1 Introduction

The table in the following section is a re-elaboration of a table in [2] (pag. 136). Kolmogorov's axiomatic theory of probability was very shortly reviewed in the first lecture and in chapter 2 of [1]. This theory enroots the foundations of probability theory in set theory and measure theory. It is therefore useful to summarize the interpretation of basic concepts in set and probability theory.

2 The table

Notation	Interpretation in set theory	Interpretation in probability theory
ω	Element, point.	Outcome, elementary event.
Ω	Set of points.	Space of the elementary events, certain
	•	event.
\parallel \mathcal{F}	σ -algebra of the subsets.	σ -algebra of the events.
$F \in \mathcal{F}$	A set of points.	An event: $\omega \in F$ implies the occur-
		rence of F .
$F^c = \Omega/F$	Complementary set i.e. the set of points	The event that F does not occur.
	ω not belonging to F .	
$F_1 \cup F_2$	Union of the sets F_1 and F_2 i.e. the set	The event that at least F_1 or F_2 occurrs.
	of points ω belonging either to F_1 or to	
	F_2 .	
$F_1 \cap F_2$	Intersection of the sets F_1 and F_2 i.e.	The event that F_1 and F_2 simultane-
	the set of points ω simultaneously be-	ously occurr.
	longing to F_1 and F_2 .	
Ψ	The empty set.	The impossible event.
$F_1 \cap F_2 = \emptyset$	F_1 and F_2 do not intersect.	The <i>simultaneous</i> occurrence of F_1 and
		F_2 is impossible i.e. F_1 and F_2 are mu-
		tually exclusive.
$F_1 + F_2$	Union of non intersecting sets F_1 and	Occurence of one out of two mutually
$E \setminus E$	F_2 .	exclusive events.
$F_1 \setminus F_2$	Difference of F_1 and F_2 : points belonging to F_2 but not to F_2 . It is yield to	The event that F_1 occurrs but not F_2 .
	ing to F_1 but not to F_2 . It is valid to	
	"subtract" members of a set that are not	
$ F_1 \triangle F_2 \equiv (F_1 \setminus F_2) \cup (F_2 \setminus F_1). $	in the set as the operation has no effect. Symmetric difference of F_1 and F_2 i.e.	Event that either F_1 or F_2 occurred but
	the set of elements which are in one of	not. both simultaneously.
	the sets, but not in both.	not. both simultaneously.
$\ \cdot\ ^{\infty}$, F .	Infinite union of elements of $\{F_n\}_{n=1}^{\infty}$.	event that one of the $F_{nn=1}^{\infty}$ occurred.
$\bigcup_{n=1}^{\infty} F_n \\ \sum_{n=1}^{\infty} F_n$	Infinite union of elements of the	Event that one of the <i>mutually exclusive</i>
$\sum n=1$ n	sequence of non-intersecting sets	events $\{F_n\}_{n=1}^{\infty}$ occurrs.
	$\{F_n\}_{n=1}^{\infty}$.	
$\bigcap_{n=1}^{\infty} F_n$		All the events $\{F_n\}_{n=1}^{\infty}$ simultaneously
11-1 "	$\{F_n\}_{n=1}^{\infty}$.	occurr.
$F_n \uparrow F$.	The increasing sequence of sets F_k con-	The increasingly <i>likely</i> sequence of sets
	verges to F : i.e. $F_n \subset F_{n'}$ For any	F_n converges to F .
	$n \le n'$ and $F = \bigcup_{n=1}^{\infty} F_n$.	
$F_n \downarrow F$	The decreasing sequence of sets F_n	The increasingly <i>unlikely</i> sequence of
	converges to F , i.e. $F_{n'} \subset F_n$ for any	sets F_n converges to F .
	$n \leq n'$ and $F = \bigcap_{n=1}^{\infty} F_n$.	
$\limsup F_n$.	The set $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} F_k$.	$F_n i.o.$ the event that infinitely many of
		the $\{F_n\}_{n=1}^{\infty}$ occurr.
$\liminf F_n$	The set $\bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} F_k$.	The event that all the events $\{F_n\}_{n=1}^{\infty}$
		occurr with the eventual exception of a
		finite number of them.

References

- [1] L.C. Evans, An Introduction to Stochastic Differential Equations, lecture notes, http://math.berkeley.edu/~evans/.1
- [2] A. N. Shiryaev, *Probability*, 2nd Ed. Springer (1996), http://books.google.com/ 1