data management, data warehousing, statistics, information technology and scientific writing

Data analysis with R

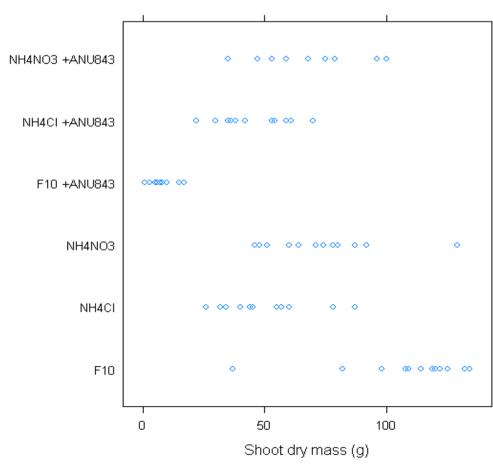
Lecture 9
Statistical modelling
Jouni Junnila

Example data

- Let's use an example-data to get us acquainted with statistical modelling.
- The example-data is a shoot dry mass data from an experiment that compared wild type (wt) and genetically modified rice plant (ANU843), each with three different chemical treatments. We have 72 observations in total.

First view

> stripplot(trt
 ~ShootDryMass,
 data=rice,
 xlab="Shoot dry
 mass (g)")



First view (2)

- The bottom three strips are the results of "ild type" plants, the final three strips repeat the treatments but for ANU843.-
- The stripplot displays "within group" variation, as well as gives an indication of variability between the group means.
- For now, let's ignore the two-way structure in the data and carry-out a one-way analysis of the results.

One-way analysis of variance

- One-way analysis of variance formally tests whether the variation among the means is greater than what might occur simply because of the natural variation within each group.
- An F-statistic much larger than 1, indicates that the means are different.
 - P-value is designed to assist this judgement

One-way analysis of variance in R

• Easiest way to conduct a one-way ANOVA in R-is to use *aov*-function.

model <- aov(ShootDryMass ~ trt, data=rice)</pre>

```
anova(model)
Analysis of Variance Table
Response: ShootDryMass
         Df Sum Sq Mean Sq F value Pr(>F)
             68326 13665.1 36.719 < 2.2e-16
          5
trt
Residuals 66 24562 372.2
Signif. codes:
                 \***' 0.001 \**' 0.01
```

6

One.way ANOVA; interpretation

- The very small *p*-value for the *F*-statistic strongly-indicates that there are indeed differences between the treatment means.
- Interest now lays in determining the nature of the differences.
- A first-step could be to print out the coefficients of the model.

Coefficients

>summary.lm(model)\$coef

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	108.33333	5.568917	19.453214	4.918624e-29
trtNH4Cl	-58.08333	7.875638	-7.375064	3.474516e-10
trtNH4NO3	-35.00000	7.875638	-4.444084	3.454197e-05
trtF10 +ANU843	-101.00000	7.875638	-12.824358	1.381337e-19
trtNH4Cl +ANU843	-61.75000	7.875638	-7.840635	5.106634e-11
trtNH4NO3 +ANU843	-36.83333	7.875638	-4.676870	1.488189e-05

Coefficients; interpretation

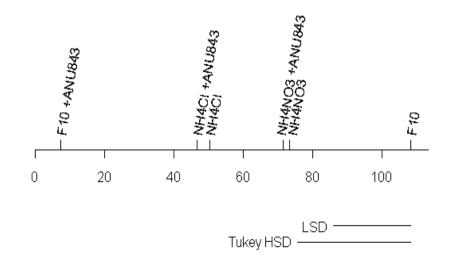
- The initial level, which in here is F10, has the role of a reference or baseline level.
 - The "Intercept" line gives the estimate for *F10*.
- Other treatment estimates are differences from the estimates for F10.
- The standard errors are, after the first row, standard errors for differences between *F10* and later treatments.

__Changing the reference-level

- We can easily change the reference level to some other with the *relevel*-function.
- For example, if we want the reference-level to be "NH4Cl", we can type:
 - > rice\$trt <- relevel(rice\$trt,
 ref="NH4Cl")</pre>
- And then run the analysis again.

One-way plot

- A special plot in the DAAG-library for oneway layouts is called oneway.plot.
- For out example we can type
 - oneway.plot(aov(Sho
 otDryMass~trt,
 data=rice=



- Interpretation of the plot

- From the plot we see, that results come in pairs. For F10 there is a huge difference between wild type and ANU843 variety, on for the two other chemicals there is no detectable difference.
 - This highlights the two-way structure we actually have in the data.
 - If we have a two-way structure, running a one-way model is undesirable. We may miss out important features.

Multiple comparisons

- When doing multiple comparisons, we have to worry about multiplicity-issue.
- Tukey's HSD-test (Honestly significant differences) does a quite strict and conservative comparison, i.e it is somewhat biased against finding differences.
- For example The Least Significant Difference (LSD)

 —test does the opposite, it is anti-conservative and biased towards finding differences.
- Usually prefer to be conservative than anticonservative.

Tukey HSD-test

• Function for doing Tukey's HSD-test is *TukeyHSD*.

>TukeyHSD(model)

o

а

Tukey multiple comparisons of means 95% family-wise confidence level
Fit: aov(formula = ShootDryMass ~ trt, data = rice)
\$trt

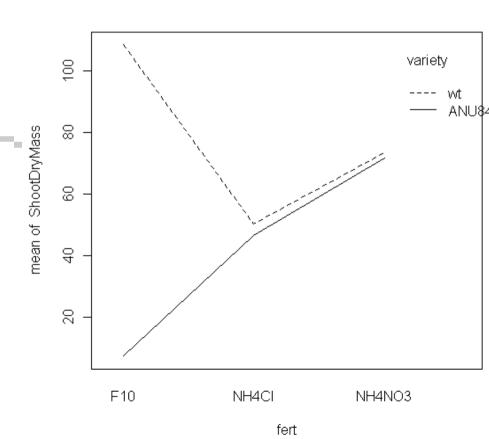
	diff	lwr	upr	p adj
NH4Cl-F10	-58.083333	-81.1990766	-34.967590	0.0000000
NH4NO3-F10	-35.000000	-58.1157432	-11.884257	0.0004789
F10 +ANU843-F10	-101.000000	-124.1157432	-77.884257	0.0000000
NH4Cl +ANU843-F10	-61.750000	-84.8657432	-38.634257	0.0000000
NH4NO3 +ANU843-F10	-36.833333	-59.9490766	-13.717590	0.0002094
NH4NO3-NH4Cl	23.083333	-0.0324099	46.199077	0.0505271
F10 +ANU843-NH4Cl	-42.916667	-66.0324099	-19.800923	0.0000117
NH4Cl +ANU843-NH4Cl	-3.666667	-26.7824099	19.449077	0.9971514
NH4NO3 +ANU843-NH4Cl	21.250000	-1.8657432	44.365743	0.0892143
F10 +ANU843-NH4NO3	-66.000000	-89.1157432	-42.884257	0.0000000
NH4Cl +ANU843-NH4NO3	-26.750000	-49.8657432	-3.634257	0.0141406
NH4NO3 +ANU843-NH4NO3	-1.833333	-24.9490766	21.282410	0.9999020
NH4Cl +ANU843-F10 +ANU843	39.250000	16.1342568	62.365743	0.0000682
NH4NO3 +ANU843-F10 +ANU843	64.166667	41.0509234	87.282410	0.0000000
NH4NO3 +ANU843-NH4Cl +ANU843	24.916667	1.8009234	48.032410	0.0273045

Data with a two-way structure

- The example data, rice-data has in fact a two-way structure.
- The first factor relates to whether F10, NH4Cl or NH4NO3 is applied.
- Second factor relates to whether the plant is wild type or ANU843.
- An interaction plot represents nicely this structure.

Interaction plot

- attach(rice)
- interaction.plot (fert, variety, ShootDryMass)



Interaction plot; interpretation

- The interaction plot shows a large difference between ANU843 and wt for the F10 treatment.
- For the other treatments there is now detectable difference.
- A two-way analysis would show us a large interaction.
- Let's analyze the data with a two-way variance analysis model.

- Two-way ANOVA in R

- model2 <- aov(ShootDryMass ~ fert + variety + fert*variety, data=rice); anova(model2)
- Analysis of Variance Table
- Response: ShootDryMass
- Df Sum Sq Mean Sq F value Pr(>F)
- fert 2 7019 3509.4 9.4299 0.0002499 ***
- variety 1 22684 22684.5 60.9546 5.858e-11 ***
- fert:variety 2 38622 19311.2 51.8903 2.875e-14 ***
- Residuals 66 24562 372.2
- ---
- Signif. codes: 0 ***' 0.001 **' 0.01 *' 0.05 \.'
 0.1 \' ' 1

---Two-way ANOVA; coefficients

```
summary.lm(model2)
aov(formula = ShootDryMass ~ fert + variety + fert * variety,
    data = rice)
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                         108.333
                                      5.569 19.453 < 2e-16 ***
(Intercept)
                                   7.876 -7.375 3.47e-10
fertNH4Cl
                         -58.083
                                      7.876 - 4.444 \ 3.45e - 05
fertNH4NO3
                         -35.000
                                      7.876 - 12.824 < 2e - 16
                      -101.000
varietyANU843
fertNH4Cl:varietyANU843
                          97.333
                                     11.138 8.739 1.27e-12
fertNH4NO3:varietyANU843 99.167
                                     11.138 8.904 6.45e-13 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 19.29 on 66 degrees of freedom
Multiple R-squared: 0.7356, Adjusted R-squared: 0.7155
F-statistic: 36.72 on 5 and 66 DF, p-value: < 2.2e-16
```


Presentation issues

- So far we have treated all comparisons as of equal interest. Often they are not. There are several possibilites:
 - Interest may be in comparing treatments with a control, with comparisons between treatments of lesser interest.
 - Interest may be in comparing treatments with one another.
 - There may be several groups of treatments, with the main interst in comparing the different groups., etc.

Presentation issues (2)

- Any of the previous situations should lead to ____ specifying in advance the comparisons of interest.
- When we present our data, we should be careful not to mislead the reader and to give them enough information to understand what has been presented.
- Next we'll see few instructions of presenting data that are useful.

Presentation issues (3)

- For graphical presentations, use a layout that reflects the data structure, i.e., a one-way layout for a one-way data, and a two-way layout for a two way data.
- Explaing clearly how error bars should be interpreted ? SE, ? 95 % confidence interval, ? SED limits or whatever.
- When there is more than one source of variation, explain what source of "error" is/are represented.
 - Analyst should try to find the error what is relevant and interesting to be presented in the graphs.

- Nested variance structure

- Some experiments have a data structure where the variation is nested within another variable. This kind of structure requires special attention in the model formula.
- Example: Ten apples are taken from a box. 5 are assigned to one tester, 5 to another tester randomly.
- Both testers make two firmness tests on each of their five fruit.
- Here we have a nested structure, where the variance of the fruit is nested within the tester.

Nested variance structure (2)

- Easy mistake here would be to analyze this as a two parallel group desing, i.e. comparing ten observations against ten observations.
 - This would be wrong as we only have 5 fruits / group.
 - We would end up with too accurate error estimate, i.e. Underestimation of the variation.
- How these kind of models can be handled in R, will be handled on next lecture.