Matrix-free X-ray tomography with sparse data

INTRODUCTION

Consider the following linear inverse problem: given a
vector m and matrix A, find x such that

Ax =m, (D)

where the matrix A is ill-conditioned, i.e. its condition
number i1s large.

This problem can be studied with tomographic X-ray pro-
jection data. In tomographic X-ray imaging our data m
consist of X-ray projection images from several different
directions and x is the inner structure of the object being
scanned. The inverse problem is to find x. This kind of
measurement can be written in the form (shown in [1],
page 22-29)

m = Ax + €. (2)

This problem is ill-posed. It is very sensitive to measure-
ment noise and modelling errors. In this project we study
methods that can solve this problem noise robustly and can
be implemented to large datasets.

As data we use a dataset measured in X-ray facility of the
Industrial Mathematics Laboratory. We are using 15 pro-
jection directions.

ngure I: Measremnt etup
As can be seen from Fig. 1, our measured object is a ca-
pacitor. The goal in this study is to find a good slice picture

from the inner structure of this capacitor with only 15 pro-
jection angles.

Figure 2: Close-up of the capacitor and the height at which the cross-
section will be studied

METHODS AND MATERIALS

Tikhonov regularization

Our method of choice for solving equation (1) is Tikhonov
regularization, which is a useful regularization method for
solving linear inverse problem. The Tikhonov regularized
solution to the equation Ax = m is defined as the vector
T, (m) € R" that minimizes the expression

|AT, (m) —m|” + a [|T, (m)|[",

where a > 0 1s a regularization parameter. It is evident
from the definition that the Tikhonov regularized solution
is a balance between a small residual AT, (m) — m and a
small solution T}, (m).

As proven in [1] (equation (5.9), page 67), the Tikhonov
regularized solution is given by

T, (m) = (ATA+al) " ATm, 3)

It is to be noted, however, that Tikhonov’s method does
not in 1itself provide a way to determine the optimal value
of the regularization parameter «. For this purpose, we
will be using the L-curve method.
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L-curve method

In the L-curve method, we choose a collection of different
regularization parameters and compute the Tikhonov reg-
ularized solution 7T, (m) for each of them. Since Tikhonov
regularization 1s an attempt to find a balance between the
terms ||AT, (m) — ml| and ||T,, (m)||, the points

(log [[AT,, (m) — m|| , log||T, (m)[]) e R*  (4)

are plotted. The resulting curve will usually resemble the
letter "L". The optimal value of « is expected to be found
as close to the corner of the "L" shape as possible.

However, explicitly computing the matrices in equations
(3) and (4) would be cumbersome, and so we will use a
matrix-free iterative method called the conjugate gradient
method instead.

Conjugate gradient method
Conjugate gradient method 1s used for solving Quadratic
optimization problems

o1
minimaze §XTH x — blx, (5)
where H 1s an n X n known symmetric positive definite
matrix.

For finding the minimum we use n conjugate directions
di,do, ...,d,, such that progress made in one direction
does not effect progress made in other directions. The so-
lution is reached in k steps, where £ < n. In conjugate
gradient method the next direction 1s determined in each it-
eration (using conjugate Gram-Schmidt process [3]). The
first direction is a Steepest decent step.

Consider the formulation (3) of Tikhonov regularization

(A"A+ oL’ L)f = A'm, (6)
where a AT A = al.

Let’s denote H = A’ A+ ol and b = A”m. Now we can
form a quadratic optimization problem

1
minimaze §fTHf — blf (7)

where H f can be computed matrix-free with radon-function.

In our MATLAB implementation we will use the algo-
rithm introduced in [2].

RESULTS

Measurement results
The measurements of the X-ray projections (using all 180

measurement angles) can be seen in sinogram form in Fig.
3.

Figure 3: The X-ray measurement data as a sinogram

L-curve method

The L-curve method yielded the value @ = 1.1316 as the
optimal value of the regularization parameter o.. The plot
of the L-curve can be seen in Fig. 4.
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Figure 4: L-curve and L-curve focused in a smaller area

I I I I I I I i
-0vs 0F6  -074 072 -0y 063 066  -064

Tikhonov regularized reconstruction

Figure 5: Tikhonov regularized reconstruction

Using the optimal regularization parameter given by the L-
curve method and 15 measurement angles, Tikhonov reg-
ularization yielded a reconstruction with a relative error of
29% when compared to the reconstruction given by using
180 angles. Reconstructions with 180 angles and 15 an-
gles can be seen side by side in Fig. 5.

DISCUSSION

As can be seen from Fig. 5, the reconstruction yielded
by Tikhonov regularization using 180 measurement an-
gles was excellent. Furthermore, even when only using
15 angles, the reconstruction still preserved many of the
detailed features of the measured object. However, since
Tikhonov regularization is not an edge-preserving method,
the reconstruction is somewhat blurry. Using an edge-
preserving method (such as total variation regularization)
would possibly have yielded a sharper — though not neces-
sarily better — reconstruction.

For comparison, we also used filtered back-projection on
our dataset to see how well it would perform with sparse
measurement angles. For this, we used MATLAB'’s built-
in i radon .m function with the same 15 measurement an-
gles as in our Tikhonov reconstruction. The resulting re-
construction can be seen in Fig. 6.

Figure 6: Reconstruction using filtered back-projection with 15 mea-
surement angles

As can be seen from Fig. 4, the L-curve does not have
a sharp L-shaped curve. So it is non-trivial to choose the
right parameter. A smooth L-curve actually characterizes
the real situation quite well. There was no significant dif-
ference between reconstructions with different alpha val-

ues until the L-curve started to decline faster again (Fig.
4).
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