INTRODUCTION

X-ray tomography is a technique for producing tomographic

images of objects that facilitates the investigation of the
object’s internal structure in a non-destructive manner. This
1s particularly useful in medical imaging, but has applica-
tions in industry as well e.g. reverse engineering’.

The main 1dea is to take several measurements of the at-
tenuation of X-rays while they pass through the object of
interest, e.g. the patient’s head. Since different tissues
inside the head attenuate the signal by differing factors,
a sufficiently large collection of measurements from dif-
ferent directions along with some clever inversion math-
ematics (and some computational muscles) are enough to
reconstruct an image of the head’s internals®.

Safety must be prioritized when working with X-rays that
can cause radiation overdose and cancer for the patient as
well as the person making the measurements, or plain by-
standers!.

METHODS AND MATERIALS

The object of interest was chosen to be a single slightly
customized peanut, the objective being a 2D slice image of
its internals. See Figure [I| for a photograph of the peanut.

The measurements were taken at the Industrial Mathemat-
ics X-ray Laboratory at the University of Helsinki, Fin-
land. The measurement data consisted of 180 X-ray scans
(N parallel beams) of the object from different angles (J
directions), out of which a subset of 10 projections were
chosen for further investigation. The reason for this is
that with the data from all 180 projections a simple inverse
Radon transform is enough to reconstruct a nice slice 1im-
age of the peanut, see Figure 2. Assuming only 10 pro-
jections were available, such a simple approach would not
work as well (see Figure [3), and a more sophisticated re-
construction method would be appreciated.

A square-shaped domain was split into a N.J x N2 grid of
densities f € RY ’ representing variations in the peanut’s
internal structure. This grid can be described by matrix
A € RN7*N? representing unit distances that the beam
passes within each grid cell for each angle. With the mea-
surement m € R/, the inverse problem is then solving®

Af =m +e (1)

with error e. The measurement m corresponds to the Radon
transform of density f, defined as the line integral

Rf(s,0) = / o Ja)yda 2)

where s is the beam’s normal displacement and § is the
unit vector (cos @, sin §)! in the direction of the beam. The
inverse Radon transform can then be applied to give the
density.

The problem (1)) can be solved with generalized Tikhonov
regularization®

To(m) = arg min{[[Az = m|[ +allz = [|I'}, 3)
where « 1s the regularization parameter, found using the
L-curve method®, and f* is a good guess. The solution
T,.(m) provides a good balance between having a small L?
norm as well as giving a small residual for AT, (m) — m.

The Eq. (3) can further be modified to give a quadratic
optimization problem?

1
minimize §zTQz — bz 4)

with Q = A" A + af and b = A"m, which can be solved

e.g. iteratively with the conjugate gradient method by adding

negative gradient vectors.
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Figure 2: A simple back-filtered projection using data from 180 scans.
L2-error defined as 0.
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Figure 3: A sim cﬁlci using data from 10 scans.
L2-error of 127%.

Figure 4: A reconstructed slice image with 10 projections and o ~ 3.8
using classical Tikhonov regularization (f* = 0). L2-error of 48%.

Figure 5: The initial ”guess”. Data as in Figure 3| with median-filter
and values limited to 0.4 X maxtmum.
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Figure 6: The terms in Eq. (3) (with f* = 0 and L = 1) plotted with
different values of the regularization parameter form an L-curve. The
optimal value of o ~ 12.6 is in the corner. The iteration is unstable
with a < 0.03.
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RESULTS

A Python program was written to solve the inverse prob-
lem. First, the classical Tikhonov regularization (without
initial guess) was tested, see Figure @, which required 47
iterations until convergence (i.e. the squared residual was
below 1E-9 and the iteration was stopped automatically).
The L2-error against the data in Figure 2] was 48% (cf.
127% for the simple filtered back projection in Figure 3).

After that, the generalized Tikhonov regularization was
applied with the initial guess shown in Figure 5, which
1s just the median-filtered back projection of the data with
all values below 0.4 X maximum set to zero. This was
an attempt to reduce the effect of the star-like formations
visible in the reconstructions.

The regularization parameter o was chosen based on the
L-curve method, which tries to find an optimal balance
between the terms in Eq. (3). The corner of the L co-
incides with its maximum curvature, which in Figure [0
corresponds to a ~ 12.6.

The final reconstruction is shown in Figure [7, which was
found after 32 iterations of the conjugate gradient method
using « ~ 12.6. The L2-error was 40%. The reconstruc-
tion was limited to non-negative values.

DISCUSSION

Due to the obvious similarity of Figures 2] and [7} it can be
safely concluded that the implemented algorithms do func-
tion as intended. However, as the image 1s a bit blurred
(no 1image-sharpening was applied), the fine details of the
peanut, such as the tiny crack on the right-hand side, can-
not be discerned with data from only 10 projections. Fur-
ther testing (not shown here) suggests that they do be-
come visible in the reconstruction only after using about
60 projections, at which point the filtered back projection
1s vastly superior in terms of detail and speed of process-
ing. On the other hand, with only 6 projections the result-
ing reconstruction from either method is unacceptable.

The generalized Tiknohov regularization, with a good guess
to start with, converged significantly faster than the classi-
cal Tikhonov regularization, and the L2-error is smaller
(although the data is quite noisy). However, the initial
guess (Figure [5)) does not help much in reducing the star-
like projection artifacts — the non-negativity constraint was
more effective in this respect.

Finally, it may be argued whether the reconstruction in
Figure [/| 1s actually any better than the simple and com-
putationally much more efficient filtered back projection
in Figure [3, as a human eye can see the same shape in
both. After all, both of these figures could certainly have
been tuned further in image processing software, but such
actions were not taken here. It should be noted that had the
density of the scanned object varied more, the comparative
results could be different.

Figure 7: The final reconstructed slice image with 10 projections and
a ~ 12.6 using generalized Tikhonov regularization (f* as in Figure
5)) with naive non-negativity constraint. The solution converged after
32 iterations with an L2-error of 40%.
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