UH Introduction to mathematical finance I, Exercise-5 (24.02.2016)

In all the exercises we consider random variables defined on a probability
space (£, F) equipped with a probability measure P and a filtration F = (F; :
t € N), where F; C F; for s <.

Recall that a stochastic process (M, : t € N) is a (P, F)-martingale if M, €
LI(Q,]:t,P) vVt € N and Ep(Mt|]:t,1) =M; 1 Vt>1.

1. Let W3 ~ N(0, 1) be a standard Gaussian random variable with Ep(W;) =
0 and Ep(W?) = 1. Recall that Ep(exp(dW;)) = exp(#?/2). Consider a
market model (St, By : ¢t € {0,1}) where By = Sp = 1, By = By(1 + 1),
r > —1 is deterministic.

and
2

Sy = Soexp(oWy + pu — %).

Determine a risk neutral measure () ~ P such that W; is Gaussian also
under Q).

Hint : try a measure QY with likelihood ratio (Radon-Nikodym derivative)

% = (1(0) = exp(6W; — 02/2), and show that with respect to Q% W, is
also Gaussian, and compute for wich 6 value Q7 is risk-neutral.

Solution: Let us check that W7 is Gaussian under Q:
Eo(W;) = Ep(e 0W1—02/2W /dme‘% 0%/2, _ g — 1o
and
EQ(Wf) =Ep(e 9W1—92/2W2 /dme(h 62 /22 92+1
so that G‘é = 1. To check the Gaussianity we look at
]ETQ(e’\Wl) _ EP(6(9+>\)W1702/2) _ 60,\+,\2/2 _ e,\uQ+ag>\2/2.

To find a risk neutral measure we need to impose that

Sl 5 e,u—‘—ch
1=S,=E = drx otz tn—(02+0%)/2—2% /2 _
° Q(1+r> 21 1+7‘/ e [

so that @ turns out to be

In(l+7)—p
—

0:

2. Compute the set of arbitrage free prices for the european call and put
options (S; — K)T ja (K — S1)™, and compute the cheapest superhedging
strategy and the most expansive subhedging strategy.

Solution: We consider first the option call: from the general theory we
know that the arbitrage-free discounted price should lies in the relative
interior of the convex hull of the support of the distribution:

¢(F, Sp) € ri(ConvexHull(supp(F, 51)))




Kuva 1: The segment AB is the interval of arbitrage-free prices

where F' = (S; —K)"/(1+r) and ¢(F) is the unknown price of the option.
Since S7 has a lognormal distribution, its support is Ry and then we can
grafically represent the situation as follows (the picture depends on the
value of K/(1+ r), in this example we set K/(1+ ) < Sp):

From the picture is clear that the superhedging strategy would be ¢(F) =

S and the subhedging strategy c¢(F) = (S; — K)* /(1 + 7).

For the option put, we can exploit the parity relation
S —K=(S-K)" —(K-8)"
so that the initial prices are such that
Sy — K = c(Fey — ¢(FPUh).

Using the results for ¢(F¢*), we can easily answer the analoguos questions
for ¢(FP¥t) = c(F°) + K — Sp.

. On a probability space (2, F, P) equipped with a filtration F = (F; :
teN), AW, (w) t =1,...,T standard Gaussian random variables and let
Wy =Wi + Wy + -+ W;. Under P S; is Gaussian with Ep(S;) = 0 and
variance Ep(S?) = t. We assume that W, is F;-measurable and AW, is P-
independent from the o-algebra F;_1. Let (St, By : ¢t € {0,1}) be a market
model where By =Sy =1, By = B;_1(1 + 1), r > —1 is deterministic,

and Sy = Sy exp(zzzl o AW, + ZZ=1(Nu — %“))

(a) Construct a risk-neutral measure @ under which AW; are Gaussian
with AW, is Q-independent from the o-algebrasta F;_1.

Hint Construct a likelihood process Z; with product form, where
Zy =1 and

7.7, 7oy = (1G2 X - X (g



such that Zy(w) > 0, Ep(Z;) = 1 and Eq(St|Fi—1) = Stg—;. Use
Bayes formula

Ep(StZ:|Fi-1)

EqQ(Si|Fi—1) = EQ(S¢|Fi—1) = Ep(Zi|Fi-1)

Solution: We want the measure ) to be such that

Ep(SiZy| Fi—
(L +70)Si1 = EQ(SilFi1) = Ep(SiZe| Fi1) = M

(0.1)

where we used the hint. From the lecture, we know that Z; is a
martingale, so we have

Z.
(L+7¢)Si—1 = EP(StTtlu:t—l) = Ep (5G| Fi-1)-
t7

As we have done for exercise 1, we see that the (; we are after is
G = O AWe=62/2 where 6, = oy HIn(1 +7ry) — ).

What happens if u;,0¢ 74 are F-predictable but not deterministic, , is
@ riskineutral also in this more general case?

Solution: It is risk neutral because they just come out of the condi-
tional expectation in

Assuming that V¢, u; = p,00 = o . = r are determinic constants,
for t < T, use the riskneutral measure ) as a pricing measure and
compute the corresponding arbitrage-free prices c. 1] = %EQ((ST —
K)*|F) and epyt = EQ((K — St)*|F) for the european call- and
put- options (St — K)T ja (K — Sr)™ (Black and Scholes formu-
lae). This market is incomplete, and these european options are not
replicable, the arbitrage free prices are not unique, since the risk-
neutral martingale measure is not unique.

Solution: Note that we can write

o2 o2
St = Sexp((p — )7+ o(Wr = Wh)) = Spexp((p — )7+ oWr)

where 7 =T — t.

By using the Bayes formula as before and being Z, = IWr—76%/2

with 0 = o~ 1(In(1 +7) — p), we get
2
Eq(S1|Fi) = Ep(SrZ:|Fo) = Ep(Z Sy exp((n — )7+ oWo)|Fo)
= SiEp(exp((n — (0% +0%)/2)7 + (0 + O)W-)|Fy)
= St(]. + T)T
and
Eq(SZ|F:) = Ep(S7Z:|F)
= SZEp(exp((2u — 0% — 02/2)7 + (20 + O)W,)|F;)
= S2(1+7)2e T



thus, under @, at t the price of the stock at expiry Sp follows a
lognormal distribution with mean

Sy(1 4 1) = elnSe+rin(l+n) (0.2)
and variance
53(1 + 7,)27(6027 1) = (eo2T _ 1)621n5t+27—1n(1+r). (0.3)
So the price of the call option reads
Ceall = (1+7) T EQ((Sr — K)"|F)

= (1 + ’r’)i‘r /KOO(ST — K)dF(ST)

where dF(St) denotes the lognormal distribution for S7 with mean
and variance computed before. We now need to recall a few properties
of the lognormal distribution: given a normal random variable ¥ ~
N(v,p?), then X = ¢eY is lognormal with mean

E[X] = et /? (0.4)

and variance

2

Var[X] = (e’ — 1)e> " (0.5)

Moreover, the probability density is

dx 1/Inz—v\>
dF(x):V:v 27rexp(_2( p ))

and the cumulative function is

F(z) = ®((nx - v)/p)
where ®(y) is the cumulative of a standard normal distribution, i.e.
1 v
®(y) = */ e~ 24t
2 J_ o

We are interested in the expected value of X conditioned on X > K
which is

Lx(K):= /OO P exp <_;<lnx — V>2> = exp(u+p2)q><_1nK+”+P>

K VvV2m P P

Contrasting (0.4) with (0.2]) and (0.5 with (0.3)), we have v = In S; +

7(In(1 +7) — 0%/2) and p = o7, so that

/K " SpdF(Sy) = L, (K) (0.6)

= exp(InS; + 7(In(1 +7) — 0%/2) + 027/2)<I>(_ K +1nS +r(ln(l+r) = 0?/2) + 027/2>

a7
= S;(1+7)"®(dy)



where

—InK +InS; +7(In(1 +7r) — 02/2) + 027/2

dl = O'\/F )
and
/OO dF(St)=1- F(K) (0.7)
K

oK -InS; —7(In(l +7r) —0°/2)
! Na )
— 11— O(—dy)
= ®(ds)

where

& — ~InK +1InS; +7(In(1 +r) — 0%/2)

Collecting together all the terms we get

Ceall = St®(d1) = K(1+1)77®(d2). (0.8)
With the same strategy one gets also the formula for the put option:

Cput = K(147)""®(—ds) — S:®(—dy).

4. Let (X; : t € N) independent and identically distributed random variables
with P(X; =1)=1-P(X; =—-1)=p=1/2,and S; = X1+ Xo+-- -+ X;.
For a < 0 < b, where a,b € Z, consider the random time

(a)

()

()

7(w) =inf{t € N: S;(w) & (a,b)}.
Show that 7(w) is a stopping time in the filtration F = (F; : t € N)
where Fy = 0(Sy tu <t) =0(X, :u<t).
Solution: We need to check that {w : 7(w) < t} € F, ie.

{w:inf{u e N: S, (w) & (a,b)} <t} € F

which is true since S, € F; for u < t.

Show that S; is a F-martingale and it is square integrable F(S?) < oo
vt.

Solution: First note that |S;| < ¢ then it is integrable. Moreover,
E(Si[Fi-1) = E(X¢|Fi—1) + Sp—1 = E(Xy) + Sp—1 = Si—1.

Show that the stopped process (Siar : t € N) is a martingale.
Solution: S; is a martingale and a stopped martingale is a martin-
gale, as we have seen in the lectures.

Show that P(r < co) = 1. Hint: you can use the second Borel Cantelli
lemma.



Solution: Consider the event {w : Sp(w) = k} with k > b—a+1
and P({w : Si(w) = k}) = 27%. Then the events

Ap = {w :Snk — S(nfl)k = k}
are independent and such that P(A,) = 27%. Observe that

limsup A, C U, A4, C{r < co}.

n—oo
Since ), P(A;) = oo, then Borel-Cantelli lemma implies that P(limsup,,_,, 4,) =
1 and then P({r < oo}) = 1.
Compute P(S; = a) and P(S; = b). Hint: show that Siar
Solution: Note that P(S; = a) = P(1, < 1) and P(S; = a) +
P(S; =b) =1 where 7, = inf{S; = a} and 7, = inf;{S; = b}. By
the bounded convergence theorem we get

tlggo E(S:at) = E(S:) = E[M(x(1a < 1p)+X(10 > 1)) = P(7q, < T)a+(1—P(7, < 75))b

but E(S,) = E(Sy) = 0, then

b a
b—a b—a

Show that the martingale S; has F-predictable variation (S); = ¢
which by definition means that

P(S; =a) = P(ra < 7) =

and P(S; =0) = P(1, <74) = —

Mt :S?—t

is a F-martingale.
Solution: We compute the Doob decomposition of S?: the predic-
table part is
t t
A=) B(S? =82 |Fe1) =Y EQ@X.Se 1+ X2|Foq) =t
s=1 s=1
therefore, S? — t is a martingale.

Show that F(7) < co. hint: (Ma, : t € N) is a martingale, and we
have the upper and lower bounds

0<nAT=5?

nAT

— Mypr, where S? < max{a?, b*}Vt (0.9)
use Fatou lemma for n — oc.
Solution: First, note that, since n A 7 is monotone, we have

7 = limsup(n A 7) = limsup(S2,. — Myrr)

nAT
n— 00 n—o00

Then the Fatou lemma gives
E(7) = limsup E(n A7) = E(limsup(S2,, — Myuar)) (0.10)
n—oo n—oo

< limsupE(S?, — M,,,) = limsupE(S2,.)

n—oo n—00
< max{a?,b*},

where we use the martingale property E(M,,,-) = E(Mp) = 0.



(h) Compute the expectation E(7). Hint compute E(S2), and take the
expectation in , and use monotone convergence theorem and
Lebesgue dominated convergence theorem.

Solution: The monotone converge theorem implies that

lim E(n A7) =E(7)

n—oo

while the dominated convergence theorem implies that

lim E(S%, — Myn,) = E(S? — M,)

00 nAT T

since S2 — M, € L'(p), being E(7) < co. Therefore, from

E(1) = E(S?~M,) = E(S?) = E[S?(1(74 < 7)+1(7 < 74))] = |ab|.



