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INTRODUCTION
In this project we studied computing the inner structure
of an object based on 2-dimensional X-ray projection im-
ages. The object in question was a wisdom tooth and our
area of interest was the root of the tooth. The originally
continuous problem was discretized and modeled to have
the form

m = Af + ε (1)

where the data m and measurement matrix A are known,
ε is an unknown noise term, and our goal is to extract in-
formation about f . Problem (1) is a linear inverse problem
containing an ill-conditioned matrix A, and a non-unique
solution f , making it ill-posed. For this reason we opted
for approximate total variation as a regularization strategy
in an attempt to solve (1); because of the large scale of the
problem, we used the Barzilai-Borwein matrix-free gra-
dient method in the arising minimization task. The goal
of this project was, in the spirit of sparse angle tomogra-
phy, to find a small amount of measurement angles that
would still produce an acceptable reconstruction; accept-
able meaning that the inner structure of the tooth’s root
could be seen.

METHODS AND MATERIALS
The data that we worked with consisted of 2-dimensional
X-ray projection images of a wisdom tooth taken in the
applied mathematics X-ray laboratory. We took images
from 180 angles distributed evenly in the interval [0◦, 180◦)
and used subsets of this data to form reconstructions with
limited data. Using the full data, filtered back projection
(later FBP) was used for computing a ground truth that the
other reconstruction were compared to. The reconstruction
method used for the limited data was the approximate total
variation regularization, implemented iteratively with the
Barzilai-Borwein gradient descent method. In total varia-
tion we compute the solution to (1) as

Tα(m) = argmin
f∈Rn

{
‖Af −m‖22 + α‖Lf‖pp

}
(2)

where α > 0 is the regularization parameter, L ∈ Rn×n is
the discretized differential operator and p = 1. Thus, we
need to minimize

G(f) = ‖Af −m‖22 + α
∑
i,j

|fi − fj|,

where i and j index through all horizontally and vertically
neighbouring pixel pairs. However, the presence of abso-
lute values makes the functional G non differentiable; so,
in order to be able to use gradient-based optimization, we
introduce the following approximation:

|t| ≈ |t|β :=
√
t2 + β

where β > 0 is chosen to be small. Now we work on the
continuously differentiable functional

Gβ(f) = ‖Af −m‖22 + α
∑
i,j

|fi − fj|β (3)

and we can compute its gradient

∇Gβ(f) = ∇‖Af −m‖22 + α∇

∑
i,j

|fi − fj|β

 .

The first part is given by

∇‖Af −m‖22 = 2ATAf − 2ATm;

since a pixel can have 2, 3 or 4 neighbours, for the second
part the derivative with respect to fi,j we have

∂

∂fi,j
‖Lf‖1 =

fi,j − fi−1,j

((fi,j − fi−1,j))
2 + β

− fi+1,j − fi,j

((fi+1,j − fi,j))
2 + β

+

+
fi,j − fi,j−1

((fi,j − fi,j−1))
2 + β

− fi,j+1 − fi,j

((fi,j+1 − fi,j))
2 + β

taking into account the terms that are defined.

The iteration of the Barzilai-Borwein method was started
with a guess for both f (1) and δ1, namely, f (1) = 0, and
δ1 = 10−4 and the next steps were found by means of the
inductive formula

f (`+1) = f (`) − δ`∇Gβ(f
(`)),

with non-negativity constraint f (`+1) = max{f (`+1), 0} and

where δ` =
yT` y`
yT` g`

and y` := f (`) − f (`−1), g` := ∇Gβ(f
(`))−

∇Gβ(f
(`−1)).As a halting criterion for the method we mon-

itored 5 latest values of (3) and stopped when they were
monotonically decreasing and the sum of their absolute
differences became sufficiently small.

Matrix free implementation
Equations (1) and (2) contain a large matrix that needed
to be replaced by an equivalent function for computational
purposes. Applying matrix A to an image x was replaced
withR(x, θ), whereR stands for the Radon transform and
θ specifies the measurement angles. We used MATLAB’s
built in function radon.m.

Parameter selection
As total variation is a sparsity promoting regularization
strategy, we decided to use a sparsity based parameter choice
for selecting the regularization parameter α, namely the S-
curve method. This required a priori knowledge about the
sparsity of the unknown solution. This information was
found by computing the amount of essentially non-zero
jumps in vertically and horizontally neighbouring pixel
values in dental images taken from the Internet [2]. A
good value for the parameter β in the implementation of
Barzilai-Borwein was found empirically.

RESULTS
After testing that large α values did not produce good re-
sults, we computed a hundred reconstruction using α ∈
(0, 10] with logarithmic spacing and computed the jump
ratio of each to produce Figure 1. The two constant lines
are the jump ratio of the FBP and the mean jump ratio of
the a priori information. In each case, the jump ratio was
determined by first scaling the image values to the interval
[0, 1] and then computing the ratio of absolute pixel transi-
tions that exceeded 0.05.
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Figure 1: Jump ratios with different alpha values

We chose the α value as proposed in [1], namely α =
0.2420. The corresponding total variation reconstruction
using 12 projections is presented in Figure 2.

Figure 2: FBP (left) using full data and aTV (right) using 12 projec-
tions. The relative error is 17%.

In order to asses the accuracy of our automated parame-
ter selection method, we compared the same reconstruc-
tions to the filtered back projection and chose the one with
smallest relative error.

This reconstruction found by "cheating" is presented in
Figure 3 with the FBP. Here, the chosen regularization pa-
rameter value was α = 3, 8986.

Figure 3: FBP (left) using full data and a limited data aTV reconstruc-
tion found by "cheating". The relative error is 14%.

The result of the filtered back projection using the limited
data of 12 projection is illustrated in the middle of Figure
4. Its relative error w.r.t. the full data version is 51%.

Figure 4: FBP with full data (left), FBP (center) and aTV (right) with
12 projections

The mentioned a priori images [2] are presented in Figure
5. Although they are not identical to the FBP image, they
proved useful in selecting the regularization parameter.

Figure 5: The dental images used as a priori information

The β and δ1 values used in the Barzilai-Borwein opti-
mization were chosen to be β = 10−6 and δ1 = 10−4.

DISCUSSION
The jump ratio of the FBP was not used in the parameter
selection, it is displayed in figure 1 for comparison. As
can be seen, its jump ratio differs from the ratio of the re-
constructions. This makes sense, since aTV encourages
sparsity. The amount of a priori images was quite small,
namely five, but their mean sparsity level was such that it
yielded a good parameter. The relative error of the cor-
responding aTV reconstruction using 12 projections was
just 17%. The goodness of this reconstruction is backed up
by the "erroneously" found optimal reconstruction whose
relative error was 14%, so only three percent better. The
outer structure of the tooth and the shape of its hollow
inner structure can be seen quite clearly in our "legiti-
mately" found reconstruction. Some empty space artefacts
are present, but they do not obscure the structure of the
tooth.

Total variation performed much better with limited data
than the filtered back projection. The amount of artefacts
is substantially higher in the FBP reconstruction when us-
ing only 12 projection images and the relative error is three
times larger, namely 51%. We note that there are measur-
ing artefacts in the FBP reconstruction with full data. One
can clearly see e.g. the ring artefacts caused by sensitiv-
ity differences in the detectors pixels. In addition there
are artefacts due to beam hardening and measurement ge-
ometry present in the data. It seems that there is hardly
anything left of the ring artefacts in the total variation re-
construction. This is a good thing, since they are naturally
an unwanted feature.

To conclude, approximate total variation provides a rather
good reconstruction of the wisdom tooth cross section in
the case of limited data, which the FBP technique does not
handle as well.
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