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AP arma
Regression with a single predictor

e On Monday we handled models, where the
explanatories were factors.

* When the explanatories are numeric variables, we fit
regression models.

o Smplest possible regression model is a modd,
where there is only one predictor.
 An example of thisisthe roller data previoudy

Investigated, where we want to explain depression
with weight of the roller.



Example regression model In R

nodel <- | n(depression~weight, data=roller);summary(nodel)

Call:
| M(fornmul a = depression ~ weight, data = roller)
Resi dual s:

M n 1Q Medi an 3Q Max
-8.180 -5.580 -1.346 5.920 8.020
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -2.0871 4.7543 -0.439 0.67227

wei ght 2.6667 0. 7002 3.808 0.00518 **

Signif. codes: O **** 0.001 “**’ 0.01 “** 0.05 *.

0.1°

Resi dual standard error: 6.735 on 8 degrees of freedom

Mul ti ple R-squared: 0.6445,

Adj usted R-squared: 0.6001
F-statistic: 14.5 on 1 and 8 DF, p-value: 0.005175
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AP arma
Diagnostic plots

 |f we use the plot-function on to our model-object,
we' |l get a set of four diagnostic plots.
— Oneisaready familiar to us (the normal QQ-plot),

other diagnostic what will be printed are ” Residuals
vsfitted”, ” Scale-Location”, ”Residuals vs Leverage”

— Investigation of the three other diagnostic plotsisleft
out from this course.

— plot(model)
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4|?IARMA
Multiple linear regression

e Multiple linear regression generalizes methodol ogy
of sample linear regression to allow multiple
predictor variables.

o Let'sconsider an example of multiple regression.

— Dataset littershas dataon the variables|size (litter
size), bodywt (body weight) and brainwt (brain
weight), for 20 mice.

— Our goal isto explain the brain weight with litter size
and body weight.

o Let’sfirst plot the data with matrix plot.



| pairs(litters, labels=c("Isize\n(litter size)",
4 | "bodywt\ n(Body Weight)","brai nwt\n(Brain
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AP arma
|nterpretating the plots

« From the plots we can see, that there could be some

Inear connection between brain weight and both

Itter size and body weight.

— |t seemsto sensible to fit a regression model, with the
two predictors.

— We can use the Im-function here again and type

e | M brainmt ~ |Isize + bodyw +
| si ze*bodywt, data=litters)




AP arrma
Modifying the model

« Coefficients:

Estimate Std. Error t value Pr(>|t])
(I ntercept) 0. 2443473 0. 0862005 2.835 0. 0120 *
| size -0. 0022600 0.0069043 -0.327 0. 7477
bodywt 0. 0161056 0. 0086876 1.854 0.0823 .
| si ze: bodywt 0.0011854 0.0008212 1. 443 0. 1682

» Theinteraction termisnot significant. Let’s remove that and fit the model

again.
e |mbrainmt ~ |size + bodywt, data=litters)



4‘|?IARMA

|nterpretation

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.178247 0.075323 2.366 0.03010 *
| si ze 0.006690 _ 0.003132 2.136 0.04751 *
bodywt 0.024306 0.006779 3.586 0.00228 **

Both |size and bodywt seems to be significant explanatories.
The estimates seem to be very small, but still they are
significant, why?

The estimate gives us a value, that how much will a change
of one unit in the predictor effect the response.

The response values are 0.368-0.439. So small in genera and
also small variation. That's why our estimates are also small.
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AP arma
|nterpretation (2)

e |n multiple regression it’s not as straight forward to
Interpret the coefficients as with smple linear
regression.

* |n our example, the coefficients for |size estimates
the change in brainwt with [size when bodywt is held
constant. Same applies naturally with bodyw.

e For any particular value of bodywt, brainwt
Increases with Isize. This is a significant finding for
the purpose of the study.



4|?IARMA
L1near mixed models

e S0 far we have had just fixed effects in the model-

* Quite often we have designs, that require using
random effects as well.

e |[f we have both random and fixed effects in the
model, we call the mode a linear mixed modédl.

e Convinient functions for fitting mixed models are
Ime (nime-library) and Imer (Imed-library)

e Imerd is useful aso for fitting generalized linear
mixed models and nonlinear mixed models.
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4|?IARMA
lme-example

 Thelme-function is specialy good, if we have
nested random effects.

— Function allowsthem, and they are also easy to code.

* TheOrthodont data has 108 rows and 4 columns of
the change in an orthdontic measurement over time.

— distance. A numeric vector of distances from the
pituitary to the pterygomaxillary fissure (mm).

— age. A numeric vector of ages of the subjects.
— subject. A factor for the subject ID.

— sex. A factor with levels Male and Female
13



i = N
Model construction

e Our god isto explain distance with age. We aso
have to consider that we have severa samples from
the same subject. Thus, subject should be consider

as a random variable.
fl <- Ime(distance ~ age, data=Ot hodont,
random=~1| Subj ect)
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4EIARMA

Summary(lme)

>sunmmar y(f1)
Li near m xed-effects nodel fit by REM
Data: Ot hodont
Al C Bl C | ogLi k
454. 6367 470.6173 -221.3183

Random ef f ect s:
Fornmul a: ~age | Subj ect

Structure: CGeneral positive-definite,
paranetrizati on

St dDev Corr
(I ntercept) 2.3270340 (Intr)
age 0.2264278 -0.609
Resi dual 1. 3100397

Log- Chol esky
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4EIARMA

Summary(lme) [ 2]

Fi xed effects: distance ~ age
Value Std. Error DF  t-val ue p-val ue
(I ntercept) 16.761111 0.7752460 80 21.620377 0
age 0.660185 0.0712533 80 9.265333 0
Correl ati on:
(Intr)

age -0.848
St andar di zed Wthin-Goup Residuals:
M n Q Med @8] Max

- 3. 2231061 -0.4937611 0.0073166 0.4721511 3.9160332

Nunber of Qbservations: 108
Nunber of G oups: 27
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LLinear mixed models & nesting

« Often we have also nesting structures in our design.

e Obvioudy we have to consider also this when we
form our statistical model.

e Nesting is most commonly related to random
variables.
e Eg. Subject nested in centers.

 Next, we'll consider an example about linear mixed

effects model, with nesting structure in the random
effects.

17



AP arrma
Example-data

 Thedatais called kiwishade. It's from a designed
experiment that compared different kiwifruit shading
treatments.

 There are four different shading treatments.

 There are four vines in each plot and four plots (one
for each treatment) in each of the three blocks
(north,west,east)
— Vineisnested in plot
— Plot isnested in block.
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AP arrma
Constructing the model

* We can define a suitable model in many different
ways and in actual situation we would naturally test
several possihilities.

 However, here we'll go through one example of a
suitable and easy to code mode.

e nD <- | nme(yl el d~shade, randonF~1 |
bl ock/ pl ot, data=ki w shade)
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4RIARMA
summary

e > sunmmary(no)
Li near m xed-effects nodel fit by REM
Dat a: ki w shade
Al C BlL.C | ogLi k
265. 9663 278. 4556 -125.9831

Random ef f ect s:
Formula: ~1 | block
(I ntercept)
St dDev: 2.019373

Formula: ~1 | plot % n% bl ock
(I ntercept) Residual
St dDev: 1.478623 3.490381



AP arma
Summary (2)

Fi xed effects: yield ~ shade

Value Std. Error DF t-value p-val ue
(Intercept) 100.20250 1.761617 36 56.88098 0.0000
shadeAug2Dec 3.03083 1.867621 6 1.62283 0.1558
shadeDec2Feb -10.28167 1.867621 6 -5.50522 0.0015
shadeFeb2May -7.42833 1.867621 6 -3.97743 0.0073

Correl ation:
(I'ntr) shdA2D shdD2F

shadeAug2Dec -0.53
shadeDec2Feb -0.53 0. 50
shadeFeb2May -0.53 0.50 0.50

Nurmber of Qbservations: 48
Nunmber of G oups:
bl ock pl ot % n% bl ock
3 12
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AP arma
|nterpretation

e From the results we are now able to determine
1) How does different treatments effect the yield.
2) How much variation does the block create
3) How much variation does the plot create

4) How much variation there is between different
Vines.
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