data management, data warehousing, statistics, information technology and scientific writing

Data analysis with R

Lecture 4
Introduction to Data Analysis
Jouni Junnila

Exploratory Data Analysis

- The first step in data analysis is Exploratory Data-Analysis (EDA).
- EDA is a name for a collection of data display techniques that are intended to let the data speak for themselves, prior to, or as a part of formal analysis.
- EDA looks for what may be apparent form a direct, careful and assumption-free examination of the data.

Four roles of EDA

- 1) EDA examines the data. This examination might suggesthow data should be analyzed or interpreted. This fits well with the view of science as inductive reasoning.
- 2) EDA results might challenge the theoretical understanding that guided the data collection. In this case EDA has a more revolutionary role.
- 3) EDA allows the data to influence and criticize the intended analysis. EDA facilitates checks on assumptions: formal analysis can then proceed with confidence.
 - Note, that in some fields (eg. Clinical trials) the analysis methods must be decided beforehand. This limites the meaning of EDA

Four roles of EDA

- 4) EDA might reveal additional information about the data, not directly related to the research question.
 - May suggest new lines of research
- However a data analyst must keep some sense in their EDA i.e. there is a risk of looking too hard.
 We practically can always see some patterns in the data, if we "torture" the data enough.
- EDA must therefore remain as a first step of data analysis, not the main part.

- Viewing a single dataset

- When we first get a new dataset in our hands, the first thing to do is to start drawing some graphics from the data. -
- Next we'll go through some of the basic graphical methods that statisticians most commonly use to familiarize themselves with the current data at hand.

Histograms

- Histograms are one of the very basic EDA-tools.
- Gives a graphical representation of the frequency distribution of the data.
- A bell-shaped histogram suggests that the data is from the normal distribution.
- Not so easy to interpret with small samples.
- Viewer can be easily fooled by selection of break points. It's a good practice to always test a few different break points.

Histogram; example (a)

- Histogram of total length with breakpoints 75, 80, 85, etc.
- The data seems to be normally distributed
- hist(totlngth, col="lightblue")

Histogram; example (b)

- Histogram of same data, but with breakpoints 72.5, 77.5, etc.
- Looks quite different than the previous histogram!
- hist(totlngth, col="lightblue", breaks=72.5 + (0:5) * 5)

Density plots

- Histograms are crude estimates of density.
- To get a better estimate we can draw a smooth density estimate.
- With histograms we have to choose the width of histogram bars somewhat subjectively, whereas density estimates require a bandwidth parameter that controls the amount of smoothing.
 - R-defaults works usually quite well for bandwidth parameter.

- Histograms & densities

- After calculating the density estimates we can overlay them with the previously drawn histograms.
- With these kind of graphs we can draw attention to certain forms of non-normality,
 - i.e skewness or kurtosis in the data.
- Non-normality is a problem with many different statistical methods.
 - Therefore checking for normality is important!

Histograms & densities (2)

- Deciding whether the histogram is close enough to a normal distribution can be difficult, and is based only on the eye of the viewer.
 - Thus, the correctness of the decision is not absolutely sure.
- Therefore, there are several formal statistical tests for testing normality of the data as well. These will be covered later on.

Histograms & densities; example (a)

dens <density(totlngth)
hist(totlngth,
col="lightblue",
freq=F)
lines(dens)</pre>

Histograms & densities; example (b)

```
hist(totlngth,
col="lightblue",
breaks=72.5 +
  (0:5)*5, freq=F)
lines(dens)
```


-Steam-and-leaf display

- The stem-and-leaf display is an alternative for histogram.
- It is used for displaying a single column of numbers.
- The resulting graph can be quite informative, but often quite hard to interpret, especially for non-statisticians

Therefore it is quite rarely used in actual data analysis

Steam-and-leaf display; example

```
The decimal point is
 at the
 74
 76
 78
 80
       05
 82
       0500
 84
       05005
86
       05505
       0005500005555
 88
       5550055
 90
       000
       05
 96
```

- stem(totlngth, scale=2)
- With the scale-parameter the length of the graph.

Boxplots

- Boxplots are a great way of representing data.
- It gives us a rough summary of the data.
 - With a trained eye you can comprehend the data at a short glance.
- Boxplots focus on specific important features of the data.
- It can also be used when we want to compare distributions of some variable in some subgroups (eg. female/male)

Boxplot; annotation

Boxplots; calculation

- Boxplots are also called box and whisker plots.
- Whiskers are the lines outside the box.
 - Maximum length of the whiskers is 0.75*interquartile range
 - The actual length = maximum/minimum value from the data that is smaller/bigger than the maximum length of the whisker.
 - Values bigger than the maximum length are considered outliers which are drawn separately (circles in R by default).

Boxplots; example

 We can compare groups determined by a factor in some numerical variable, e.g.

boxplot(length~species
data=cuckoos,
xlab="Length of egg",
horizontal=T,las=2)

stripplot()

- Function stripplot from the lattice-package gives the same kind of graph as boxplot, but doesn't summarize anything.
- All the observations will be drawn. (in the same way as outliers in boxplot)

Pairwise relationships

- In science we often want to examine the pattern and relationship of two numeric variables.
- A simple but important tool for that is scatter plot.
- With scatter plots it is important to select the right scale.
 - With wrong selection of scale, we can either show some pattern in the data, that isn't there or hide some pattern that there actually is.

Scatter plots

- Simple example of the use of scatter plot.
- plot(length~bread th, data=cuckoos)
- Note! If we would use species instead of breadth, we would get a boxplot. The type of graph is determined by the class of the variable.

