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Statistical models
• Statisticial models rely on probabilistic forms of 

description that have wide application over all areas 
of science.

• Often consists of a deterministic component as well 
as a random component.
– The random component attempts to account for 

variation that is not accounted for by a law-like 
property.
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Statistical models (2)
• Models should be scientifically meaningful, but not 

at the cost of doing violance to the data.
• As seen in the previous lectures, consideration of a 

model stays somewhat in the background in initial 
efforts at exploratory data analysis.

• In formal analysis the choice of model is of crucial 
importance!

• The choice may be influenced by previous experience 
with comparable data, by subject area knowledge 
and of course by exploratory analysis of the data.
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Model components
• Statistical models typically include at least two 

components. One component describes law-like 
behavior i.e fixed effects. The other is random, often 
thought as ”noise”, i.e subject to statistical variation.

• Usually we assume that the elements of random 
component are uncorrelated.

• Also in many cases we assume that the random 
components have mean of zero.
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Example
• Let’s consider an example where different weights of roller 

were rolled over different parts of lawn and the depression 
noted.

• We would expect the depression to be proportional to the 
roller weight.

• Drawing a scatter plot of the data shows is this really true.
• plot(depression~weight, data=roller, 
xlab="Weight of roller (t)",

• ylab="Depression (mm)", pch=16)
• abline(0, 2.25)
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Example continues
• A slope of 2.25 seems to fit 

the data quite well.
• However we see, that the 

observations vary quite a 
bit and are not on the line.

• That’s why we need a 
random variable to model 
the differences of the 
observations from the line.
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Example model formula
• Our model formula would be

üDepression = b x weight + error

• In the model b is constant, and that is the one we want to 
estimate. The error is different for each part of the lawn.

• If the error would be zero, all the observations would lie on 
the line and we could ignore it.
• However, this is never the case in real-life.
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Model formula
• In general we write a basic statistical model as follows:

– observed value = model prediction + statistical error
– Or mathematically: Y = µ + e

• As said, the e tells us how much the actual observations differ 
of that what our fitted model estimates.

• This can be thought as the accuracy of the prediction. 
• For assessing the accuracy we need residuals.

– The more noise there is in the data, the more difficult is to 
conduct an accurate prediction.

– Residuals are what is ”left over” after fitting the linear model. 
They are the estimate of the noise in the data.
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Constructing a model
• The first duty of any model is to be useful. Model 

must yield inferences that, for its intended use, are 
acceptably accurate.

• Intended use can be eg. prediction, model 
parameters or in many cases both.

• Statistical model should reflect the data structure as 
good as possible and be also scientifically 
meaningful.
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Model formula in R
• R’s modeling functions use model formulae to 

describe the role of variables and factors in models.
• A large part of data analyst’s task is to find the 

model formula that will be effective for the task in 
hand.

• By default, R-modelling functions fit the model with 
an intercept term added on. 
– This can be changed, though.
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Example model formula
• Let’s consider the previous example again. To fit the 

straight line to the data we can use a function called 
lm (linear model).
– lm(depression ~ model, data=roller)

• Above will fit the model with the intercept. To 
remove the model formula is:
– lm(depression ~ -1 + model, data=roller)

11



Model assumptions
• Common model assumptions are normality, 

independence of the elements of the error and 
homogeneity of variance.

• There are some assumptions whose failure is 
unlikely to compromise the validity of analyses.
– We say that the method used is robust against those 

assumptions. 
• Other assumptions matter a lot.
• There are few hard and fast rules to decide is the 

assumption important or not.
12



Random sampling assumptions
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• Usually, data analyst has a sample of values, that 
will be used as a window into a wider population.

• Almost all standard statistical methods require that 
all population values are chosen with equal 
probability,independently of the other sample values.

• However, often the sample is chosen at random, for 
example a survey can bee conducted in a shopping 
center, which results in bad quality of data.



Random sampling assumptions (2)
• In practice, analyst may make the random sampling 

assumption, eventhough the selection mechanism 
does’t guarantee randomness. 
• Inferences which are made based on this kind of data 

are less secure, than with random samples. 
• Random selection avoids the conscious and 

unconscious biases in the results.
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Random sampling assumptions (3)
• Failing in inpendence assumption is a common 

reason for wrong statistical inference. 
• It is quite hard to detect, though.

• Data should be gathered so that the independence 
assumption is guaranteed.

• Because of the importance of independence, 
randomization in designed experiments and random 
sampling in sample surveys are so important 
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Checks of normality
• Many data analysis methods rest on the assumption

that the data are normally distributed.
• The question is how much departure from normality

can we tolerate.
• Histograms and density plots are one way of 

checking this, but maybe more accurate possibility is
to draw normal probability plot (QQ-plot)

• If the data are from a normal distribution, the QQ-
plot should approximately be a straight line.
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Normal probability plot
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• To compare data with the normal distribution we can 
use a function called qqnorm. (Normal QQ-plot)

• In the graph we compare the quantiles from the data 
to the theoretical quantiles from the normal 
distribution.

• With qqline we can draw a line to the graph, where 
the observations should be, to make our 
investigation easier.



Normal probability plot; example
• > y <- rt(200, df = 5)
• > qqnorm(y) 
• > qqline(y, col = 2)
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Formal statistical testing for normality

• There are several statistical tests for normality.
• Problem with these tests is that normality is difficult 

to rule in small samples, while in big samples the 
normality assumption is practically always accepted.

• So we should rely also in something else (ie. graphs) 
in addition of the formal tests.

• Most common tests for normality are Shapiro-Wilk 
test (shapiro.test) and Kolmogorov-Smirnov test 
(ks.test).
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Checking other assumptions
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• As stated before, exploratory data analysis play an 
important role when checking assumptions before 
the formal analysis.

• Following the formal analysis, investigating the 
residuals of the model, is a good way to go, to make 
sure that everything is ok.

• You may find evidence of outliers, increase/decrease 
of standard deviation in the data or most importantly 
identify data points, that have high influence in the 
model estimates.



Non-parametric methods
• Classical non-parametric methods don’t have as 

much assumptions as does the parametric methods.
• However these methods might not be the answer if 

our parametric assumptions fail.
• If we ignore some structures of the data that we 

would consider with parametric approach, we loose 
valuable insights of the data.

• Non-parametric methods often assume too little, and 
that’s why these models are often unsatisfactory. 
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