, the image of the branch set need not be closed.
This is however the case if the mapping is, in addition, proper.

Observation 4.2.4. Let f: U — V be a discrete and open map between
open sets in R™, and let D C M be an open set. Then flp: D — V is
discrete and open, and By, = By N D.
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Proof of Theorem 4.2.1. Suppose intBf # (). Then there exists a pre-compact
open set U C By. Hence g = fly: U — fU is a discrete and open map so
that #¢~'(y) < oo for each y € fU. For each k > 0, let M = {z €
U: #9 'g(z) < k}. Then (J;~o My = U and, by the Baire category theo-
rem!, there exists smallest ky € N for which int My, # 0.

Let V = intMy,, 1 € V, and consider the restriction gly: V — ¢gV. To
complete the proof it suffices to show that g|y is a local homeomorphism
at x1. Indeed, since gy = f|y, V is open in U, we have that f is a local
homeomorphism at x1. This is a contradiction, since x1 € By.

Let {x1,22,..., 71, } = g 'g(w1). For each j = 1,..., ko, we fix a neigh-
borhood Uj of z; satisfying U; N U; = (0 for each j # i. Then ﬂj fU;
is a neighborhood of g(z1) and W = U; N g_l(ﬂj fUj) is a neighborhood
of ;. We show that the restriction gl is injective. Let z € W. Then
#g tg(x) NU; > 1 for each j = 1,...,ko and #g *(g9(z)) = ko. Thus
g lg(x) N Uy = {z}. Since gl is injective and open, we conclude that
glw: W — gW is a homeomorphism. The proof is complete. O

Using the fact that By has empty interior, we obtain also that fBj has
empty interior. It is interesting that this result is not a trivial consequence
of Theorem 4.2.1.2

Theorem 4.2.5. Let f: M — N be a discrete and open map between n-
manifolds. Then intfBy = ().

Proof. Let @ C M a pre-compact normal domain in M and g = flg: Q@ —
€. We show first that intgB, = 0.

Let y € gB, and let G be a neighborhood of y. It suffices to show that
G\ fBy #0.

Since 2 is pre-compact, g~ !(y) = {x1,..., 2, }. Let V C G be a domain
for which the components W7, ..., W,, of g~V are normal neighborhoods
of points x1,...,Zm,, respectively. Then the sets W1, ..., W,, are pair-wise
disjoint and gW; = V for each i = 1,...,m. Let W] = W; \ B, for each
1=1,...,m.

Clearly W/ is open and dense in W;. Further, since g is open, gW/ is
open. We show that gW/ is also dense in V for each i = 1,...,m.

Let ¢/ € V and D be a neighborhood of 3’ in V. Let i € {1,...,m}.
Since g~'DNW; is open and intB, = ), there exists, ; € g~ DNW/. Thus
g(z}) € D. Hence gW/ N D # (. Thus gW/ is dense in V.

Since each gW/ is open and dense in gW;, we have, by Baire’s theorem,
that -, gW/ is dense in V. In particular, there exists z € (), gW/ N D.

!By the Baire category theorem a locally compact Hausdorff space is not a countable
union of nowhere dense closed sets.

2The argument given here, which nicely avoids the use of dimension theory, is due to
Rami Luisto.
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Since ¢g7'D = |, (¢ D N'W;), we have
m m
g ) c | Jwi=Jwi\ By c 2\ B,
i=1 i=1
Thus z € D \ gBy. Since D C G, we conclude that intgB, = 0.

We show now the general case. Since M is o-compact, there exists a
countable collection {€;}i>o of pre-compact normal domains of f in M for
which By C J; €. Let ¢; = fla,: Qi — fQ;. Then fBy =, 9:By,. Since
each g; By, is closed in fQ; and intg; By, = (), we have, by Baire’s theorem,
that int fBy = 0. O

4.3 The branch set does not separate locally

The proof of the remaining part of Theorem 4.1.3 is based on the idea that
we may divide By into two parts: to points in which By locally separtes
(bad part) and to points at which By does not locally separate (good part).
Of course, the idea is to show that the bad part is empty. Having this idea
in mind, we state first a general lemma regarding local separation.

Lemma 4.3.1. Let X be a locally connected space, and A C X a closed
subset for which intA =0 and X \ A is not connected. Let

Fp={x € X: A separates X locally at x}.

Then X \ F4 is not connected and Fy C A.

Proof. Since A is closed and X locally connected, F4 C A. Thus it suffices
to prove that X \ F4 is not connected.

Since X'\ A is not connected, there exist non-empty and pair-wise disjoint
open sets Uy and Us in X for which X \ A = Uy UUs. Let V; = (intU;) \ Fa
for i = 1,2. Since U; C intU; and F4 NU; = (), we have U; C V; for i = 1, 2.

We show now that X \ Fy = V3 U V4. Since intA = (),

X=U;UuUyUA=TU;UU,.

Let x € F4. Then there exists a connected neighborhood V' of x contained
in X'\ F4 for which V'\ A is connected. Thus either V\ A C U or V\ A C Us.
Hence either x € intU; or =z € intU,. Thus X \ Fa C V4 UV, and hence
X\Fa=V1UVs,.

To prove that Vi and Vs are pair-wise disjoint, we show first that dU; N
0Uy C Fy fori=1,2. Let x € 0U; NAUs, U a neighborhood of x in X, and
let V' C U be a connected neighborhood of . Then V NU; # 0 for i = 1,2.
Hence V\ A= (VNU;)U(VNUs) is not connected. Thus = € Fj4.

Since

VinVa = (intUy NintUs) \ Fa C (0U; NOU3) \ Fa.
we have that V3 N V2 = (. We conclude that X \ F4 is not connected. O
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We record also a simple non-separation lemma for further use.

Lemma 4.3.2. Let X be a locally connected space, A C X a closed subset
having empty interior and which does not locally separate X at any point.
Then, for each domain U in X, the set U \ A is connected.

Proof. Suppose U \ A is not connected. Let W be a component of U \ A
and W' = U \ W. Note that WNW’' C A and W N W' # .

Let © € (OW) N A. Since x does not locally separate X, there exists a
neighborhood U, of x for which U, \ A is connected. Since intA = (), we
have that U, NW = 0 and U, "W’ # (). Since W is a component and U, \ A
is connected, we have (U, \ A) C W. This is a contradiction. Thus U \ A is
connected. O

We begin now the proof with an important observation, which ties maps
of local degree 1 to homeomorphisms.3

Lemma 4.3.3. Let f: U — V be a discrete and open map between domains
in R"™ Suppose that By does not locally separate U at any point, let 1 be
normal domain in U for which |u(Q, f,y)| = 1 for each y € fQ. Then
fla: Q@ — fQ is a homeomorphism.

Proof. Since flq is a closed and surjective, it suffices to show that f|q is
injective.

Since By does not locally separate U at any point, we have, by Lemma
4.3.2, that Q\ By is connected Thus, since f|o\ g ; is alocal homeomorphism,
the function Q\ By — Z, x +— i(x, f), is either the constant function z +— 1
or the function z — —1. Thus, for y € fQ\ (fla)By,,

L= fy)l=| > ila, /)| =#(f)nQ)

zef~1(y)

Thus f]Q\Bf is injective.

We show now that ¢ is injective. Let x; and xy be points in € for
which g(z1) = g(x2), and let G; and G5 be neighborhoods of x; and z9,
respectively. By Theorem 4.2.5, (f|q)Bj|, has empty interior. Thus (gG1 N
gG2) \ gBy # (. By injectivity of f|Q\Bf, we have that G; NGy # (). Thus
x1 = x9 and f|qo is injective. O

The key observation in the study of the bad part of By is to show that
there is no folding in a generalized sense. The following argument is the key
of the proof of Theorem 4.1.3.

3The statement can be read to say that if By does not separate, there is no folding.
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Theorem 4.3.4 (Viisdld’s no-reflection lemma). Let U be a domain in
R™ and let Uy and Uy be pair-wise disjoint open subsets in U for which
OuUy = 0yUsy and clyUy U clyUs # U. Then there is no homeomorphism
frclyUs — clyUs for which fla,u, = id.

Proof. We begin with an observation. Let ¢;: U; — Uy UUs and z;: clyU; —
clyUy U clyUs be inclusions. Note that 0y (U U Us) = dyUy = 9y Us.

Let 0: HM 1(0y(Uy U Uy)) — HPU; U Us) and 0;: HY Y(0yU;) —
H!(U;), for i = 1,2, be the connecting homomorphisms in the exact se-

quences of pairs (cly(U; U Us), 0y (Uy U Us)) and (clyUs;, Oy U;) for i = 1,2,
respectively. By Theorem 1.9.4, the diagram

H Y0y (U, U L)) L HMU, UT,)

.

H Y9y Us) — 2 Hr=Y(U3)

commutes, that is, 9; = ¢} 0 0.

Suppose there exists a homeomorphism f: clyU; — clyUs for which
flagu, = id. Since f(0yUi) = OyUs, the restriction g = fly,: Uy = Uz is a
homeomorphism. By Theorem 1.9.2; the diagram

0
H Y (yUr) = HZ(Un)
(9‘5UU1)* Tg*
HY =1 (0 Us) P HY (U)

commutes. Thus 9; = g* o 0s.
Let now

I: HY (U, UUy) — H™(Uy) @ HE(Uy)
be the isomorphism ¢+ (¢jc, t5e). Then
Iod=(1]00,t500)=(01,02) = (¢"02,02) = (¢*,id) o Os.

In particular, 9 is not surjective. Indeed, let a € H'(Uz) be a non-zero
element and suppose that there exists ¢ € H? 1(9y(U; U Us)) for which
(I 00)(c) = (0,a). Then

(0,a) = (g% 0ac, D2c) = (g*a,a),

which is a contradiction, since g* is an isomorphism. Hence (0, a) is not in
the image of I o 0 and hence 9 is not surjective.

Since cly(Uy U Us) # U, we have H](cly(Uy U Usz)) = 0 by Corollary
2.5.2. Thus 9 is surjective by exactness of the sequence

HY0y(Uy UUs)) 2—= H™ (U, U Us) — H™(cly (Uy U T:)).

This is a contradiction and the proof is complete. ]

79



Theorem 4.3.4 will be applied together with the following observation on
local degree. We pass here from the setting of manifolds to domains in R".
We apply this lemma locally in the proof of Theorem 4.1.3.

Proposition 4.3.5. Let f: U — V be a proper discrete and open map
between domains in R™ and let A C U be a closed set separating U and
satisfying #f 1 f(x) = 1 for each x € A. Let Q be a component of U \ A.
Then Q is a normal domain and deg(Q, f,y) = +1 for all y € fQ.

A bulk of the proof of this proposition is a verification of several prop-
erties of the mapping f. We separate these verifications as a lemma. The
proof is similar to results related to normal domains. This is not a coinci-
dence. Essentially we compensate the lack of pre-compacness of the domain
Q by the assumption that f is proper.

From now on, the closure and boundary of a subset is understood with
respect to subdomains in R™, and not in terms of the ambient space R".
This is emphasized in the notation.

Lemma 4.3.6. Let f: U =V, A C U, and Q) be as in Proposition 4.3.5.
Then fla: Q — fQ is a proper and closed mapping for which fQ is a com-
ponent of V'\ fA. Moreover, Q2 is a normal domain and the restriction
h = floga: Ou — Oy fQ is a well-defined homeomorphism.

Proof. Since f~1fA = A by assumption, we have fQ C V' \ fA. We show
first that flo: Q — fQ is proper. Let E C fQ be a compact set. Then E
is closed in V' \ fA. Hence f~'F is closed in U and has empty intersection
with A. Since Q is closed in U \ A, we have that f~1E N is closed and
hence compact. Thus f|qg: Q@ — fQ is a proper map.

We also record at this stage also that f|q is a closed map and that fQ
is a component of V' \ fA. Indeed, let E C Q be a closed set. Then clyE
is closed in U. Let E; C Eo C --- be an exhaustion of clyE by compact
sets. Since each fE; is compact and f is proper, fclyE = J; fE; is closed.
Thus fE = fclyE N fQ is closed in fQ. Since f is both open and closed,
we conclude that fQ is a component of V' \ fA.

We observe also that f(9yQ) = dy fQ. Indeed, since f is open, we have
Oy fQ C f(Oyf2). On the other hand, since 2 is a component of U \ A, we
have 9y C A. Thus QN f(OyQ) C fQN fA=0. Hence f(dyQ) C dy fQ.

We show now that the restriction h = f|5,q: duyQ — Oy fQ2 is a homeo-
morphism. Since 0y§2 C A and f|4 is injective, the map h = f|5,0: Oyd —
Oy f€ is injective.

Since f is closed, we have fcly = cly fQ. Thus dy fQ C felyQ\ fQ =
fouQ2. Hence fOyQ) = Oy fQ. This proves the surjectivity. Thus h: 0y —
Oy fS) is a continuous closed bijection. Thus A is a homeomorphism. O

Proof of Proposition 4.3.5. Having Lemma 4.3.6 at our disposal, the local
degree deg(§, f,y) is well-defined for each y € fQ. Let h = flg,q: Oy —
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Oy fQand g = fla: Q@ — fQ be restrictions of f. By Lemma 4.3.6, h is a
homeomorphism. Moreover, deg (€2, f,y) = deg(2, f, fQ) = degg. It suffices
to show that g*: H!(fQ) — H(Q) is surjective.

By assumption, U \ A is not connected and hence clg{2 is a proper closed
subset of U. Thus, by Corollary 2.5.2, we have that H(cly§2) = 0. By the
exact sequence of a pair (cly2,9Q) and Theorem 1.9.2, the diagram

HP Y (0yQ) 2 H}(Q) ——0

o I

HP Y0y fQ) 2 HI(fQ)

commutes. Thus the connecting homomorphism 9: H?>~}(9yQ) — H(Q)
is surjective. Since h* is an isomorphism, we conclude that g* o9, and hence
also g*, is surjective. O

Proof of Viisdld’s theorem. It suffices to consider the case that U is a pre-
compact domain in R™. Let f: U — V be a discrete and open map. Since U
is pre-compact, each pre-image f~!(y) is a finite set for y € V. By Theorem
4.2.1, By has no interior points.

We show that By does not separate U locally at any point. Suppose
towards contradiction that B separates U locally at some point and let
S C By be the subset of B; containing all such points. In particularly,
S £ 0.

The main part of the proof is to show that there exists a domain D C U
with the following properties:

1. DNclyS # 0 and f|pney, s is injective,
2. flp: D — fD is closed,

3. for each component W C D \ clyS, the restriction fl|a,w: clpW —
f(clpW) is a homeomorphism.

Suppose, for a moment, that we have found such a domain D. We
complete the proof as follows.

Since cly SND # 0, there exists € SND C ByND. Since f|p: D — fD
is closed and surjective but not a local homeomorphism at x, we conclude
that f|p is not locally injective at x. Thus there exists two points x; and
x9 in D for which f(x1) = f(x2). Since f|pnc,w is a homeomorphism for
each component W C D\ cly S, there exists two components W7 and Wy of
W C D\clyS for which fW; and fW5 are contained in the same component
of f(W\clyS). Since f|w, is both open and closed by assumptions, we now
have that fW; and fW; are the same component of f(W \ clyyS). Thus we
have a homeomorphism

h=(flapws) ' o (flapw,): clpWi — clpWa.
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Since OpW; C clpS and f|a,s is injective, we have that hls,nw, = id.

By Theorem 4.3.4, W7 and Wj are the only components of D \ clyyS and

D\ clyS = Wi U Wy, Since fWy = fWy, f(D \ clyS) has exactly one

component and f|w,: W; — f(D \ clyS) is a homeomorphism for i = 1, 2.
Since D = W1 UWsy UclpS and fW; = fWs, we have

fD = fWi U f(clpS).
This is a contradiction, since f(clpS) N fW1 =0 and f(clpS) is not open.

It remains to find such a domain D. For each ¢ € N, let F; = {x €
cdyS: #f7 f(z) < i}. Then clyS = [J,cy Ei- Thus, by Baire’s theorem,
there exists smallest integer ¢y € N for which E;, has non-empty interior in
clyS; note that ig > 2. Let 21 € intE;, and f~1f(z1) = {z1,..., %, }-

Let V' C U be an open set for which V NclyS = inty,sk;. Let now
Vi,..., Vi, C W be pair-wise disjoint neighborhoods of z1,...,z;, and set
Q=vin (ffl N, f‘/}). Then #f~1(f(2))NQ =1 for each z € QNeclyS.

Since z1 € clyS, there exists g € Q NclyS and a connected neigh-
borhood G C Q of xy for which G \ clyS is not connected. By Lemma
3.3.8, there exists a normal neighborhood D C G of zg. By Lemma 3.3.4,
flp: D — fD is a closed map. Now D \ clyyS is not connected. Indeed, if
D\ clyy S is connected then D\ clyy S is contained in a component of G\ cli7S,
but this is a contradiction since G is a neighborhood of x.

By construction, DNclyS # @ and f|p: D — fD is closed. Furthermore,
since D C Q, we have that f|pne, s is injective. Thus it remains to show
that, for each component W of D \ clyyS, the restriction flq,w: clpW —
f(clpW) is a homeomorphism.

Let W be a component of D\ E. Then, by Proposition 4.3.5, ¢ =
flw: W — fW is a closed mapping and fW is a component of fV'\ f(ENV).
Moreover, y — deg(W, f,y) is either constant function 1 or —1 in fWW. By
Lemma 4.3.3, we now conclude that f|y: W — fW is a homeomorphism.

Since flo,w: OpW — f(OpW) is a homeomorphism, we conclude that
fleipw is a homeomorphism.

This concludes the proof of Viisald’s theorem. O
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