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Regression with a single predictor
• On Monday we handled models, where the 

explanatories were factors. 
• When the explanatories are numeric variables, we fit 

regression models.
• Simplest possible regression model is a model, 

where there is only one predictor.
• An example of this is the roller data previously 

investigated, where we want to explain depression 
with weight of the roller.
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Example regression model in R
model <- lm(depression~weight, data=roller);summary(model)

Call:
lm(formula = depression ~ weight, data = roller)
Residuals:

Min     1Q Median     3Q    Max 
-8.180 -5.580 -1.346  5.920  8.020 
Coefficients:

Estimate Std. Error t value Pr(>|t|)   
(Intercept)  -2.0871     4.7543  -0.439  0.67227   
weight        2.6667     0.7002   3.808  0.00518 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 6.735 on 8 degrees of freedom
Multiple R-squared: 0.6445,     Adjusted R-squared: 0.6001 
F-statistic:  14.5 on 1 and 8 DF,  p-value: 0.005175 
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Diagnostic plots
• If we use the plot-function on to our model-object, 

we’ll get a set of four diagnostic plots. 
– One is already familiar to us (the normal QQ-plot), 

other diagnostic what will be printed are ”Residuals 
vs fitted”, ”Scale-Location”, ”Residuals vs Leverage”

– Investigation of the three other diagnostic plots is left 
out from this course.

– plot(model)
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Multiple linear regression
• Multiple linear regression generalizes methodology 

of simple linear regression to allow multiple 
predictor variables.

• Let’s consider an example of multiple regression. 
– Dataset litters has data on the variables lsize (litter 

size), bodywt (body weight) and brainwt (brain 
weight), for 20 mice.

– Our goal is to explain the brain weight with litter size 
and body weight.

• Let’s first plot the data with matrix plot.
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pairs(litters, labels=c("lsize\n(litter size)", 
"bodywt\n(Body Weight)","brainwt\n(Brain 
Weight)"))
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Interpretating the plots
• From the plots we can see, that there could be some 

linear connection between brain weight and both 
litter size and body weight. 
– It seems to sensible to fit a regression model, with the 

two predictors.
– We can use the lm-function here again and type

•lm(brainwt ~ lsize + bodywt + 
lsize*bodywt, data=litters)
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Modifying the model
• Coefficients:

Estimate Std. Error t value Pr(>|t|)  
(Intercept)   0.2443473  0.0862005   2.835   0.0120 *
lsize        -0.0022600  0.0069043  -0.327   0.7477  
bodywt        0.0161056  0.0086876   1.854   0.0823 .
lsize:bodywt  0.0011854  0.0008212   1.443   0.1682 

• The interaction term is not significant. Let’s remove that and fit the model 
again.
• lm(brainwt ~ lsize + bodywt, data=litters)
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Interpretation
Coefficients:

Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.178247   0.075323   2.366  0.03010 * 
lsize       0.006690   0.003132   2.136  0.04751 * 
bodywt      0.024306   0.006779   3.586  0.00228 **

• Both lsize and bodywt seems to be significant explanatories.
• The estimates seem to be very small, but still they are 

significant, why?
• The estimate gives us a value, that how much will a change 

of one unit in the predictor effect the response.
• The response values are 0.368-0.439. So small in general and 

also small variation. That’s why our estimates are also small.
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Interpretation (2)
• In multiple regression it’s not as straight forward to 

interpret the coefficients as with simple linear 
regression.

• In our example, the coefficients for lsize estimates 
the change in brainwt with lsize when bodywt is held 
constant. Same applies naturally with bodywt.

• For any particular value of bodywt, brainwt 
increases with lsize. This is a significant finding for 
the purpose of the study. 
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Linear mixed models
• So far we have had just fixed effects in the model.
• Quite often we have designs, that require using 

random effects as well.
• If we have both random and fixed effects in the 

model, we call the model a linear mixed model.
• Convinient functions for fitting mixed models are 

lme (nlme-library) and lmer (lme4-library)
• lmer4 is useful also for fitting generalized linear 

mixed models and nonlinear mixed models. 
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lme-example
• The lme-function is specially good, if we have 

nested random effects. 
– Function allows them, and they are also easy to code.

• The Orthodont data has 108 rows and 4 columns of 
the change in an orthdontic measurement over time.
– distance. A numeric vector of distances from the 

pituitary to the pterygomaxillary fissure (mm).
– age. A numeric vector of ages of the subjects.
– subject. A factor for the subject ID.
– sex. A factor with levels Male and Female
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Model construction
• Our goal is to explain distance with age. We also 

have to consider that we have several samples from 
the same subject. Thus, subject should be consider 
as a random variable.

f1 <- lme(distance ~ age, data=Orthodont,
random=~1|Subject)
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Summary(lme)
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>summary(f1)
Linear mixed-effects model fit by REML
Data: Orthodont 

AIC      BIC    logLik
454.6367 470.6173 -221.3183

Random effects:
Formula: ~age | Subject
Structure: General positive-definite, Log-Cholesky 
parametrization

StdDev    Corr  
(Intercept) 2.3270340 (Intr)
age         0.2264278 -0.609
Residual    1.3100397 



Summary(lme) [2]
• Fixed effects: distance ~ age 
• Value Std.Error DF   t-value p-value
• (Intercept) 16.761111 0.7752460 80 21.620377       0
• age          0.660185 0.0712533 80  9.265333       0
• Correlation: 
• (Intr)
• age -0.848
• Standardized Within-Group Residuals:
• Min         Q1         Med        Q3         Max 
• -3.2231061 -0.4937611  0.0073166  0.4721511  3.9160332 

• Number of Observations: 108
• Number of Groups: 27 
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Linear mixed models & nesting
• Often we have also nesting structures in our design. 
• Obviously we have to consider also this when we 

form our statistical model.
• Nesting is most commonly related to random 

variables. 
• Eg. Subject nested in centers.

• Next, we’ll consider an example about linear mixed 
effects model, with nesting structure in the random 
effects.
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Example-data
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• The data is called kiwishade. It’s from a designed 
experiment that compared different kiwifruit shading 
treatments.

• There are four different shading treatments.
• There are four vines in each plot and four plots (one 

for each treatment) in each of the three blocks 
(north,west,east)
– Vine is nested in plot
– Plot is nested in block.



Constructing the model
• We can define a suitable model in many different 

ways and in actual situation we would naturally test 
several possibilities. 

• However, here we’ll go through one example of a 
suitable and easy to code model.

• mo <- lme(yield~shade, random=~1 | 
block/plot, data=kiwishade)
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summary
• > summary(mo)
Linear mixed-effects model fit by REML
Data: kiwishade 

AIC      BIC    logLik
265.9663 278.4556 -125.9831

Random effects:
Formula: ~1 | block

(Intercept)
StdDev:    2.019373

Formula: ~1 | plot %in% block
(Intercept) Residual

StdDev:    1.478623 3.490381
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Summary (2)
Fixed effects: yield ~ shade 

Value Std.Error DF  t-value p-value
(Intercept)  100.20250  1.761617 36 56.88098  0.0000
shadeAug2Dec   3.03083  1.867621  6  1.62283  0.1558
shadeDec2Feb -10.28167  1.867621  6 -5.50522  0.0015
shadeFeb2May  -7.42833  1.867621  6 -3.97743  0.0073
Correlation: 

(Intr) shdA2D shdD2F
shadeAug2Dec -0.53               
shadeDec2Feb -0.53   0.50        
shadeFeb2May -0.53   0.50   0.50 

Number of Observations: 48
Number of Groups: 

block plot %in% block 
3              12 
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Interpretation
• From the results we are now able to determine

1) How does different treatments effect the yield.
2) How much variation does the block create
3) How much variation does the plot create
4) How much variation there is between different 

vines.
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