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INTRODUCTION
In this project the goal is to recover the inner structure
of hazelnut with sparse X-ray imaging using total varia-
tion regularization. The arising minimization problem is
solved with Barzilai-Borwein method.

The data for this project is real, sparse X-ray data, from
approximately 20 angles. Since the object is very small
and far from the X-ray source in measurements, the X-rays
are thought to be parallel, not in fan formation.

Figure 1: Image obtained by full-angle tomography.

METHODS AND MATERIALS
When reconstructing the hazelnut, it is thought to be pix-
elized so that computations are possible. The reconstruc-
tion vector f below is formed from the pixelized image by
rearranging it to a long column.

Total variation regularization method focuses on minimiz-
ing the following formula regarding to reconstruction f:

||Af−m||22 + α

n∑
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n∑
j=1

|(LV f)j|, (1)

where m is the measured data, A,LH, LV ∈ Rk×n, f ∈ Rn

and α is the regularization parameter.

The matrix A models how long a distance each ray travels
in each pixel of the nut. A is known and easy to calculate.

The matrices LV and LH in 1 penalize derivative. They en-
courage the neighbouring pixel values (vertical and hori-
zontal, respectively) to be as close to each other as possible
with 1 and -1 values.

The reconstruction parameter α is chosen using multi-res-
olution parameter choice method introduced in [2]. The
total variation norm (TV norm) is defined

1

n

∑
|fκ − fκ′|

where the sum is over horizontally and vertically neigh-
bouring pixel values and the size of the pixelized picture
is n × n. The idea in the method is to choose value for α
so, that it is the first value where the TV norm is approxi-
mately the same for all resolutions.

With large data sets the Barzilai-Borwein minimization
method is efficient. It is an iterative approach which also
uses gradients. Because of that the absolute values must be
replaced with differentiable approximation, namely |t| →√
t2 + β where β is a small constant. The method is to

calculate f iteratively:

f(l+1) = f(l) − δl5Gβ(f(l))

for

δl =
yTl yl
yTl gl

where yl = f(l) − f(l−1) and gl = 5Gβ(f(l))−5Gβ(f(l−1)),
and the function we want to minimize is Gβ.

The first steplength δ1 is usually chosen to be 1
10000 or some

other small value, and f (1) can be guessed. Also the pa-
rameter β needs to be chosen carefully for good recon-
structions.

The smaller resolution data was obtained by interpolating
it from the original data.

Figure 2: Reconstructions with α = 0.0001 (left), α = 0.1 (middle) and α = 100 (right) with resolution 512× 512.

Figure 3: Reconstructions with α = 0.0001 (left), α = 0.1 (middle) and α = 100 (right) with resolution 256× 256.

Figure 4: Reconstructions with α = 0.0001 (left), α = 0.1 (middle) and α = 100 (right) with resolution 192× 192.

RESULTS
The following table contains the total variation norm val-
ues from pictures of different resolutions and with differ-
ent alpha values. Column E shows the mean difference
between norms in a row.

α 512× 512 256× 256 192× 192 E
0.0001 0.114 0.148 0.162 0.0321
0.001 0.112 0.141 0.152 0.0267
0.01 0.105 0.128 0.136 0.0205
0.1 0.089 0.096 0.097 0.0057
1 0.055 0.058 0.064 0.0060
10 0.032 0.040 0.043 0.0074

100 0.022 0.023 0.021 0.0014

The value 0.1 is chosen optimal for α, since it is the first
value for which the norms are approximately the same for
every resolution.

In Barzilai-Borwain optimization we used constant amount
of steps, namely 1000, and β = 0.000001.

Example reconstructions for different alpha values can be
seen from figure 2.

Figure 5: Reconstruction when α = 1 and resolution is 512× 512.

DISCUSSION
Image obtained from full-angle tomography for compari-
son can be seen from figure 1. The reconstructions with
fewer angles are very similar.

The method for choosing alpha seems to work quite well.
It clearly discards too large alpha values, which can be
seen from the rightmost pictures of 2, 3 and 4. The pic-
tures are very blurry. For example the small dots in the
shell that can be seen from the image obtained by full-
angle tomography are all gone.

On the other hand the leftmost reconstructions which had
too small alpha according to our method, are grainy. It is
hard to see which details are real ones and which are just
from noise.

However the chosen alpha may not be optimal. In figure
5 is the reconstruction with α = 1, which is quite good,
perhaps even sightly better than the reconstruction with
α = 0.1. Better choice could probably be found by try-
ing out more values of α, but that makes the computation
even more costly.

As can be seen in the table of total variation norms, the
mean difference first drops with α = 0.1, but then rises a
bit before dropping again as α gets larger. This seems a bit
peculiar, but on the other hand the change is quite small
and probably not too important.
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