
Data analysis with R

Lecture 11
Additional topics about R

Jouni Junnila

page 1

Lecture contents
• During the last lecture of the course we’ll focus on

issues about R.
• We’ll go through some functions, proven to be

useful in diverse data analysis situations, starting
from data manipulations and ending in functions
related to analysing the data.

• We’ll also learn how to write our own functions.

2

String functions
• Let’s start by looking into functions related to

character variables.
• In some situations we need to recognize strings from

a character vector.
• There are a few functions we can use in these

situations.

3

substring
• A function called substring is for selecting a string

of certain length from a longer character vector.
• The function needs the starting and stopping point to

be determined.
– Examples

> substr("abcdef",2,4)
[1] "bcd"
> substring("abcdef",1:6,1:6)
[1] "a" "b" "c" "d" "e" "f"

4

strsplit
• Strsplit-function splits the elements of a character

vector x into substrings according to some splitting
character.

• With this function we can also separate data points,
unlike with substr and it also more efficient.

• Let’s see two examples about use of strsplit in R

5

grep
• A function called grep is used for pattern matching.
• With this function we can find a certain pattern

inside character vectors and determine where in the
character vector was the pattern found.
if(length(i <- grep("foo",txt)))
cat("'foo' appears at least once
in\n\t",txt,"\n")

'foo' appears at least once in
arm foot lefroo bafoobar

6

sub & gsub
• sub and gsub perform replacement to character

vectors.
• i.e it recognizes a certain pattern in the character

vector and replaces it with another pattern.
• gsub is a global function, sub is not.
• Let’s have examples of sub and gsub and see the

difference between the two.

7

Avoiding errors
• Sometimes, when we have big datasets and we need

to perform a certain calculation several times in a
row, (eg. a model fit) we want to control, what
happens if an error occurs (eg. model does not
converge).

• try is a wrapper to run an expression that might fail
and allow the user's code to handle error-recovery.
– So we can tell R to move forward even though an

error has occured.
– Try can be used with any function.

8

unique
• In several occasions in data analysis we need to only

select the unique values of certain variable.
– For example select only one observations per patient.

• Unique-function deletes duplicate elements/rows
from the dataset.

x <- c(3:5, 11:8, 8 + 0:5)
(ux <- unique(x))
(u2 <- unique(x, fromLast = TRUE))

9

setdiff
• With setdiff we can find the values from object 1

that aren’t in the object 2.
• Similar functions can be found for union of two

objects, i.e find values that are in either object.
• And intersect of two objects, i.e find values that are

in both objects.
• Let’s look into these three with an example.

10

Memory issues
• When working with big datasets sometimes memory

issues are a problem. With function memory.limit
you can adjust the maximum memory used.
– Note, in Windows there is a maximum usage of

memory, in Linux no such a maximum exists.

11

Contrasts
• With statistical models quite often we have to create

our own contrasts. For example comparing end-of-
study values to baseline separately in the treatment
group.

• Good package for this is called contrast (the
function is also called contrast).

• Also in package gmodels there are functions
(estimable, fit.contrast) to fit custom contrasts.

• If you need to do stuff like this, going through these
functions would be a good way to start.

12

Writing your own functions

13

• In R it’s fairly easy to write your own functions
• Using your own functions, usually helps your code

to be more efficient, a lot shorter (so less time
consuming ☺) and less errors.
– Example function calculates mean and sd

mean.and.sd <- function(x) {
av <- mean(x)
sd <- sqrt(var(x))
c(Mean=av,SD=sd)
}

Own functions
• Note that variables av and sd in the previous

example are local -> they cannot be assessed outside
the function.

• Advanced R-programmers basically have a large set
of general functions, that they have written and are
validated to work correctly.
– Then it is easy just to select the ones you need.

14

Outputting

15

• If we want to write out a data-frame, a useful
function is called write.table.
– write.table(elastic1, file=”bands.txt”)
– Row and column names are printed out in the file by

default. With row.names=F /col.names=Fwe can
change this.

– We can also select what will be used as a separator
etc.

Redirection of screen output to a file
• The function sink() takes as a argument the name of

a file. Screen output is then directed to that file.
• To direct output back again to the screen, call sink()

without specifying an argument.
– For example

sink(”bands2.txt”)
elastic1
sink()

16

Ordered factors
• We have talked a lot about factors during the course.
• As they are important, let’s introduce also ordered

factors.
• With ordered factors, we can have other order of

factor-levels than alphaphetical.
stress.level<-rep(c(”low”,”medium”,”high”),2)
ord.str<-

ordered(stress.level,levels=c(”low”,”medium”,”hig
h”)); ord.str

[1] low medium high low medium high
Levels: low < medium < high

17

Merry
Christmas

18

