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• Conjugate gradient method
Method is an iterative solution method for objects of
form (4) where H is a spd matrix. We end up minimiz-
ing residual r = b−Hf , where b contains the backpro-
jected data. Matrix Hf is constructed by f0 and regu-
larization parameter α.
We repeat steps (1) and (2) for prefixed number of iter-
ations until residual r is sufficiently small:

(1) Noting that residual r is the negative gradient at f =
fk, it is the first direction that we want to go.

(2) By step (1) we get point fk+1 and new residual r.

On output we get the approximate solution f .

Figure 2: The reconstruction transforms as the amount of iterations
is changed. In the leftmost picture only 1 iteration is used. The re-
construction gets better when the amount of iterations is increased,
rightmost picture is with 80 iterations.

• L-curve method
Suppose that we have a collection of regularization pa-
rameters:

0 < α0 < α1 < · · · < αm <∞.
To choose the best value, for every αi we calculate the
point

(log ||m−R(x)||, log ||x||) ∈ R2,

where x is the regularized solution calculated by con-
jugate gradient method and R denotes the radon trans-
form. Next we plot these points and look for the opti-
mal value for α which is found near the corner of the
curve. See Figure 7.

INTRODUCTION
Consider the linear model

m = Af + ε (1)

where m ∈ Rk is the measured data, f ∈ Rn is the target
of our interest, A ∈ Rk×n is the matrix connecting the
data and the quantity of interest and ε ∈ Rk represents the
errors coming from the noise mainly caused by electrical
disturbances in the measurement device.

In this study we are dealing with X-ray tomography with
limited data, which means that we measure certain object
( a seed of a peach in our case) with suitable X-ray device,
in this case located in Helsinki University, Department of
Physics in Kumpula, from only a few angles. From mea-
surements we get a collection of X-ray images of our ob-
ject, m of our model (1) but the interest of our study is to
find out what is inside the object. To find this out we have
to solve f which gives us an approximate reconstruction of
the inner structure of the object at hand.

Figure 1: A seed of a peach.

We are dealing with an inverse problem:

Given noisy measurement m = Af + ε,

find out information about f.

Inverse problems are hard problems to solve and we usu-
ally can’t find the real solution but luckily there are meth-
ods to get good results. The problems lie in finding a
unique solution that is continuously dependent on the data.
One of the most standard methods and also the method of
our choice is the Tikhonov regularization. This might not
be the best method for our purpose but choosing the regu-
larization parameter optimally we can hope to get the best
possible results available. In this study we are going to
use the L-curve method to find out the optimal parameter
value.

Finally, since the data turned into matrix form can be quite
large we do not want to construct all the matrices involved
that are also vulnerable to computational errors, we use an
iterative method, namely the Conjugate gradient method
(cg), to find the best reconstruction possible.

METHODS AND MATERIALS

• Tikhonov regularization
The Tikhonov regularized solution of equation (1) is the
vector Tα(m) ∈ Rn defined by

Tα(m) = arg min
z∈Rn

{
||Az−m||2 + α||z||2

}
, (2)

where α > 0 is the regularization parameter. We see
that the solution Tα(m) is a balance between the two
requirements:

(1) The residual ATα(m)−m should be small.
(2) Solution Tα(m) should be small in L2-norm.

The Tikhonov regularized solution Tα(m) satisfies the
normal equations

(ATA + αI)Tα(m) = ATm. (3)

Writing Ã = ATA + αI , we minimize (3) by minimiz-
ing

fTHf − 2bTf, (4)

where H = ÃT Ã is symmetric, positive-definite matrix
and bT = mTAÃ. We have arrived in a form that of
quadratic optimization problem. For such problem we
can use the conjugate gradient method.

RESULTS
Using the methods presented above
we recovered cross-sections of our
object. We fixed a row, close to
the middle of the seed, from our
original images obtained from the
measurements and reconstructed
slices from that exact part. In the
measurement session we took pic-
tures from 180 different angles,
but we only used a sparse set of
these images for our reconstruc-
tions as seen in Figure 3 - Figure
5. For comparison we also re-
constructed the cross-section with
the whole data set (Figure 6).

The values of the regularization
parameters used varied for differ-
ent set of images used. For 12 an-
gles the parameter was α = 6 be-
ing the smallest and for 30 angles
α = 7.94.

As the Conjugate gradient method
is an iterative solution method it
requires a choice of the amount
of iterations. In Figures 3-6 we
used 80 iterations.

Figure 3: Reconstruction
with 12 projection angles.

Figure 4: Reconstruction
with 20 projection angles.

Figure 5: Reconstruction
with 30 projection angles.

Figure 6: Reconstruction
with 180 projection angles.

Figure 7: The L-curve with 12 projection angles.
Red dot marks the optimal value of α.

The L-curve method was used manually. This means that
we looped over multiple values of the regularization pa-
rameter α ranging from 10−10 to 103, plotted the values
and searched for the optimal value as near as the corner
of the curve as possible. Figure 7 demonstrates a typical
L-curve that we were able to produce with 12 projection
angles. For different values of images used the L-curves
looked essentially similar.

DISCUSSION
Our goal in this study was to find out how Tikhonov
regularized solution method works in practice with
sparse data. Using as little as 12 angles for the re-
construction gives relatively poor results but it is still
better than the standard inverse radon transform, ’filtered-
back projection’, as can be seen by comparing Fig-
ures 3 and 8.

Figure 8: The Filtered-back projection
of data set consisting 12 images.

Adding a few more images to the set from which the
reconstruction is to be done improves the quality of
the reconstruction significantly. With 30 projection
angles smaller details of the object become visible
and the reconstruction can be considered quite good.
This interpretation is of course very relative and does
not apply to more sensitive situations like the imag-
ing the head of a human. With larger amounts of an-
gles the computing time increases rapidly, which is
not preferable from the practical point of view. How-
ever the results are not that much better than with the
simple filtered-back projection.

The L-curve method seemed to give good values for
the regularization parameter. Calculating the regu-
larized solution with smaller or bigger values than
the value given by the L-curve resulted in worse im-
ages than with the optimal value. This judgement
was naturally done by our own human perception,
which can be deceiving, since no relative errors or
other quantities related to the successfulness of the
solution could not be calculated.
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