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Introduction

Nonlinear inverse problems

Let U, V denote infinite dimensional Hilbert or Banach spaces
with norms || - f|u, || - [lv,

F: D(F) C U — V nonlinear forward operator
with domain D(F).

We consider the ill-posed nonlinear operator equation

Fu)y=v (ue D(F)C U, veV) (%)

with solution u* € D(F) and exact right-hand side v* = F(u*).

v
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For the stable approximate solution of () two types of
approaches are well-established:

@ Variational regularization methods
Regularized solutions minimize Tikhonov type functionals

Under consideration in this talk!

o lterative regularization methods
Iterations with stopping rule as regularization parameter

Incomplete selection of experts in Germany: Professors:
MARTIN HANKE (Univ. of Mainz),
PETER MAASS (Univ. of Bremen),

ANDREAS RIEDER (University of Karlsruhe),
THOMAS SCHUSTER (H. Schmidt Univ. Hamburg).
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Challenging practical aspects of variational regularization:

@ Exploit adapted variants of the methods under given a
priori information concerning data noise model and
expected solution

@ Use appropriate (heuristic) rules for choosing the
regularization parameter(s)

Challenging theoretical aspects:
@ Find conditions for proving convergence and in particular
convergence rates of the methods

@ Impact of smoothness (of both solution and forward
operator) on the behaviour of regularized solutions
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Variational inequalities and convergence rates

variational regularization (Tikhonov type regularization)
with stabilizing functional Q@ : D(Q2) C U :— R

and for noisy data v?, e.g. assuming ||v* — v°||y < 6.
Regularized solutions v’ minimize s.t. u € D(F) N D(Q):

T (u) = ||F(u) — vV°|If, + a Q(u) — min.
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We exploit for Q with subdifferential 02 the Bregman distance
De(-,u)of Qatu e Uand ¢ € 0Q(u) C U* defined as

De (U, u) = QT) — Qu) — (£, 0 — U)y. y (U, 0 € D) C V).

The set
Dp(Q) :={u e D(Q) : 02(u) # 0}

is called Bregman domain. An element uf € D is called an
Q2-minimizing solution if

Q(u") =min{Q(u): F(u) = Vv*, ue D} < .

Such Q-minimizing solutions exist under Assumption 1 if (x)
has a solution u € D.

For results on existence, stability and convergence see
> H./KALTENBACHER/P./SCHERZER 2007, > P&SCHL 2008.
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Example:  Standard situation in Hilbert spaces

U, V Hilbert spaces,

Qu) == |lu—1l?, u* is called u-minimum norm solution
To(u) = | F(u) = V% + o llu— @l
D(Q2) =Dp(Q2) = U, since 0Q(u) is singleton
¢ = Q' (u*) =2(u* — 0)

De(@, u) = (|G — ullg
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Example: Regularization with differential operators

U, V Hilbert spaces,

Q(u) := ||Bul)?, with unbounded s.a. operator B: D(B) c U — U

To(u) := ||F(u) — V0|3 + o ||Bul?,

D(Q) = U Hilbert space with stronger norm lullg = lIBullu
¢ :=Q'(u*) = 2B%u*

De(i1,u) = |B(ii— u)||2, with Dg(Q) = D(B?)

B. Hofmann Regularization Methods for Nonlinear Inverse Problems



Example: Power type penalties in Banach spaces

ulld
U,V Banach spaces, Q(u):= % (g>1),

To(w) = |F(u) ~ V|5 + o (%uuu@ (b.q > 1)

D(Q2) =Dp(2) = U, since Q(u) is differentiable with

€= Q' (u") = Jy(u*) with Jg: U— U* duality mapping
q q

1,. 1 -
15 = —llullf) = (Jo(u), &= u)ue v

D{(ua U) q U~ (_7

I
|-
<
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In recent publications the distinguished role of
variational inequalities

(€, u" — Wy v < B1De(u, u") + Ball F(u) — F(UM)IIy ()

forall u € Ms(p) withsome ¢ € o9Q(ut),
two multipliers 0<py <1, (>0,
and an exponent x > 0 was elaborated.
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Classical theory of convergence rates in Tikhonov
regularization for nonlinear ill-posed equations in Hilbert
spaces due to

> ENGL/KUNISCH/NEUBAUER Inverse Problems 1989

for the standard minimization problem
To(u) = ||F(u) = v*|[§ + allu — T — min

separates the following both components

1. Smoothing properties and nonlinearity of the forward
operator

L
IF(u) = F(u') = F/(u")(u—uh)|v < 5 llu— u'lg.
2. Solution smoothness
ul—o = FW'w,  Lw|y<1.

Both ingredients are united in variational inequalities.
This allows handling of non-smooth situations for uf and F!
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Theorem — convergence rates & variational inequalities

Under the standing assumptions and assuming the existence of
an Q-minimizing solution from the Bregman domain uf € D(Q)
let there exist an element ¢ € 9Q(u') and constants

0< B4 <1, Bo>0,and 0 < x < 1 such that the variational
inequality (xx) holds for all u € M5(p)

Then for p > 1 we have the convergence rate

De(U5),u') = O(6") as §—0

for an a priori parameter choice «(d) =< P~ *.
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Comparison of Holder convergence rates
Dg(Ui((s), u') = O (8") for variational regularization with +(t) = t° :

Low rate world 0 < v < 1: Proof ansatz T2(u) < T3(uf)
under low order source conditions

0 < v =k <1 obtained for arbitrary reflexive Banach spaces
Uand V, p> 1, and diversified properties expressed by
with a priori choice «(d) =< 6P~

Enhanced rate world v > 1: Proof ansatz T2(u)) < T2(uf — z)
under high order source conditions

1<v< iﬂ obtained for s-smooth Banach space V (s > 1)
and a priori choice a(§) = 6P~ Vs

Upper rate limit: v = 3 in Hilbert space V (s = 2)

Optimal rate independent of p > 1!

(> sc Neubauer/Hein/H./Kindermann/Tautenhahn 2009/10)
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Structural conditions of F locally in u can be expressed by:

Definition (degree of nonlinearity)

Let0 < ¢y, < 1andcy + ¢ > 0. We define F to be
nonlinear of degree (c1, ¢;) for the Bregman distance D; of Q
at ut and at ¢ € 9Q(u*) if there is a constant K > 0 such that

||F(u)—F(ut)—F'(ut)(u—ul)]| , <K ||F(u)—F(uh)]| 51 D¢ (u,ut) %2

for all u € Ma(p).
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Extensions to non-metric misfit functionals S

(e.g., Kullback-Leibler divergence) are of interest in theory and
practice:

TS(u) := S(F(u), v°) + a Q(u) — min.

Use of new variats of the penalty functional Q.

Extensions to non-standard error measures
(more than Bregman distance) are of interest.

How to handle regularization in non-reflexive and
non-separable Banach spaces?
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Error profiles in regularization for ill-posed problems

with noisy operators and noisy data

Joint research ideas of the Chemnitz Research group with

Dr. SHUAI LU (RICAM Linz and Fudan University Shanghai)
and
Professor ULRICH TAUTENHAHN (Zittau)

To be included:

Yuanyuan Shao (PhD student, Chemnitz/Zittau).

and possibly

Research group of Professor CHU-LI Fu (Lanzhou University).
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Ingredients for the project:

1. > B. HOFMANN, P. MATHE:
Analysis of profile functions for general linear regularization methods.
SIAM Journal Numerical Analysis 45 (2007), 1122-1141.

Impact of smoothness on regularization + nonlinearity

2. Method of approximate source conditions using distance
functions for measuring the violation of benchmark source
conditions to be extended to the case of noisy operators

3. Former research proposal by PEREVERZEV, LU,
TAUTENHAHN entitled

"Multi-parameter regularization for ill-posed problems with
noisy data”.
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Variational inequalities in combination with a posteriori

parameter choice rules in Banach spaces

Research idea for joint work with German colleagues by
Dr. SHUAI LU in cooperation with Prof. SERGEI V. PEREVERZEV

Variational inequalities on level sets form a new powerful tool
for convergence rates of regularization in Banach spcaces.

Only a few rules for the choice of the regularization parameter
were adapted to nonlinear regularization and to a Banach
space setting:

@ discrepancy method
@ quasi-optimality method
We may explore the results for other rules

@ modified L-curve method
@ balancing method
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Parameter identification in partial differential equations

@ Stable approximate solution of Pl problems frequently
requires regularization approaches

@ Wide ranges of applications in natural sciences and
engineering

@ Examples in chapter for Handbook of Imaging 2010
(Ed. by O. SCHERZER) with
Professor JIN CHENG (Fudan University Shanghai)

> J. CHENG AND B. HOFMANN:
Regularization Methods for Nonlinear lll-Posed Problems.

B. Hofmann Regularization Methods for Nonlinear Inverse Problems



Research group of Professor THOMAS SCHUSTER (Hamburg):

Structural Health Monitoring (SHM) of carbon fiber

reinforced plastics

Goals:

@ early detection of delaminations and
cracks

@ enhanced operating safety

optimization of maintanance intervals

@ cost efficieny due to optimized
operation
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SHM as parameter identification

Inverse Problem:

Detection of the material tensor C = Cj;(x) from out-of-plane
displacement measurements ug of emitted Lamb waves

Optimal control including appropriate FEM solvers:

min 7 (u, C) subject to F(Cu=0
(u,C)el'xV

where F(C)u = 0 is the anisotropic wave equation and the
object function is e.g. given as

1 leY —
Jalu, C) = 3lluz — us|lf + 51IC - Cly
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Inverse problems with Poisson data

Research group of Professor THORSTEN HOHAGE (Gdéttingen):
positron emission tomography confocal microscopy

Confocal Laser Scanning Microscopy
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Proposed continuous framework

@ Let U, V Banach spaces, V c L'(D). Formally we want to
approximately solve an operator equation F(u) = v with an
injective operator F : D(F) c U — V satisfying

F(u)>0 forall u € D(F).

@ data: v =37, oy drawn from a Poisson process with
mean g' = F(u), i.e. for all measurable D’ c D the number
#{i . x; € D'} is a Poisson distributed random variable with
expected value [, g(x) dx.

@ natural variational (Tikhonov-type) regularization:
KL(F(u); v) + aQ(u) = min!

KL = Kullback-Leibler divergence; Q2 penalty term
possible Finnish collaborators: M. LASSAS, S. SILTANEN
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