Problem sheet 9

Exercise 1: A central element in braided Hopf algebras

Let *A* be a Hopf algebra such that the antipode $\gamma: A \to A$ has an inverse $\gamma^{-1}: A \to A$. In the lectures we found an invertible element $u \in A$, which satisfies $\gamma(\gamma(x)) = u \, x \, u^{-1}$ for all $x \in A$.

Show that $\gamma(u)u$ is in the center of A, i.e. $\gamma(u)ux = x\gamma(u)u$ for all $x \in A$, and that $\gamma(u)u = u\gamma(u)$.

Exercise 2: *Inverse of the antipode for the building block of quantum groups*

Let $q \in \mathbb{C} \setminus \{0\}$ and let H_q be the Hopf algebra, which as an algebra is generated by a, a^{-1}, b with relations $aa^{-1} = 1$, $a^{-1}a = 1$, ab = qba, and has $\Delta(a) = a \otimes a$, $\Delta(b) = a \otimes b + b \otimes 1$.

Show that the antipode γ of H_q is invertible with inverse given by

$$\gamma^{-1}(b^m a^n) = (-1)^m q^{-\frac{1}{2}m(m-1)-mn} b^m a^{-m-n}.$$

Exercise 3: Universal R-matrix for Drinfeld double, the rest of the proof

Let A be a finite dimensional Hopf algebra (with invertible antipode), and let A^* be its dual Hopf algebra and $\mathcal{D}(A)$ the Drinfeld double of A. Let $(e_i)_{i=1}^d$ be a basis of A, and $(\delta^i)_{i=1}^d$ the dual basis of A^* . We claim that

$$R = (\iota_A \otimes \iota_{A^*})(\operatorname{coev}(1)) = \sum_{i=1}^d (e_i \otimes 1^*) \otimes (1 \otimes \delta^i)$$

is a universal R-matrix for $\mathcal{D}(A)$. In the lectures we (almost) verified the properties (R0) and (R1) for R and $\mathcal{D}(A)$.

Verify the properties (R2) and (R3) for R and $\mathcal{D}(A)$.

Exercise 4: The Drinfeld double of the Hopf algebra of a finite group

Let *G* be a finite group, and $A = \mathbb{C}[G]$ the Hopf algebra of the group *G*. Let $(e_g)_{g \in G}$ be the natural basis of *A*, and let $(f_g)_{g \in G}$ be the dual basis of A^* .

- (a) Show that A^* is, as an algebra, isomorphic to the algebra of complex valued functions on G with pointwise multiplication: when $\phi, \psi : G \to \mathbb{C}$, the product $\phi \psi$ is the function defined by $(\phi \psi)(g) = \phi(g)\psi(g)$ for all $g \in G$.
- (b) Find explicit formulas for the coproduct, counit and antipode of A^* in the basis $(f_g)_{g \in G}$.

Let $\mathcal{D}(A)$ be the Drinfeld double of A.

- (c) Find explicit formulas for the coproduct, counit and unit of $\mathcal{D}(A)$ in the basis $(e_h \otimes f_g)_{g,h \in G}$.
- (d) Show that the product μ_D and antipode γ_D of $\mathcal{D}(A)$ are given by the following formulas

$$\mu_{\mathcal{D}}((e_{h'} \otimes f_{g'}) \otimes (e_h \otimes f_g)) = \delta_{g',hgh^{-1}} e_{h'h} \otimes f_g$$
$$\gamma_{\mathcal{D}}(e_h \otimes f_g) = e_h \otimes f_{hg^{-1}h^{-1}}.$$