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Introduction

Nonlinear inverse problems

Let U,V denote infinite dimensional Hilbert or Banach spaces
with norms ‖ · ‖U , ‖ · ‖V ,

F : D(F ) ⊆ U −→ V nonlinear forward operator
with domain D(F ).

We consider the ill-posed nonlinear operator equation

F (u) = v (u ∈ D(F ) ⊆ U, v ∈ V ) (∗)

with solution u∗ ∈ D(F ) and exact right-hand side v∗ = F (u∗).
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For the stable approximate solution of (∗) two types of
approaches are well-established:

Variational regularization methods
Regularized solutions minimize Tikhonov type functionals
Under consideration in this talk!

Iterative regularization methods
Iterations with stopping rule as regularization parameter
Incomplete selection of experts in Germany: Professors:
MARTIN HANKE (Univ. of Mainz),
PETER MAASS (Univ. of Bremen),
ANDREAS RIEDER (University of Karlsruhe),
THOMAS SCHUSTER (H. Schmidt Univ. Hamburg).
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Challenging practical aspects of variational regularization:

Exploit adapted variants of the methods under given a
priori information concerning data noise model and
expected solution
Use appropriate (heuristic) rules for choosing the
regularization parameter(s)

Challenging theoretical aspects:

Find conditions for proving convergence and in particular
convergence rates of the methods
Impact of smoothness (of both solution and forward
operator) on the behaviour of regularized solutions
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Variational inequalities and convergence rates

variational regularization (Tikhonov type regularization)

with stabilizing functional Ω : D(Ω) ⊆ U :→ R

and for noisy data vδ, e.g. assuming ‖v∗ − vδ‖V ≤ δ.
Regularized solutions uδα minimize s.t. u ∈ D(F ) ∩ D(Ω):

T δ
α(u) := ‖F (u)− vδ‖pV + αΩ(u)→ min .
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We exploit for Ω with subdifferential ∂Ω the Bregman distance
Dξ(·,u) of Ω at u ∈ U and ξ ∈ ∂Ω(u) ⊆ U∗ defined as

Dξ(ũ,u) := Ω(ũ)−Ω(u)−〈ξ, ũ − u〉U∗,U (u, ũ ∈ D(Ω) ⊆ U) .

The set
DB(Ω) := {u ∈ D(Ω) : ∂Ω(u) 6= ∅}

is called Bregman domain. An element u† ∈ D is called an
Ω-minimizing solution if

Ω(u†) = min {Ω(u) : F (u) = v∗, u ∈ D} <∞ .

Such Ω-minimizing solutions exist under Assumption 1 if (∗)
has a solution u ∈ D.
For results on existence, stability and convergence see
B H./KALTENBACHER/P./SCHERZER 2007, B PÖSCHL 2008.
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Example: Standard situation in Hilbert spaces

U,V Hilbert spaces,

Ω(u) := ‖u − ū‖2U , u∗ is called ū-minimum norm solution

T δ
α(u) := ‖F (u)− vδ‖2V + α ‖u − ū‖2U

D(Ω) = DB(Ω) = U, since ∂Ω(u) is singleton

ξ := Ω′(u∗) = 2(u∗ − ū)

Dξ(ũ,u) = ‖ũ − u‖2U
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Example: Regularization with differential operators

U,V Hilbert spaces,

Ω(u) := ‖Bu‖2U with unbounded s.a. operator B : D(B) ⊂ U → U

T δ
α(u) := ‖F (u)− vδ‖2V + α ‖Bu‖2U

D(Ω) = Ũ Hilbert space with stronger norm ‖u‖eU := ‖Bu‖U

ξ := Ω′(u∗) = 2B2u∗

Dξ(ũ,u) = ‖B(ũ − u)‖2U with DB(Ω) = D(B2)
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Example: Power type penalties in Banach spaces

U,V Banach spaces, Ω(u) :=
‖u‖qU

q
(q > 1),

T δ
α(u) := ‖F (u)− vδ‖pV + α

(
1
q
‖u‖qU

)
(p,q > 1)

D(Ω) = DB(Ω) = U, since Ω(u) is differentiable with

ξ := Ω′(u∗) = Jq(u∗) with Jq : U → U∗ duality mapping

Dξ(ũ,u) =
1
q
‖ũ‖qU −

1
q
‖u‖qU − 〈Jq(u), ũ − u〉U∗,U
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In recent publications the distinguished role of
variational inequalities

〈ξ,u† − u〉U∗,U ≤ β1Dξ(u,u†) + β2‖F (u)− F (u†)‖κV (∗∗)

for all u ∈Mᾱ(ρ) with some ξ ∈ ∂Ω(u†) ,
two multipliers 0 ≤ β1 < 1, β2 ≥ 0 ,
and an exponent κ > 0 was elaborated.
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Classical theory of convergence rates in Tikhonov
regularization for nonlinear ill-posed equations in Hilbert
spaces due to
B ENGL/KUNISCH/NEUBAUER Inverse Problems 1989
for the standard minimization problem

T δ
α(u) := ‖F (u)− v δ‖2V + α ‖u − ū‖2U → min

separates the following both components
1. Smoothing properties and nonlinearity of the forward
operator

‖F (u)− F (u†)− F ′(u†)(u − u†)‖V ≤
L
2
‖u − u†‖2U .

2. Solution smoothness

u† − ū = F ′(u†)∗w , L‖w‖V < 1 .

Both ingredients are united in variational inequalities.
This allows handling of non-smooth situations for u† and F !
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Theorem – convergence rates & variational inequalities
Under the standing assumptions and assuming the existence of
an Ω-minimizing solution from the Bregman domain u† ∈ DB(Ω)
let there exist an element ξ ∈ ∂Ω(u†) and constants
0 ≤ β1 < 1, β2 ≥ 0, and 0 < κ ≤ 1 such that the variational
inequality (∗∗) holds for all u ∈Mᾱ(ρ) .

Then for p > 1 we have the convergence rate

Dξ(uδα(δ),u
†) = O (δκ) as δ → 0

for an a priori parameter choice α(δ) � δp−κ.
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Comparison of Hölder convergence rates

Dξ(uδα(δ),u
†) = O (δν) for variational regularization with ψ(t) = tp :

Low rate world 0 < ν ≤ 1: Proof ansatz T δ
α(uδα) ≤ T δ

α(u†)
under low order source conditions
0 < ν = κ ≤ 1 obtained for arbitrary reflexive Banach spaces
U and V , p > 1, and diversified properties expressed by κ
with a priori choice α(δ) � δp−ν

Enhanced rate world ν > 1: Proof ansatz T δ
α(uδα) ≤ T δ

α(u† − z)
under high order source conditions
1 < ν ≤ 2s

s+1 obtained for s-smooth Banach space V (s > 1)

and a priori choice α(δ) � δ(p−1) s
s+1

Upper rate limit: ν = 4
3 in Hilbert space V (s = 2)

Optimal rate independent of p ≥ 1!
( B sc Neubauer/Hein/H./Kindermann/Tautenhahn 2009/10)
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Structural conditions of F locally in u† can be expressed by:

Definition (degree of nonlinearity)
Let 0 ≤ c1, c2 ≤ 1 and c1 + c2 > 0. We define F to be
nonlinear of degree (c1, c2) for the Bregman distance Dξ of Ω
at u† and at ξ ∈ ∂Ω(u∗) if there is a constant K > 0 such that

‖F (u)−F (u†)−F ′(u†)(u−u†)‖V
≤K ‖F (u)−F (u†)‖ c1

V
Dξ(u,u†) c2

for all u ∈Mᾱ(ρ).
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Extensions to non-metric misfit functionals S
(e.g., Kullback-Leibler divergence) are of interest in theory and
practice:

T δ
α(u) := S(F (u), vδ) + αΩ(u)→ min .

Use of new variats of the penalty functional Ω.

Extensions to non-standard error measures
(more than Bregman distance) are of interest.

How to handle regularization in non-reflexive and
non-separable Banach spaces?
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Error profiles in regularization for ill-posed problems
with noisy operators and noisy data

Joint research ideas of the Chemnitz Research group with

Dr. SHUAI LU (RICAM Linz and Fudan University Shanghai)
and
Professor ULRICH TAUTENHAHN (Zittau)

To be included:

Yuanyuan Shao (PhD student, Chemnitz/Zittau).
and possibly
Research group of Professor CHU-LI FU (Lanzhou University).
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Ingredients for the project:

1. B B. HOFMANN, P. MATHÉ:
Analysis of profile functions for general linear regularization methods.
SIAM Journal Numerical Analysis 45 (2007), 1122-1141.

Impact of smoothness on regularization + nonlinearity

2. Method of approximate source conditions using distance
functions for measuring the violation of benchmark source
conditions to be extended to the case of noisy operators

3. Former research proposal by PEREVERZEV, LU,
TAUTENHAHN entitled
”Multi-parameter regularization for ill-posed problems with
noisy data”.
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Variational inequalities in combination with a posteriori
parameter choice rules in Banach spaces

Research idea for joint work with German colleagues by
Dr. SHUAI LU in cooperation with Prof. SERGEI V. PEREVERZEV

Variational inequalities on level sets form a new powerful tool
for convergence rates of regularization in Banach spcaces.

Only a few rules for the choice of the regularization parameter
were adapted to nonlinear regularization and to a Banach
space setting:

discrepancy method
quasi-optimality method

We may explore the results for other rules

modified L-curve method
balancing method
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Parameter identification in partial differential equations

Stable approximate solution of PI problems frequently
requires regularization approaches

Wide ranges of applications in natural sciences and
engineering

Examples in chapter for Handbook of Imaging 2010
(Ed. by O. SCHERZER) with
Professor JIN CHENG (Fudan University Shanghai)

B J. CHENG AND B. HOFMANN:
Regularization Methods for Nonlinear Ill-Posed Problems.

B. Hofmann Regularization Methods for Nonlinear Inverse Problems 26



Research group of Professor THOMAS SCHUSTER (Hamburg):

Structural Health Monitoring (SHM) of carbon fiber
reinforced plastics

Goals:

early detection of delaminations and
cracks

enhanced operating safety

optimization of maintanance intervals

cost efficieny due to optimized
operation
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SHM as parameter identification

Inverse Problem:

Detection of the material tensor C = Cij(x) from out-of-plane
displacement measurements uδz of emitted Lamb waves

Optimal control including appropriate FEM solvers:

min
(u,C)∈U′×V

J (u,C) subject to F(C)u = 0

where F(C)u = 0 is the anisotropic wave equation and the
object function is e.g. given as

Jα(u,C) =
1
2
‖uz − uδz‖2U +

α

2
‖C − C̄‖2V
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Inverse problems with Poisson data
Research group of Professor THORSTEN HOHAGE (Göttingen):
positron emission tomography

source: Wikipedia

coherent x-ray imaging

confocal microscopy

illustration of photon count data
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Proposed continuous framework

Let U,V Banach spaces, V ⊂ L1(D). Formally we want to
approximately solve an operator equation F (u) = v with an
injective operator F : D(F ) ⊂ U → V satisfying

F (u) ≥ 0 for all u ∈ D(F ).

data: v =
∑n

i=1 δxi drawn from a Poisson process with
mean g† = F (u), i.e. for all measurable D′ ⊂ D the number
#{i : xi ∈ D′} is a Poisson distributed random variable with
expected value

∫
D′ g(x) dx .

natural variational (Tikhonov-type) regularization:

KL(F (u); v) + αΩ(u) = min!

KL = Kullback-Leibler divergence; Ω penalty term

possible Finnish collaborators: M. LASSAS, S. SILTANEN
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