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1 Inverse scattering problems
Description of the problem
Physical configuration:
Let D ⊂ ℝm : m = 2, 3 is an impenetrable
obstacle. For given incident wave ui(x), u(x) =
ui(x) + us(x) outside of D meets⎧⎨⎩

Δu + k2u = 0, x ∈ ℝm ∖D
ℬu = 0, x ∈ ∂D
limr→∞ r(m−1)/2

(
∂us(x)
∂r − ikus(x)

)
= 0, r = ∣x∣,

Specify the boundary operator ℬ:
∙ Sound-soft: u∣∂D = 0

∙ Sound-hard:∂�u∣∂D = 0

∙ Impedance boundary: ∂�(x)u + i�u∣∂D = 0

http://www.seu.edu.cn
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Description of the problem

Scattered wave representation:

us(x) =
eikr

r(m−1)/2

[
u∞(x̂) + O

(
1

r

)]
, r →∞.

u∞(x̂): far-field pattern of the scattered wave.
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Description of the problem
Given incident plane wave ui(x, d) = eikd⋅x for di-
rection d.

Scattering and inverse scattering
∙Direct scattering: Find scattered wave for given

obstacle D.

∙ Inverse scattering: Detect the obstacle D from
the information about us, including the geo-
metric property (shape) and physical property
(type/impedance).

∙ If D degenerates into a crack Γ, determine the
shape of Γ and the physical property in both sides
of Γ.

http://www.seu.edu.cn
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2 Reconstruction of a complex obstacle
A ”complex” obstacle

By a ”complex” obstacle, we mean
∙ The obstacle is impenetrable and has different

acoustic property at different part of ∂D, and/or

∙ The impedance coefficient may be complex, or

∙ The obstacle is a crack, with different property
in its two sides.

The inverse scattering problems:

∙Determine the boundary shape ∂D

∙Determine the boundary type at different part of ∂D

∙Determine the complex impedance coefficient

http://www.seu.edu.cn
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Special attention:

The effect of boundary curvature and boundary
impedance on the reconstruction accuracy?

We find:

∙ The introduction of imaginary part of boundary
impedance coefficient can change the visibility
of the obstacle essentially.

∙ The suitable distribution of boundary impedance
in terms of the boundary curvature can make the
obstacle more (or less) accurate.

We believe:

This observation has some potential application in
some industry design problems.

http://www.seu.edu.cn
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Description of the problem

For D ⊂ ℝ2 with ∂D ∈ C2,1, assume

∂D = ∂DI ∪ ∂DD, ∂DI ∩ ∂DD = ∅,

where ∂DD and ∂DI are open curves in ∂D.

For ui(x) = ei�d⋅x, the total wave u(x) = ui(x) +
us(x) satisfies⎧⎨⎩

Δu + �2u = 0 in ℝ2 ∖D,
u = 0 on ∂DD,
∂u
∂� + i��u = 0 on ∂DI ,

(1)

where the scattered fields us satisfies the Sommer-
feld radiation condition.

http://www.seu.edu.cn
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Description of the problem

Assume that the surface impedance �(x) :=
�r(x) + i�i(x) is a Lipschitz function, �r(x) has
a uniform lower bound �r0 > 0 on ∂DI .

∂DI : the coated part, ∂DD : the non-coated part.

Given u∞(⋅, ⋅) on S× S, we need to

∙ Reconstruct ∂D;

∙ Reconstruct some geometrical properties of ∂D
such as normal directions and the curvature;

∙Distinguish ∂DI from ∂DD;

∙ Reconstruct the complex surface impedance
�(x) on ∂DI .

http://www.seu.edu.cn
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Indicator function for boundary

Compared with our work in 2007, here we use the
far-field data to construct the indicator directly.
probe method:
Use detecting points z outside of D to approach
∂D, consider the asymptotic behavior of the indi-
cator.

Assume D ⊂⊂ Ω for known Ω. For a ∈ Ω ∖ D,
denote by {zp} ⊂ Ω ∖D a sequence tending to a.
For any zp, set Dp

a a C2-regular domain such that
D ⊂ D

p
a (resp. ∂D ⊂ D

p
a) with zq ∈ Ω ∖ Dp

a for
every q = 1, 2, ⋅ ⋅ ⋅ , p and that the Dirichlet inte-
rior problem on Dp

a for the Helmholtz equation is
uniquely solvable.

http://www.seu.edu.cn
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Geometric configuration of approximation do-
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Indicator function for boundary

Due to the superposition principle, the scattered
field associated with the Herglotz incident field
vig := vg(x) defined by

vg(x) :=

∫
S
ei�x⋅dg(d) ds(d), x ∈ ℝ2 (2)

with g ∈ L2(S) is given by

vsg(x) :=

∫
S
us(x, d)g(d) ds(d), x ∈ ℝ2 ∖D, (3)

and its far field is

v∞g (x̂) :=

∫
S
u∞(x̂, d)g(d) ds(d), x̂ ∈ S. (4)

http://www.seu.edu.cn
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Indicator function for boundary

In this case, the Herglotz wave operator ℍ from
L2(S) to L2(∂D

p
a) defined by

ℍ[g](x) := vg(x) =

∫
S
ei�x⋅dg(d) ds(d) (5)

is injective, compact with dense range.

Consider the sequence of point sources: pole
Φ(⋅, zp), dipoles ∂

∂xj
Φ(⋅, zp) and multipoles of order

two ∂
∂xj

∂
∂x2

Φ(⋅, zp) for j = 1, 2, where

Φ(x, y) =

⎧⎨⎩ i
4H

(1)
0 (k∣x− y∣), m = 2,

eik∣x−y∣
4�∣x−y∣, m = 3,

is the fundamental solution.

http://www.seu.edu.cn
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Indicator function for boundary

For every p fixed, construct three density sequences
{gpn}, {f j,pm } and {ℎj,pk } in L2(S) with j = 1, 2, by
the Tikhonov regularization such that

∥vgpn − Φ(⋅, zp)∥L2(∂D
p
a)→ 0, n→∞, (6)

∥v
f
j,p
m
− ∂

∂xj
Φ(⋅, zp)∥L2(∂D

p
a)→ 0, m→∞, (7)

∥v
ℎ
j,p
k
− ∂

∂xj

∂

∂x2
Φ(⋅, zp)∥L2(∂D

p
a)→ 0, k →∞.

(8)
Then use these density functions to construct the
indicators:

http://www.seu.edu.cn
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Indicator function for boundary

I0(zp) :=
1


2
lim
m→∞

lim
n→∞

∫
S

∫
S
u∞(−x̂, d) gpm(d) gpn(x̂) ds(x̂)ds(d), (9)

I1j (zp) :=
1


2
lim
m→∞

lim
n→∞

∫
S

∫
S
u∞(−x̂, d) f j,pm (d) gpn(x̂) ds(x̂)ds(d), (10)

I2j (zp) :=
1


2
lim
m→∞

lim
n→∞

∫
S

∫
S
u∞(−x̂, d) ℎj,pm (d) gpn(x̂) ds(x̂)ds(d), (11)

where 
2 = ei�/4/
√

8��.

These three indicators are computable from the far-
field data, and have different blowup property as
zp→ a ∈ ∂D which make us detect the obstacle.

(Curvature C(a), �i(a) and �r(a) will enter the
asymptotic behavior explicitly in our higher-order
expansion of indicators!)

http://www.seu.edu.cn
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Indicator function for boundary

Higher-order asymptotic for indicators:

I. For pole Φ(x, z) as source, it follows that
ℜ I0(zp) =

{
− 1

4� ln ∣(zp − a) ⋅ �(a)∣+O(1), a ∈ ∂DI ,

+ 1
4� ln ∣(zp − a) ⋅ �(a)∣+O(1), a ∈ ∂DD.

(12)

ℑ I0(zp) = O(1), a ∈ ∂D. (13)

II. Using dipoles ∂
∂xj

Φ(x, z) with j = 1, 2 as
sources, it follows that

ℜ I1j (zp) =

⎧⎨⎩
−�j(a)

4�∣(zp−a)⋅�(a)∣ −
�j(a)(��

i(a)+ 1
2C(a))

� ln ∣(zp − a) ⋅ �(a)∣+O(1), a ∈ ∂DI ,
�j(a)

4�∣(zp−a)⋅�(a)∣ −
�j(a)
2� C(a) ln ∣(zp − a) ⋅ �(a)∣+O(1), a ∈ ∂DD.

(14)

ℑ I1j (zp) =

{
−�j(a)��

r(a)
� ln ∣(zp − a) ⋅ �(a)∣+O(1), a ∈ ∂DI ,

O(1), a ∈ ∂DD.
(15)

http://www.seu.edu.cn
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Indicator function for boundary

Higher-order asymptotic for indicators:

III. Using multipoles of order two ∂
∂xj

∂
∂x2

Φ(x, z)

with j = 1, 2, it follows that

ℜ I21 (zp) =

⎧⎨⎩
�1(a)�2(a)

4�∣(zp−a)⋅�(a)∣2 −
�1(a)�2(a)

� [��i(a) + 3
4C(a)] 1

∣(zp−a)⋅�(a)∣+

O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DI ,
−�1(a)�2(a)

4�∣(zp−a)⋅�(a)∣2 −
3�(a)1�2(a)

4� C(a) 1
∣(zp−a)⋅�(a)∣+

O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DD.

(16)

ℜ I22 (zp) =

⎧⎨⎩
�22(a)−�21(a)

8�∣(zp−a)⋅�(a)∣2 −
�22(a)−�21(a)

2� [��i(a) + 3
4C(a)] 1

∣(zp−a)⋅�(a)∣+

O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DI ,
�21(a)−�22(a)

8�∣(zp−a)⋅�(a)∣2 −
3(�22(a)−�21(a))

8� C(a) 1
∣(zp−a)⋅�(a)∣+

O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DD.

(17)

and

ℑ I21 (zp) =

{
�1(a)�2(a)

�∣(zp−a)⋅�(a)∣��
r +O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DI ,

O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DD.
(18)

ℑ I22 (zp) =

{
�22(a)−�21(a)

2�∣(zp−a)⋅�(a)∣��
r +O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DI ,

O(ln ∣(zp − a) ⋅ �(a)∣), a ∈ ∂DD.
(19)

http://www.seu.edu.cn
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Practical indicators:

Using these three indicators in a different but equiv-
alent way, we can identify the boundary property:

Case 1. The geometric shape including the surface
impedance is unknown. We can use the formula

lim
zp→a

ℜ I0(zp) =

{
+∞, a ∈ ∂DI ,
−∞, a ∈ ∂DD.

(20)

or

http://www.seu.edu.cn
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Practical indicators:

lim
zp→a

2∑
j=1

(ℜ I1j )2 =

⎧⎨⎩
limzp→a

[
1

16�2∣(zp−a)⋅�(a)∣2 −
(��i+ 1

2C(a)) ln ∣(zp−a)⋅�(a)∣
2�2∣(zp−a)⋅�(a)∣

]
+

O( 1
4�∣(zp−a)⋅�(a)∣) = +∞, a ∈ ∂DI ,

limzp→a

[
1

16�2∣(zp−a)⋅�(a)∣2 −
C(a) ln ∣(zp−a)⋅�(a)∣
8�2∣(zp−a)⋅�(a)∣

]
+

O( 1
4�∣(zp−a)⋅�(a)∣) = +∞, a ∈ ∂DD

(21)

lim
zp→a

2∑
j=1

(ℑ I1j )2 =

⎧⎨⎩
(��r)2

�2 limzp→a ln2 ∣(zp − a) ⋅ �(a)∣+
O(ln ∣(zp − a) ⋅ �(a)∣) = +∞, a ∈ ∂DI ,

O(1), a ∈ ∂DD

(22)

to detect the boundary shape.

(20) and (22) can also be used to identify the bound-
ary type.

Our numerical performance show:
(21) is suitable for reconstructing the boundary
shape, while (20) is suitable for identifying the
boundary type.

http://www.seu.edu.cn
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Practical indicators:

Detection of normal direction of ∂D:

Noticing the numerical error reconstructing ∂D, we
can use the formula

�(a) = (±t
√

1

1 + t2
,±
√

1

1 + t2
) where t := lim

zp→a

ℜ I11 (zp)

ℜ I12 (zp)
=
�1(a)

�2(a)
(23)

from the dipole sources to detect the normal direc-
tion, the sign ± can be fixed by the orientation of
∂D and the rough reconstruction of ∂D.

This information can be used to improve the recon-
struction of ∂D.

http://www.seu.edu.cn
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Practical indicators:

Detection of C(a) and �i(a) in DI :

Using the multipoles formulas, the curvature and �i

can be computed from the known (or already com-
puted) normal direction of ∂D. If the point a is on
∂DI , then we start to compute the two quantities

3

4
C(a) + ��i(a) = −2 lim

zp→a
[
�((2�1(a)�2(a)ℜI21 (zp) + (�22(a)− �21(a)))ℜI22 (zp))

∣(zp − a) ⋅ �(a)∣−1

− 1

8∣(zp − a) ⋅ �(a)∣
], (24)

1

2
C(a) + ��i(a) = − lim

zp→a

�
∑2

j=1 �j(a)ℜI1j (zp) + 1
4∣(zp−a)⋅�(a)∣

ln ∣(zp − a) ⋅ �(a)∣
(25)

from which we deduce the values of C(a) and �i(a).

http://www.seu.edu.cn
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Practical indicators:

Detection of C(a) in ∂DD:

If a is on ∂DD, then we have either

C(a) = −8

3
lim
zp→a

[
�(2�1(a)�2(a)ℜI21 (zp) + (�22(a)− �21(a))ℜI22 (zp))

∣(zp − a) ⋅ �(a)∣−1
+

1

8∣(zp − a) ⋅ �(a)∣
]

using multipoles of order two as sources or

C(a) = −2 lim
zp→a

�
∑2
j=1 �j(a)ℜI1

j (zp)− 1
4∣(zp−a)⋅�(a)∣

ln ∣(zp − a) ⋅ �(a)∣
using multipoles of first order as source

http://www.seu.edu.cn
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Practical indicators:

Detection of �r(a) in ∂DI :

�r(a) = − lim
zp→a

�
∑2
j=1 �j(a)ℑ I1

j (zp)

� ln ∣(zp − a) ⋅ �(a)∣
, a ∈ DI .

(26)
or

2�

�
lim
zp→a

2�1(a)�2(a)ℑ I21 (zp) + (�22(a)− �21(a))ℑ I22 (zp)

∣(zp − a) ⋅ �(a)∣−1
= �r(a), a ∈ ∂DI .

http://www.seu.edu.cn
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From identification to controllability

Observations:
The theoretical expression of indicators with higher
order expansion contains the information about cur-
vature and impedance simultaneously.

Numerical applications:
If the geometric shape is known/specified in ad-
vance, we can introduce suitable surface impedance
distribution in terms of the curvature to adjust the
blowup property of indicators.

Practical applications:
We can improve or weaken the boundary shape vis-
ibility by introducing surface impedance.

http://www.seu.edu.cn
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The relations between curvature, �i(x) and visibil-
ity

Observe
2∑
j=1

(ℜ R1
j)

2 =
1

16�2∣(zp − a) ⋅ �(a)∣2
−

(��i + 1
2C(a)) ln ∣(zp − a) ⋅ �(a)∣

2�2∣(zp − a) ⋅ �(a)∣
+

O(
1

4�∣(zp − a) ⋅ �(a)∣
) (27)

for dipoles and
2�1(a)�2(a)ℜ I21 (zp) + (�22(a)− �21(a))ℜ I22 (zp)

=
1

8�∣(zp − a) ⋅ �(a)∣2
−

3
4C(a) + k�i(a)

�∣(zp − a) ⋅ �(a)∣
+O(ln ∣(zp − a) ⋅ �(a)∣) (28)

for multipoles.

Conclusion:
If we take ∂D ≡ ∂DI and choose �i(x) such that
(��i + 1

2C(a)) (respt. 3
4C(a) + k�i(a)) is uniformly

distributed, then ∂D is easily detected.
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3 The efficient computational algorithm

Main task in recovering ∂D

Recall the indicator:

I0(zp) :=
1


2
lim
m→∞

lim
n→∞

∫
S1

∫
S1
u∞(−x̂, d) gpm(d) gpn(x̂) ds(x̂)ds(d), (29)

I1j (zp) :=
1


2
lim
m→∞

lim
n→∞

∫
S1

∫
S1
u∞(−x̂, d) f j,pm (d) gpn(x̂) ds(x̂)ds(d), (30)

I2j (zp) :=
1


2
lim
m→∞

lim
n→∞

∫
S1

∫
S1
u∞(−x̂, d) ℎj,pm (d) gpn(x̂) ds(x̂)ds(d), (31)

and

∥vgpn − Φ(⋅, zp)∥L2(∂Dp
a) → 0, n→∞, (32)

∥vfj,pm
− ∂

∂xj
Φ(⋅, zp)∥L2(∂Dp

a) → 0, m→∞, (33)

∥vℎj,pk
− ∂

∂xj

∂

∂x2
Φ(⋅, zp)∥L2(∂Dp

a) → 0, k →∞, (34)

where
vg(x) := ℍ[g](x) =

∫
S1
ei�x⋅dg(d) ds(d) (35)
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Recall the approximation domain

z
1
 

z
2
 

z
p
 

a 

D
∂ Ω 

∂ D
a
p 

z
p
*  
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Compute the three density functions
To reconstruct ∂D, we should compute
g
p
m(d), f

j,p
m (d), ℎ

j,p
m (d) for zp → a with all pos-

sible a around ∂D, large amount of computations!

Hope: When a rotates around ∂D, the approximate
domain Dp

a also rotates!

Solution:

∙Generate Dp
a from some fixed domain D0;

∙Approximate the singular sources in
∂D0 using the minimum norm solution
g0(d), f j,0(d), ℎj,0(d) for 0 /∈ D0.

∙Generate gpm(d), f
j,p
m (d), ℎ

j,p
m (d) for zp→ a from

g0(d), f j,0(d), ℎj,0(d) by some simple ways and
guarantee the approximate relations!
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Compute the three density functions
Known work by Potthast in 2000:
For reference domain G0 with 0 /∈ G0, let

G := MG0 + z0,

with an orthogonal unit matrix M and vector z0: G
is generated from G0 by rotation and translation!
Consider two integral equations of the first kind

ℍ[g0](x) = Φ(x, 0), x ∈ ∂G0, (36)
ℍ[g](x) = Φ(x, z0), x ∈ ∂G. (37)

Result: Assume that g0(d) is the MNS of (36) with
discrepancy ". Then

g(d) := g0(M−1d)e−i�d⋅z0 (38)

is MNS of (37) with discrepancy " > 0.
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Compute the three density functions
Importance:

∙Only compute the MNS of (36) once in ∂G0;

∙ g(d) can be computed in a simple way;

∙ g(d) is also the MNS of (37);

∙ The approximation in ∂G is also ".

Our problems: How to approximate dipole
Φxj(x, z0) and multipoles Φxjx2(x, z0) for j = 1, 2?

For ('1, '2)T ∈ L2(S)× L2(S), define

ℍ[('1, '2)T ](x) := (ℍ['1](x),ℍ['2](x))T .

For functions (f1, f2)T ∈ L2(Γ)× L2(Γ), define

∥(f1, f2)T∥2
L2(Γ×Γ)

:= ∥f1∥2L2(Γ)
+ ∥f2∥2L2(Γ)

.
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Compute the three density functions
We have the following generalizations:

Result 1: Assume that f j0 (d) with j = 1, 2 are MNS
of

ℍ[f
j
0 ](x) = Φxj(x, 0), x ∈ ∂G0 (39)

with discrepancy " > 0. Then (f1, f2)T given by(
f1(d)

f2(d)

)
:= M

(
f1

0 (M−1d)

f2
0 (M−1d)

)
e−i�d⋅z0 (40)

satisfies that

∥ℍ[(f1, f2)T ](x̃)−(Φx̃1
,Φx̃2

)T (x̃, z0)∥2
L2(∂G)

≤ 2"2.

(41)
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Compute the three density functions

Result 2: Assume that ℎj0(d) with j = 1, 2 are MNS
of

ℍ[ℎ
j
0](x) = Φxjx2(x, 0), x ∈ ∂G0 (42)

with discrepancy " > 0. Then (ℎ1, ℎ2)T given by
(
ℎ1(d)
ℎ2(d)

)
:= M2

(
ℎ10(M−1d)
ℎ20(M−1d)

)
e−i�d⋅z0 −M

(
�2m21

0

)
g(M−1d)e−i�d⋅z0 (43)

satisfies that

∥ℍ[(ℎ1, ℎ2)T ](⋅)− (Φx̃1x̃2
,Φx̃2x̃2

)T (⋅, z0)∥2
L2(∂G)

≤ (2 + �2)"2. (44)
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Compute the three density functions
Using this result, we can approximate the singular
sources by Herglotz wave functions in all approx-
imate domains ∂Dp

a := M(a)D0 + zp with a few
amount of computations.

∙M(a) : approaching direction and zp : approach-
ing step along this direction.

∙ Choose different M(a) and zp from D0, zp /∈ Dp
a

can approach to any points a ∈ ∂D.

∙We compute MNS '0 in ∂D0, the density func-
tions for approaching singular source in ∂Dp

a can
be computed from '0 by a simple function trans-
formation.
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Configuration of G0 with some cone shape
boundary and its transform

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

G(c
0
,t) with y0=0.9 for different c

cycle   
c=7     
c=10    
obstacle

c
0
(t) 

G(c
0
,t) 

Obstacle D 

(0,d) 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

G(c,t) with tauc=pi rotated  from G(c
0
,t)

cycle   
c=7     
c=10    
obstacle

Needle c 

c
0
(0) 

c(t) G(c,t) 
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Special Difficulty
The essences of approximating Φ(x, z0) (respt.
Φxj(x, z0),Φx1xj(x, z0)) by Herglotz wave function

ℍ[g] :=

∫
S1
ei�x⋅dgz0(d)ds(d)

in ∂G for z0 near to ∂G is: Approximate a almost
singular function by a smooth function.

Notice: Real part of Φ is almost singular, while its
imaginary part is smooth.

Difficulty:

∙ Integral equation of the first kind;

∙ The right-hand side is almost singular;

∙ Efficient solution algorithm.
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Approximation behavior:

0 2 4 6 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

The singular behaviors of Φx1(x, z0) (left) and
Φx2(x, z0) (right) in a circle ∣x∣ = R0 with z0 =
(0, R0+�0) for small �0, together with their approx-
imations shown in star line using uniform mesh.

http://www.seu.edu.cn


Inverse scattering . . .

Reconstruction of a . . .

The efficient . . .

Numerical . . .

Home Page

Title Page

◀◀ ▶▶

◀ ▶

Page 38 of 49

Go Back

Full Screen

Close

Quit

4 Numerical implementations
Model problem
We focus on the effect of surface impedance
and the obstacle curvature, by using (21) to de-
tect the boundary, explaining the effect of surface
impedance.
Example 1. Take � = 1, 2 and D being a cycle

∂D := {x = 1.5× (cos t, sin t), t ∈ [0, 2�]}.

Case 1: The surface impedance is a real constant,
∂D has a mixed boundary

∂DD = {x ∈ ∂D : t ∈ [0, �)}, ∂DI = {x ∈ ∂D : t ∈ (�, 2�]}.

The results for �(x) = 30, �(x) = 3 using the same
criterion in all directions are shown below.
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Numerics:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

true
CB=0.1
CB=0.15
CB=0.25
CB=0.35

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

true
CB=0.1
CB=0.15
CB=0.25
CB=0.35

Recovery of ∂D for mixed boundary condition with
�(x) = 30 (left) and �(x) = 3 (right).
For small �(x) (right), the blowing-up behavior for
the impedance boundary is weak. Using the same
criterion in all directions, the impedance part can
not be detected (just initial guess).
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Numerics:

Case 2: The surface impedance case.
We assume ∂D = ∂DI and consider three cases:

�(x) = 5−5i, �(x) = 5−0.6667

2�
i, �(x) = 5−5 sin(6x1x2)i.

The second case meets 1
2C(a) +��i(a) ≡ 0 in ∂DI .

Using different uniform blowing-up values, the re-
constructions are given below for the first two con-
figurations. We see that the whole obstacle can be
seen for both cases. However, the reconstruction is
better in the picture of the left hand side.

This is natural and it can be explained using (27).

http://www.seu.edu.cn


Inverse scattering . . .

Reconstruction of a . . .

The efficient . . .

Numerical . . .

Home Page

Title Page

◀◀ ▶▶

◀ ▶

Page 41 of 49

Go Back

Full Screen

Close

Quit

Numerics:

Reconstruction in the first two-cases.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

true
CB=0.10
CB=0.20
CB=0.30
CB=0.40

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

true
CB=0.10
CB=0.20
CB=0.30
CB=0.40
initial

Reconstruction of ∂D for surface impedance in ∂D
with �(x) = 5 − 5i (left) and �(x) = 5 − 0.6667

2×1.2 i
(right), using the uniform blowing-up criteria in all
directions. For large blowing-up values, the bound-
ary can not be seen (right).
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Numerics:

Case 2: The surface impedance case.
In the third configuration, the imaginary part of
impedance has serious oscillation.

It can be seen that the oscillation of �i(x) on ∂D
makes the reconstruction of the obstacle less ac-
curate. In addition, for large blowing-up values of
CB, we cannot recognize at all the very well uni-
form shape of a circle. It is worth noticing that this
phenomenon should be the same using any of the
indicator functions I0, Iij, i, j = 1, 2 or even using
of indicators based on multipoles of higher orders.
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Numerics:

Reconstruction in the third configuration.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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true
CB=0.10
CB=0.20
CB=0.30
CB=0.40
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−2

−1

0

1

2

3

4

5

Reconstruction of ∂D for surface impedance with
oscillatory imaginary part(left), and the function
ℑ �(x)(right). The formula (21) can be used to ex-
plain this reconstruction. That is, the oscillation of
�i(x) in ∂DI decreases the visibility of obstacle.
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Numerics:
Example 3. Consider a complex obstacle

∂D = {x : x(t) = (cos t+0.65 cos 2t−0.65, 1.5 sin t), t ∈ [0, 2�]},

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
2
 

x
1
 O 

A 

B 

C E 

0 1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

C C 

A B 

E 

A kite-shaped obstacle (left) and its curvature dis-
tribution with respect to the polar angle (right). The
curvature takes maximum value near points A,B,
which means a strong scattering in this part.
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Numerics:
Case 1. Consider the constant surface impedance
for �(x) = 5, �(x) = 5− 5i.
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initial

For real surface impedance, the part of the bound-
ary with the maximum curvature is relatively easy
to be detected. For �(x) ≡ 5−5iwith blowup value
CB = 0.4, the reconstruction is not improved for
the part with minimum absolute value of curvature,
due to the constant imaginary part.
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Numerics:
Case 2. Curvature effect.
Take �(x) = 5 + �i(x)i. The reconstructions with
�i(x) satisfying 1

2C(x) + ��i(x) ≡ −5 (left) and
1
2C(x) + ��i(x) ≡ −10 (right) in ∂D are shown
below.
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Observations:
The variable imaginary part of impedance in terms
of the curvature removes the nonuniform blowing-
up due to the curvature distribution.
Explanation:

∙ The uniform blowing-up property is obtained,
except on the parts near the point E, where the
curvature takes the negative minimum value.

∙ This phenomena is physically reasonable. There
are multiple reflections of the scattered wave. So
the information about this concave side is rela-
tively small in the far-field data.

∙ To explain more about this phenomenon, a
higher asymptotic expansion using higher mul-
tipole sources is needed.
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Some open problems:

∙ Efficient realization of singular sources approxi-
mation;

∙Numerically reconstruction of boundary
impedance by asymptotic expression;

∙ Physical explanation on ℑ�(x) ∕= 0?

∙ Convergence order analysis for noisy data
u∞� (x̂, d)?

∙ 3-dimensional obstacle case?

∙ Potential applications?
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Thanks a lot !
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