
Data analysis with R

Lecture 1

page 1

Introduction to R
• R is a functional language that uses many of the

symbols as the widely used general purpose
languages C, C++ and Java.

• R has a language core that uses standard forms of
algebra and allows the calculations, functions are
then built on top of the core, allowing a limitness
extension of the language.

• Most of R-code can be run also in the commercial
software S-PLUS, without modifications.

2

Introduction to R (2)
• All R entities, including functions, data

structures etc. are R-objects and are operated on
as data.
– You can type ls() or objects() to see all the R-

objects currently in the workspace.

• When quitting R, you automatically lose every
object you have created to the workspace.
– However you can save your workspace as an image

(*.Rdata), which you can load next time you use R.

3

Working environment
• Working directory is the directory where R will read

and write files by default.
• You can access it by getwd() and change it by

setwd()
• Object is a data structure or function that R

recognizes
– Functions, as well as data, exist as \objects"
– Note also, eg, formula objects, expression objects,

etc.

4

Working environment (2)
• Workspace is the current user’s ”database”
• Everything that user has created during the current

R-session, is stored in the workspace.
• Image files are used to store R objects, that is

workspace contents as *.Rdata. You can do this by
save.image()

5

Online help
• R has excellent help pages online. You can

access them in several ways.
• Type in help(help) to get information about the

help features.
• To get help on a specific function just type for

example help(plot)
• If you’re in a search of a function which does a

certain thing you can search it by help.search() Eg.
help.search(”sort”) gives a list of functions which
have ”sort” in their alias or title 6

Overview of R
• The > at the start of the line is the command prompt.

User commands are typed following this.
> 5+6
[1] 11
> 12/3
[1] 4
> 10 < 1
[1] FALSE

• The [1] says “first element will follow”
• So as you can see, results are printed together with

the source code.
7

R-syntax
• Command separator: End of line or ;

– Eg. 6*5; print(10-4)
• Upper case is different than lower case

– A ? a
• Assignment symbol is <-

– Eg. X <- 9
• Comments are introduced with # sign

8

Utility functions
• Functions that act on the contents of the workspace

ls() # List contents of workspace
rm(x, y, z) # Remove x, y, and z from workspace
rm(list=c("x", "y", "z")) # Alternative to rm(x, y, z)
rm(list=ls()) # Remove contents of workspace
str(airquality)

• See examples.

9

NAs
• Missing values are stored in R with NA. This is

different from many other statistical software, so
important to remember

• Eg. X <- c(2,4,5,NA,4,6,NA)
– [1] 2 4 5 NA 4 6 NA

• Missing values play an important role in many
statistical functions
– That’s why many of them have options on how to

handle the NAs. (na.action)

10

Comparison operators:
• <
• >
• <=
• >=
• == (equality)
• != (inequality)

11

Vectors in R
• Vectors in R can have mode ”logical”, ”character”,

”numeric” or ”list”. Examples of these:
– c(6,4,2,4,0) [numeric]
– c(T,F,T,F,T,F) [logical]

[1] TRUE FALSE TRUE FALSE TRUE FALSE

– c(”Helsinki”,”Turku”,”Salo”) [character]
– list(2,”Helsinki”) [list]

[[1]]
[1] 2
[[2]]
[1] "Helsinki" 12

Factors
• A factor is stored with values 1,2,3...k
• The levels are character strings. Example:

– Sex <- c(rep(”Male”,50),rep(”Female”,70))
• Then change to factor typing

– Sex <- factor(Sex); levels(Sex)
• [1] "Female" "Male"

• Many functions require the use of factors when
applicable. So it’s important to know how to do it.

• Notice that, by default, the levels are taken in
alphanumeric order.

13

Changing classes
• When doing data analysis with R, you have to have

the variables in right class.
• You can check, whether a variable is from certain

class by typing for example is.factor(sex)
• To change the class you can type as.factor(sex)
• Same kind of functions apply for other classes as

well. (eg. As.numeric, is.data.frame, etc.)

14

Data frames
• Data frames are a very import part of R modeling

and R-graphics.
• Data frames offer a tidy way to supply data to

modeling functions.
• Data frames are essential practically always when

we do data analysis with R.
• Data frames are generalization of matrix-objects.
• Every column can have different modes.

15

Data frames; properties
• Data frames have row names

– Assessed by row.names(Cars93.summary)

• And column names
– Assessed by colnames(Cars93.summary)

• To assess a certain column of a data frame we can
use $-sign
– Eg. Cars93.summary$Max.passengers

• There are other ways to do the same thing as well.
• Cars93.summary[,4]
• Cars93.summary[,”abbrev”]
• Cars93.summary[[4]] 16

Data frames; properties (2)
• Other useful functions with data frames

– names() #names of columns
– dim() #Dimensions
– summary() #Numeric summary details
– str() #More technical summary
– class() #Class of data frame column
– attach() #Avoid repeated references

• See examples

17

Length & subsets
• All R objects have a length, which can also be 0.
• Eg. With vectors the length is the number of values

in the vector, with data-frames the length is rows x
columns. Length is very useful function with user
created function and loops.

• Subsetting can be done in several ways.
– Easiest way is to use subset(), eg. subset(x, x<10)
– x[c(1,3:4)]
– x[-c(2,5)]

18

subsets()
• We can also subset datasets based on some

condition(s)
• For example take only observations, which are

above or below some pre-determined limit
– Xsub <- x[x>10]
– High <- airquality[airquality$Temp > 60,]

• NOTE! With data-frames we first refer to rows and
then after the ”,” to columns, as shown above.

19

read.table - function
• Most common way to read in data to R is to use

read.table –function.
• Usually used with txt-files
• Basic syntax:

– Read.table(file,header=FALSE, sep=”\”, ...)
• Has many options that the users can modify, but the

only obligatory option is file.

– Special functions have been created based on
read.table to read in different kinds of data

• Eg. read.csv, read.xls, read.delim, read.xport
20

scan - function
• scan – function is also for reading in data to R
• It is a lot more flexible tool than eg. read.table

– The data doesn’t have to be in a table form, for
example

• Usually, though, read.table is enough and we should
prefer it in table-like datasets for it’s convinience.

scan(file, ...other options)

21

AND & OR -operators
• The basic AND & OR –operators are typed with

symbols as &(=AND) and | (=OR).
• However, sometimes these are not enough and we

need also Logical AND, and Logical OR. These are
typed as symbols as && and ||.
– See examples.

22

R-editors
• There are several text-editors that we can use to

make our programming easier
• For example

– Tinn-R, Emacs, WinEdt, Gnu
• R comes with it’s own editor: Rgui, which is the

same as Notepad. Use of other editors is always
beneficial for the programmer

• Later during the course, we are going to see the use
of Tinn-R.

23

