Introduction to Differential forms Spring 2011

Exercise 4 (for Wednesday Feb 16.)

*1.¹ Let V be an n-dimensional vector space and let $\mathcal{B}(V) = \{(v_1, \dots, v_n) \in V^n : (v_1, \dots, v_n) \text{ is a basis of } V\}$. Given $b \in \mathcal{B}$ and a linear map $f : V \to V$, let $A[f; \mathfrak{b}] \in \mathbb{R}^{n \times n}$ the matrix of f in basis \mathfrak{b} .

For $(v_1, \ldots, v_n), (w_1, \ldots, w_n) \in \mathcal{B}(V)$, we denote $(v_1, \ldots, v_n) \sim (w_1, \ldots, w_n)$ if the matrix $A[f; (v_1, \ldots, v_n)]$ of the mapping $f: V \to V$, $v_i \mapsto w_i$, has a positive determinant.

- (i) Show that \sim is an equivalence relation in $\mathcal{B}(V)$ and that there are exactly two equivalence classes.
- (ii) Let O(V) denote the equivalence classes of orientations as defined in the lecture notes. Show that there exists a well-defined bijection $\Theta_V \colon \mathcal{B}(V)/\sim \to O(V)$ so that $\Theta_V[(v_1,\ldots,v_n)] = [v_1 \wedge \cdots \wedge v_n]$.

*2. Let $X : \mathbb{R}^n \setminus \{0\} \to T\mathbb{R}^n$ be the vector field X(p) = (p, p/|p|) and let $\omega \in \Gamma^{n-1}(\mathbb{R}^n \setminus \{0\}, \operatorname{Alt}^k(T\mathbb{R}^n))$ be the (n-1)-form $\omega_p(v_1, \ldots, v_{n-1}) = dx_1 \wedge \cdots \wedge dx_n(X(p), v_1, \ldots, v_{n-1})$.

(i) Show that

$$\omega = \sum_{i=1}^{n} (-1)^{i+1} \frac{x_i}{|x|} dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n$$

where $dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n$ is the n-1-form $dx_1 \wedge \cdots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge dx_n$. Conclude that ω is C^{∞} -smooth in $\mathbb{R}^n \setminus \{0\}$.

(ii) Let $B^{n-1} = \{p \in \mathbb{R}^{n-1} : |p| \le 1 \text{ be the unit disk. We set } \sigma_+ : B^{n-1} \to \mathbb{R}^n \text{ by } \sigma_+(p) = (p, \sqrt{1-|p|^2}) \text{ and } \sigma_- : B^{n-1} \to \mathbb{R}^n \text{ by } \sigma_-(p) = (p, -\sqrt{1-|p|^2}).$ Calculate

$$\sigma_+^*\omega$$
 and $\sigma_-^*\omega$.

¹Another definition for orientation.

(iii) Calculate

$$\int_{B^{n-1}} \sigma_+^*(\omega) \quad \text{and} \quad \int_{B^{n-1}} \sigma_-^*(\omega).$$

when n=3. Here $B^{n-1}\subset\mathbb{R}^{n-1}$ is oriented with $e_1\wedge\cdots\wedge e_{n-1}$.

- *3. Let W be a k-dimensional subspace of n-dimensional inner product space V. Let W^{\perp} be the subspace orthogonal to W, that is, $W^{\perp} = \{w \in V : \langle w, w' \rangle = 0 \text{ for all } w \in W\}$. Let ξ_W be an orientation of W and ξ_V an orientation of V. Show that there exists an orientation $\xi_{W^{\perp}}$ of W^{\perp} so that $\xi_W \wedge \xi_{W^{\perp}} = \xi_V$.
- **4.** Let (P,ξ) be an oriented k-dimensional affine subspace P=W+p of \mathbb{R}^n and $\xi=e'_1\wedge\cdots\wedge e'_k$, where (e'_1,\ldots,e'_k) is an orthonormal basis of W. Let $\omega\in C^1(\Gamma^k(T\mathbb{R}^n))$. Show that there exists a constant $c\neq 0$, depending only on k and n, so that

$$\int_{P} \omega = c \int_{P} \underline{\omega}_{x} ((x, \xi)) d\mathcal{H}^{k}(x),$$

where \mathcal{H}^k is the k-dimensional Hausdorff measure in \mathbb{R}^n .

- **5.** Let $U \subset \mathbb{R}^n$ be an open set and let $f: U \to \mathbb{R}^m$ be a C^1 -smooth mapping. One is tempted to define a $tangent \operatorname{Tan}_p(f)$ for the image of f at f(p) to be the subspace $\operatorname{span}\{Df_p(e_1),\ldots,Df_p(e_n)\}$ of $T_{f(p)}\mathbb{R}^m$.
 - (i) (Pros) Show that $\dim \operatorname{Tan}_p(f) = n$ if and only if $Df_p(e_1) \wedge \cdots \wedge Df_p(e_n) \in \bigwedge_n T_{f(p)} \mathbb{R}^m$ is non-zero.
 - (ii) (Cons) Give an example of an injective mapping f so that dim $\operatorname{Tan}_p(f) < n$ for some points $p \in U$. (Hint: Look for an easy example when n = 2 and m = 3.)
- **6.** Denote $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}.$
 - (i) Show that $\pi_1(S^1) = \mathbb{Z}$.
 - (ii) Show that $\pi_1(X \times Y) = \pi_1(X) \times \pi_1(Y)$.
- (iii) Find two different³ covering spaces⁴ for $S^1 \times S^1$.

² "Equal" means "isomorphic". $\pi_1(S^1) = \mathbb{Z}$ means $\pi_1(S^1, p) = \mathbb{Z}$ for every $p \in S^1$.

³i.e. non-homeomorphic

⁴A space X is an covering space of Y if there exists a covering map $X \to Y$