Exercise 2 (January 27-29, 2015)

Inverse problems course

University of Helsinki

Department of Mathematics and Statistics

Samuli Siltanen and Andreas Hauptmann

Related book sections (Mueller & Siltanen 2012): 2.1.1, 2.1.2 and 3.5.

Theoretical exercises:

T1. Assume that the $n \times n$ matrix $U : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal: $UU^T = I = U^T U$.

- (a) Show that $||U^Ty|| = ||y||$ for any $y \in \mathbb{R}^n$.
- (b) Let $x, y \in \mathbb{R}^n$. Show that the angle between the vectors x and y is the same than the angle between the vectors Ux and Uy.

T2. Let A be a real-valued $n \times n$ matrix.

- (a) Show that the matrix A^TA is symmetric.
- (b) Show that if λ is an eigenvalue of $A^T A$, then $\lambda \geq 0$.
- T3. Let A be a real-valued $n \times n$ matrix. Recall from basic linear algebra that a symmetric matrix can be diagonalized and its eigenvectors can be chosen to be orthonormal. Denote the eigenvalues of $A^T A$ by

$$d_1^2 \ge d_2^2 \ge \dots \ge d_r^2 > d_{r+1}^2 = d_{r+1}^2 = \dots = d_n^2 = 0,$$

and the corresponding orthonormal eigenvectors by $V^{(1)}, V^{(2)}, \dots, V^{(n)}$. Insert the eigenvectors as columns to a matrix called V. Also, write $V = [V_1 \ V_2]$ with

$$V_1 = [V^{(1)} V^{(2)} \cdots V^{(r)}], \qquad V_2 = [V^{(r+1)} V^{(r+2)} \cdots V^{(n)}].$$

Then

$$V^T A^T A V = \left[\begin{array}{cc} \Sigma^2 & 0 \\ 0 & 0 \end{array} \right],$$

where the $r \times r$ matrix Σ is defined by $\Sigma^2 = \operatorname{diag}(d_1^2, \ldots, d_r^2)$. Here $V_1^T A^T A V_1 = \Sigma^2$. Show that $AV_2 = 0$. Now define a $n \times r$ matrix U_1 by $U_1 = AV_1\Sigma^{-1}$. Show that $U_1^T U_1 = I$. Therefore the columns of U_1 are orthonormal. Show that we can define an orthonormal $n \times n$ matrix in the form $U = [U_1 U_2]$. Finally, derive the SVD by showing that

$$U^T A V = \left[\begin{array}{cc} \Sigma & 0 \\ 0 & 0 \end{array} \right].$$

Hint: use the block forms of the matrices.

Matlab exercises:

M1. Let us study quantitative comparisons of reconstructions. Consider given a "truth" vector $f \in \mathbb{R}^n$ and a "reconstruction" or "approximation" vector $g \in \mathbb{R}^n$. Define relative error by the formula

$$\frac{\|f-g\|}{\|f\|} \cdot 100\%.$$

- (a) Construct crime-free convolution data with and without added noise as is done in the routine deconv3_naive_comp.m. Compute the relative error of the noisy data compared to the non-noisy data. How does the percentage compare to the parameter noiselevel? Does this relationship depend on the dimension n?
- (b) Use truncated singular value decomposition (deconv5_truncSVD_comp.m) to compute reconstructions of a target from noisy crime-free data. Which number r_{α} of singular values gives the smallest relative error in the reconstruction? How does the optimal value of r_{α} change if you increase the noise level?
- M2. Create your own target function, compute noisy crime-free convolution data of it, and reconstruct it using truncated singular value decomposition and file deconv5_truncSVD_comp.m. Show the reconstruction (but not the original target) to some other student. How well can he or she recover the true function from the reconstruction?