UH/ Department of Mathematics and Statistics Introduction to mathematical finance I, spring 2016 Exercise -2 (3.2.2016)

1. We shall use this modified version of Farkas lemma:

Let \widetilde{S} be a $(d+1) \times n$ matrix, and $\widetilde{\pi} = (\widetilde{\pi}_0, \widetilde{\pi}_1, \dots, \widetilde{\pi}_d) \in \mathbb{R}^{d+1}$.

Either of these two alternatives always holds:

- (a) There exists a vector $q = (q_1, \dots, q_n)^{\top} > 0$ (with $q_i > 0 \ \forall i$) such that $\widetilde{S}q = \widetilde{\pi}$
- (b) There exists a vector $\xi = (\xi_0, \xi_1, \dots, \xi_d) \in \mathbb{R}^{d+1}$ such that $\xi \widetilde{S} \in \mathbb{R}^n_+ \setminus \{0\}$ and $\widetilde{\pi} \cdot \xi \leq 0$.

This can be proved by using the separating hyperplane theorem, for an open convex set not containing the origin.

Consider now a finite probability space $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$, with a reference probability measure \mathbb{P} such that $\mathbb{P}(\{\omega_i\}) > 0 \ \forall i = 1, \dots, n$, which means that all events $\{\omega_i\}$ are possible.

Consider a market model with (d+1) instruments $S_t^{(0)}(\omega), S_t^{(0)}(\omega), \ldots, S_t^{(0)}(\omega)$, where t=0,1 is a time parameter, and respective initial deterministic prices $S_0^{(0)}=\pi^{(0)}, S_0^{(1)}=\pi^{(1)}, \ldots, S_0^{(d)}=\pi^{(d)}$.

Assuming that $S_t^{(0)}(\omega) \neq 0 \ \forall \omega \in \Omega$ (and of course also the price $\pi^{(0)} \neq 0$, and we choose it as *numeraire* to define the discounted prices for $k = 0, 1, \ldots, d$ as

$$\widetilde{S}_1^{(k)}(\omega) = \frac{S_1^{(k)}(\omega)}{S_1^{(0)}(\omega)}, \quad \widetilde{\pi}^{(k)} = \frac{\pi^{(k)}}{\pi^{(0)}} = \widetilde{S}_0^{(k)} = \frac{S_0^{(k)}}{S_0^{(0)}},$$

Note that for the numeraire instrument we have

$$\widetilde{S}_t^{(0)}(\omega) = \widetilde{\pi}^{(0)} = 1$$

Use Farkas lemma to give an alternative proof of the first fundamental theorem of mathematical finance on a finite probability space, namely that

the (discrete) market model above is arbitrage free if and only if there exists a probability Q with $q_i = Q(\{\omega_i\}) > 0 \ \forall i$ such that

$$\widetilde{\pi}^{(k)} = E_Q(\widetilde{S}_1^{(k)}), \quad \forall k = 1, \dots, d.$$

2. We consider a finite probability space with $\Omega = \{\omega_1, \omega_2, \omega_3\}$ probability space with $P(\omega_i) = 1/3$, i = 1, 2, 3,

and two financial instruments $S_t(\omega)$, $U_t(\omega)$, (t = 0, 1 is the time parameter), and at time t = 1

$$S_1(\omega_1) = 1$$
, $S_1(\omega_2) = 3/2$, $S_1(\omega_3) = 1/2$
 $U_1(\omega_1) = 0$, $U_1(\omega_2) = 1/2$, $U_1(\omega_3) = 1$.

We haven't fixed yet the initial prices (S_0, U_0) at time t = 0. Also at this stage we are not allow to deposit or borrow money from the bank, we consider only portfolios where all the capital is invested in the S_t and U_t instruments.

- (a) Find the pairs of initial prices (S_0, U_0) at time t = 0 for the random pair $(S_1(\omega), U_1(\omega))$ such that the market model is arbitrage free.
- (b) Choose $S_t(\omega)$ as numeraire and find for each pair of arbitrage-free prices (S_0, U_0) the corresponding set of risk-neutral measures Q. **Hint:** find first the support (the set of all possible values) of the probability distribution of the discounted stock price U_1/S_1 .
- (c) For which of the arbitrage free initial prices the market (S_t, U_t) is complete (i.e. the risk neutral measure is unique)?
- (d) Is it possible to choose $U_t(\omega)$ as numeraire?
- (e) We now add one financial instument and consider the market model (S_t, U_t, B_t) , where B_t is the riskless investment with $B_0 = 1$ and $B_1 = (1 + r)$, r = 0.8.

Find the set of arbitrage-free initial prices (S_0, U_0) in the market model with three instruments (S_t, U_t, B_t)

Hint: choose for example U_t as numeraire find first the support of the joint probability distribution of the discounted stock prices $(\frac{U_1}{S_1}, \frac{B_1}{S_1})$, or alternatively, use B_t as numeraire and find first the support of the joint probability distribution of the discounted stock prices $(\frac{U_1}{B_1}, \frac{S_1}{B_1})$, and then look at the interior of the convex hull of the support.

- (f) For each pair of arbitrage free initial prices (S_0, U_0) in the market with three instruments (S_t, U_t, B_t) find the set of corresponding risk-neutral measures with repect to the numeraire S_t , and also with respect to the numeraire B_t .
- (g) With $B_0 = 1$ and $B_1 = 1.8$ fixed, for which arbitrage-free initial prices (S_0, U_0) the market (S_t, U_t, B_t) is complete?