1 Introduction

A possible reference for these notes are lectures-09 to 12 of [1]].

2 Diffusion processes and Chapman-Kolmogorov equation

The material contained in this section is also discussed in [1]] sections 09 and 11.

Definition 2.1 (Diffusion process). We call a diffusion process a Markov process {&, |t > 0} with continuous paths
with values in R%.

Because of the Kolmogorov consistence conditions (see e.g. lecture 9 [2]) we characterize a diffusion process
{&; |t > 0} with a family of transition probabilities p¢(, t |, t) (with respect to the Lebesgue measure) expressing
the conditional probability density of the process at a future time ¢ given the state at a previous time ¢’ forall ¢/ < ¢ €
R . The elements of the family must then satisfy

i Chapman-Kolmogorov equation
pe(x .tz ,t') :/ Az pe(x,t]z,s)pe(z, 5|2’ 1)
Rd

forany t' < s <t.

ii Kolmogorov-Centsov theorem (see e.g. lecture [3]) which states that path-continuity holds almost surely if for
some a3, K >0

[tz lle -2\ peletla ¢) < K|t — 0142
Rd

If we somewhat strengthen the condition ¢z and require o > 2 then the limits

thj?'t—t’ /Rd A% (x — x') pe(x, t|x' ,t') = b(z' 1)
iy [t e =Y el e ) = g )

are well defined. They assert that increments of the Markov process are characterized by a drift (2.1a) and by a
variance (2.1a). One way to generate a Gaussian random vector 1) with mean b dt and covariance matrix g*7 dt is to
start from a Gaussian vector ¢ with zero mean and covariance 1 d¢ and proceed a linear transformation:

n =>bdt+ o[(]
where
g = ool

In this way one can choose o to be the positive semi-definite symmetric square root of g. Reasoning along these lines
we conclude that

dé, = b (&, ,t) dt + o[dw,] (2.2)

governs the increments of the diffusion process. Existence and uniqueness of (2.2) are guaranteed by Lipschitz
continuity of the drift and diffusion fields. Since this latter (up to an orthogonal transformation) is the square root of
g, the Lipschitz condition can be imposed on g by requiring it either to be



e Lipschitz and uniformly elliptic:

d d
> @ <) wigln < C Y af
i=1 ij i=1

for some 0 < ¢ < C < coand all x € RY,
OR
e if the ¢/ is continuously twice differentiable with a bound on the second derivatives.

twice differentiable with

3 Fokker-Planck equation: forward Kolmogorov equation
Let us denote by ¢, the fundamental solution of
d€; = b (&, t) dt + dwi(&;, 1) (3.1
with
dwj(€,,t) = Gij(ét,t)dwf
By fundamental solution we mean that given an intial condition
&1, = To (3.2)
the unique solution of (3.1, (3.2) can be expressed for any ¢ > ¢, through the map
& = dy(xo,to)

Henceforth, we assume that (3.1) not only satisfies the hypotheses of the theorem of existence ed uniqueness for any ¢
but also that b and o are at least, respectively, differentiable and twice differentiable everywhere. For any given initial
condition x, at time ¢, we have fort > 0

pﬁ(w7t7 ‘wmto) == 5((1) (CC - ¢t(t07 C[:O)) >

Differentiating both sides with respect to time applying Ito lemma and the martingale property of stochastic increments
we get into

Oipe (1, | To, to) = 0y = 0 (T — @y(to, o)) =
(0" 7*) (¢4, 1)
< o005, + 0000, | 50 - gt ) -
Using the translational invariance of the J-function we can write the right hand side as

8;5])5(113, tv | Lo, to) =

» [—b (¢,,1) - O + (oo™ (¢1.1)

5 8xiaxj:| (5(d)<33 — ¢ (to, o)) >



a fact which entitles us to carry the derivatives over the average sign

atpﬁ(ma tv | Lo, to) -

(0% a%) (¢, ) 5@

—0Opi < b’ (@, t) 5(d)(a7 — Py(to, o)) = +0,i0,5 < 5

(@ — @y(to, o)) >~
From the properties of the J-function we finally conclude

Ope(x,t, | X0, to) = Ox - J (2,1, | o, to) (3.3a)

(o aI®) (a2, 1)

Ji(a:,t, | X0, to) = —pt (x,t) pe(x,t, |To,to) + Opi 5

pe(x,t, | To,t0) (3.3b)

It is readily seen that inserting the (conditional) probability current (3.3b)) into (3.3a) we recover a Fokker-Planck
equation:

. 1 L.
Oipe = —0yi (b'pg) + 5%‘ 0, (9" pe) (3.4)

with g being the covariance
gl = gtk ik

of the diffusion process specified by (3.1). In the probabilistic literature (3.3a) or equivalently (3.4) are referred to
as forward Kolmogorov equation. The describe the forward in time ¢ evolution of a transition probability density
satisfying under our hypothesis the initial condition

: — 5@y
tlggpg(w,t,]a:o,to) Y (x —x,) (3.5)

3.1 Boundary conditions in R?

To simplify the discussion we suppose that g is uniformly elliptic. Technically, (3.4) is a parabolic differential equa-
tion. Under our working hypotheses it admits a unique solution once we specify an initial condition in time such as
(3.5) and boundary conditions in space. In establishing the correspondence between and we implied that
the normalization condition

/ddd:rp,g(ac,t, | o, t,) =1
R

to hold true. The corresponding spatial boundary conditions for (3.4) are

hm Hde—i—apﬁ(mat: |w07t0) = O

||| [Toc

for some ¢ > 0.

3.2 Boundary conditions in A C R?

WE may think of (3.4) as a providing the solution of (3.1)) in probability and use it to construct diffusion processes in
a finite subset A4 of R?. In order to accomplish such goal we can exploit the divergence form of the right hand side
of and invoke the dominated convergence theorem to derive the consequences of probability conservation

ozat/ dda:pg (z,t|xoty) = - Jloa,
A

3



where n is the unit outward pointing vector normal orthogonal to the boundary of A;. We see that probability
conservation is naturally enforced by the requirement of vanishing probability current on the boundary of A4,:

. 1 3
0= {0 (@0 pe(ant, |20t + 500 [o7 (2.0 pelats |2t | 36)
Aq

If we formally write the current as the sum

n- Joutwards|Ad >0
J = Joutwards + Jinwards such that
n-: Jinwards‘Ad <0

we can interpret (3.6) as a reflecting boundary condition: all incoming trajectories from the interior of A, to the
boundary 0A, are subsequently reflected to the interior of A,.

3.3 Probability conservation and Stratonovich calculus

The probability (mass) transport by the fundamental solution ¢, of an ordinary differential equation

£t =v (£t7 t)
can be shown using ordinary calculus and proceeding as in section [3to satisfy

Ope(x,t) = —0g[v (2, 1) pe(x, 1)) (3.7a)

pe(x,to) = pe, () (3.7b)

Ordinary calculus can be applied also to the Stratonovich version of (3.1)

d§, = |b(&;,t) — g(&t,t) dt + dw;(&;,t)

where I denotes the Ito drift
I'=o/%9,;0%
We get into

atpﬁ(m7ta | Lo, to) =

— 0y Kbi(m, t) — ”j”) pe(x,t, :co,to)] + 0y < 09 (1) 6D (2 — b, (to, o) )dw! =  (3.8)

where now the last term is non vanishing as the Stratonovich stochastic increment does not enjoy the martingale
property. The overall result cannot, however, depend upon our choice to represent diffusion increments in Ito or
Stratonovich form. We can therefore determine the average by equating the right hand sides of (3.10) and (3.4). We
get into

oy
BN
<

(,t) < 6D (@ — @, (to, x,))dw! ~]
8, { [azj G (ﬂ’faﬂoik) (x, t)} pe(a,t| o, to)}

8, {a“f(:c, £, [ajk(m, t)pe(, t] 2o, to)} } (3.9)

N =N =
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We have in this way somewhat indirectly derived the general expression for averages over Stratonovich increments:

4 1 y
= 5(d) (w - ¢t (tOv wo))dw; —= §8acJ [O'ﬂ(m7 t)pﬁ (m, t | Lo, to)]
An immediate consequence of this equation is that Fokker-Planck equations are sometime cast in the form

atpﬁ(xv t7 ’ Lo, tO) -
~. 1 . .
_8mz |:bz(:1:7t)p£(l', t, | mo,to)] + 58272 [(Ujkafﬂjalk)(m,t)pg(m,t | mmto)}

with
b:=b— 1
2
4 Backward Kolmogorov equation
Suppose
fiRY = R

is p¢-integrable i.e. the conditional average

<€) = [ A (@) pel )

is well defined. Then

F(y,s) =< (&) =(y.s)
satisfies the backward Kolmogorov equation:

{88 + bi(y, 5)0yi + Wﬁyﬁyi} F(y,s)=0

with

9" (y.5) = (%07)(y, s)
Proof. 1Tt is instructive to derive the proof in two equivalent ways

o First way. Using the Chapman-Kolmogorov equation
ds0.F(y.s) = [ d'sf (@) {pe .ty + d) — pe (.1l )
= /ddxddz f(@) {pe, (z,tly, s + ds) — pe (x,t|z, s + ds)} pe (2,5 + dsl|y, s)
Using the Fokker-Planck (forward Kolmogorov) equation

ds0sF(y,s) = /ddmddz f(x) {pe (. tly, s +ds) — pe (x,t|z, s +ds)}

o™ (z, 5+ ds)o’*(z, s + ds)
2

X {—8Zibi (z,s+ds)+ 0,0, } {dspe (2, sly,s) + O(ds2)}

4.1



Since
pe (2,5ly,5) = 6@ (z - y)
we have after integration by parts
ds ,F(y,s) = —ds / d?zd?z f(2)6 D (z — y)

o™ (2,5 + ds)o’*(z, s + ds)
2

X {bi (z,s+ds) 0, + aziazj}pg (z,t|z,s + ds)

whence the claim.

Second way. Using the expression of the average in terms of the fundamental solution of the stochastic differ-
ential equation

= f(gt) >'(y,s-i—ds) - = f(gt) >'(y,s):'< f(¢ (t; s+ d37y>) -—= f<¢ (t§ 373/)) -~ (4-2)

Observing that
< f(@(t;s,y)) === f(&(t;s + ds, p(s + ds; s,y)) » (4.3)
(4.2) becomes

= f(ét) >'(y,s—i—ds) - = f(gt) >'(y,s):
< flo(t;s+ds,y) = — < f(P(t;s+ds,p(s+ds;s,y)) =

The increment is acts on the initial position, whilst keeping fixed the initial and final time. It is expedient to
define

F(@(u;5,9)) = f(S(t; s+ ds, p(u; s, y)) (4.4)
and to couch the increment into the form
< (&) = yasras) = < F(&) === F(y) = F( (s + ds;s,9)) - (4.5)
We can then apply Ito Lemma to the function g to get into
ds < (&) ¥ (y,s+ds)

= —ds < {b2(¢’3 4 ds)@yi + o (¢, s + ds)o?" (¢, s + ds)

2

8yi8yj} fN((ﬁ (8 + ds; s, y)) -

ik jk
— —ds {b%’y, 3)8yi 4 g (y7 S)O'] (yu S) 8yjayj} f(y) (4.6)

2
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4.1 Boundary conditions for the backward Kolmogorov equation

We can re-write the backward Kolmogorov equation into the form

8Sp€(113, t ’ Y, S) = _Sypé(mu t ’ Y, 8) (47)

with £, the generator of the diffusion process:

i 97 (y, s
Ly :=b"(y,5)0, + (2)3yi3yj

The boundary condition in time is clearly
limpe(@,t |y, s) = 6@ (z - y)
st

In order to derive spatial boundary conditions compatible with the interpretation of pg as conditional probability
density, we may differentiate the Chapman-Kolmogorov equation in the form

0= Oupe(x,t|y,s) =

/A ddz [8up§(mat|z7u)}p§(z7u‘yvs) +/A ddng(a:,ﬂz,u)@upg(z,u|y,s) (48)
d d

forany s < u < t. Upon defining

S () 1= 0V (. ) ()] + 50000019 . 5) f ()
we can couch (@.8) in to the form

0= Oupe(z,t|y,s) =

= [ etz elzul ) + [t pe(ant 2 apelzul 3.
d d

whence we infer that for arbitrary (x ,¢) and (y, s) the equality
, (2,
0= [peCet 220 (#(.0) + 2500, ) peleul o)
2 z€A,
—ny; [(azﬂpﬁ)(m) t | z, ’LL) g'LJ (Z, S) pﬁ(za U | Yy, S)]ZEAd (49)
must hold true. for n as above denoting the unit outward pointing vector normal orthogonal to the boundary of A.
The equality is satisfied if pg satisfies reflecting boundary conditions as a probability density (i.e. in (z,u)) and

nig?(z,5) (0.ip)e(®.t] 2,u)|zen, =0

In such a case we can interpret, as the notation suggests, £ and £1 as mutually adjoint operators acting on the space
of transition probability density associated to the diffusion process with drift b and covariance g. Interestingly, there
are other boundary conditions under which £, £ are adjoint operators. Of particular relevance in applications are
absorbing boundary conditions

pﬁ(m?t‘z?uMZGAd :pﬁ('zvu|ya5)|Z€Ad =0

for arbitrary (x,t) and (y, s).
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