
Data analysis with R

Lecture 6
Deeper in graphics

Jouni Junnila

page 1

par()
• par-function is the most important issue, when we

want to modify our graphical representations.
• There are two different kind of options in par.

1) A set of options which can be only called through
the par-function

2) Another set of options which can be called also
through different graphical functions.

• Next we’re going to go through several of these
options, needed in modifying figures.

page 2

• xlab, ylab: Labels for the x-axis and the y-axis
• main: The main title.
• sub: The subtitle.
• ylim, xlim: Limiting coordinates for the two axes.
• font: Used, when bold or italic fonts are needed

– 1 corresponds to plain text (the default),
– 2 to bold,
– 3 to italic and
– 4 to bold italic

3

• bg: defines the color to be used for the background of the device
region. (eg. Bg=“lightblue”)

• cex: gives a numerical value giving the amount by which plotting text
and symbols should be magnified relative to the default (=1).

• cex.axis: The magnification to be used for axis annotation relative to
the current setting of cex.

• cex.lab: The magnification to be used for x and y labels relative to the
current setting of cex.

• cex.main: The magnification to be used for main titles relative to the
current setting of cex.

• cex.sub: The magnification to be used for sub-titles relative to the
current setting of cex.

4

• col: A specification for the default plotting color.col.main, col.axis,
col.lab and col.sub change the color for corresponding texts.

• family: The name of a font family for drawing text. (eg. “serif”)
• lty: The line type. Line types can either be specified as an integer

(0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash,
5=longdash, 6=twodash) or as one of the corresponding characters.

• lwd: The line width, a positive number, defaulting to 1.
• pch: Either an integer specifying a symbol or a single character to

be used as the default in plotting points.
• mfcol, mfrow: A vector of the form c(nr, nc). Subsequent figures

will be drawn in an nr-by-nc array on the device
by columns (mfcol), or rows (mfrow), respectively.

page 5

• las: numeric in {0,1,2,3}; the style of axis labels.
– 0:always parallel to the axis [default],
– 1:always horizontal,
– 2:always perpendicular to the axis,
– 3:always vertical.

• mar: A numerical vector of the form c(bottom, left, top, right) which
gives the number of lines of margin to be specified on the four sides of
the plot.

• oma: A vector of the form c(bottom, left, top, right) giving the size of the
outer margins in lines of text.

• fig: A numerical vector of the form c(x1, x2, y1, y2) which gives the
coordinates of the figure region in the display region of the device.

6

• xlog, ylog: A logical value. If TRUE, a logarithmic scale is in use.
• xaxp: A vector of the form c(x1, x2, n) giving the coordinates of the

extreme tick marks and the number of intervals between tick-marks
when par("xlog") is false.

• xaxs: The style of axis interval calculation to be used for the x-axis.
Possible values are "r", "i", "e", "s", "d". Style "r" (regular) first extends
the data range by 4 percent at each end and then finds an axis with pretty
labels that fits within the extended range. Style "i" (internal) just finds an
axis with pretty labels that fits within the original data range.

7

Type of plot
• There are several different types of plots we can

draw. This is handled by an option type.
• Possible types are:

– "p" for points,
– "l" for lines,
– "b" for both,
– "h" for ‘histogram’ like (or ‘high-density’) vertical lines,
– "s" for stair steps,
– "n" for no plotting.
– "r" for regression line (with xyplot)

8

Adding points
• With the function points() we can add points to the

current graph.
• Actually points() has a type-option, so we can add

for example lines to the plot as well, using type=”l”.
– There is a special function for adding lines as well

lines()
• This function is specially convenient when we want

to overlay to different plots into the same graph

9

Example of dotplot()
• Let’s consider an example of trellis.style dotplot.
• First we’ll do some changes to the options and then

draw the plot.
› trellis.par.set(list(fontsize=list(text=6),

par.xlab.text=list(cex=2),
add.text=list(cex=1.5),
superpose.symbol=list(cex=0.5)))

› key <- simpleKey (levels(barley$year),space =
"right")

› key$text$cex <- 1.5
› dotplot(variety ~ yield | site, data = barley,

groups = year,key = key,xlab = "Barley Yield
(bushels/acre)",aspect=0.5,layout = c(3,2),
ylab=NULL)

10

11

barplots
• barplot() creates a bar plot with vertical or

horizontal bars.
• We can also do stacked plots with this function.
• Example:

› barplot(VADeaths, beside = TRUE, col =
c("lightblue", "mistyrose", "lightcyan“,
"lavender", "cornsilk"), legend =
rownames(VADeaths), ylim = c(0, 100))

› title(main = "Death Rates in Virginia",
font.main = 4)

12

page 13

Maps
• R has a package for using geographical maps in

figures. Let’s have an example about maps.
• library(maps)
• par(mar=rep(0, 4))
• map("nz", fill=TRUE, col="grey80")
• points(174.75, -36.87, pch=16, cex=2)
• arrows(172, -36.87, 174, -36.87, lwd=3)
• text(172, -36.87, "Auckland ", adj=1, cex=2)

14

Resulting map

15

Dendrograms
• Dendrograms are quite widely used in hierarchical

cluster-analysis, where we want find different small
clusters, and how are they forming bigger clusters
etc. Example follows
› hc <- hclust(dist(USArrests), "ave")
› dend1 <- as.dendrogram(hc)
› dend2 <- cut(dend1, h=70)

16

Dendrogram; code
› par(cex=0.7)
› par(mar=c(1, 0, 2, 5.5))
› plot(dend2$lower[[3]], horiz =
TRUE, type = "tr", axes=FALSE,
cex=0.8)

• Type=”tr” means tree-type plot

17

18

Dendrograms

19

• par(mar=c(6, 0, 2, 0))
• plot(dend2$lower[[2]],

axes=FALSE, cex=0.8)

Plotting multivariate data
• If we want to look at relationships of more than

two variables, we can eg. create matrix-plots.
– Example of looking at four variables at the same time

from the iris-data.
› par(cex=0.6) pairs(iris[1:4],
oma=c(18, 4, 4, 4),
panel=function(x, y, ...) {
points(x, y, lwd=0.1, pch = ".") })
par(cex=1)

20

Matrix plot; result

21

Plotting three variables
• When we look at three variable, there are special

functions we can use for plotting the data. Let’s have
examples of the use of functions called
– Persp()
– Contour()
– Image()

22

persp()
• This function draws perspective plots of surfaces

over the x–y plane.
› z <- 2 * volcano # Exaggerate the relief
› x <- 10 * (1:nrow(z)) # 10 meter spacing (S to
N)

› y <- 10 * (1:ncol(z)) # 10 meter spacing (E to
W)

› # Don't draw the grid lines : border = NA
› par(mar=rep(0, 4))
› persp(x, y, z, theta = 135, phi = 30, col =
"light grey", scale = FALSE, ltheta = -120,
shade = 0.75, border = NA, box = FALSE)

23

Persp() result

24

contour()
• Contour creates a contour plot, or add contour lines

to an existing plot.
• Example with same data as previous

› par(mar=rep(0.5, 4))
› contour(x, y, z, asp=1, labcex=0.35,
axes=FALSE)

› rect(0, 0, 870, 620)

25

page 26

Image()
• Image() creates a grid of colored or gray-scale

rectangles with colors corresponding to the values
in z.
› image(x, y, z, asp=1, col=grey(0.5 +
1:12/24), xlab="", ylab="", axes=FALSE)

› rect(min(x)-5, min(y)-5, max(x)+5,
max(y)+5)

page 27

page 28

