
1 Introduction

A possible reference for these notes are lectures-09 to 12 of [1].

2 Diffusion processes and Chapman-Kolmogorov equation

The material contained in this section is also discussed in [1] sections 09 and 11.

Definition 2.1 (Diffusion process). We call a diffusion process a Markov process {ξt | t ≥ 0} with continuous paths
with values in Rd.

Because of the Kolmogorov consistence conditions (see e.g. lecture 9 [2]) we characterize a diffusion process
{ξt | t ≥ 0} with a family of transition probabilities pξ(x, t |x′, t′) (with respect to the Lebesgue measure) expressing
the conditional probability density of the process at a future time t given the state at a previous time t′ for all t′ ≤ t ∈
R+. The elements of the family must then satisfy

i Chapman-Kolmogorov equation

pξ(x , t |x′ , t′) =

∫
Rd

ddz pξ(x , t |z , s)pξ(z , s |x′ , t′)

for any t′ ≤ s ≤ t.

ii Kolmogorov-Čentsov theorem (see e.g. lecture [3]) which states that path-continuity holds almost surely if for
some αβ ,K > 0 ∫

Rd

ddz ||x− x′||α pξ(x , t |x′ , t′) ≤ K |t− t′|1+β

If we somewhat strengthen the condition ii and require α > 2 then the limits

lim
t→t′

1

t− t′

∫
Rd

ddz (x− x′) pξ(x , t |x′ , t′) = b(x′ , t′)

lim
t→ t′

1

t− t′

∫
Rd

ddz (x− x′)i(x− x′)j pξ(x , t |x′ , t′) = gij(x′ , t′)

are well defined. They assert that increments of the Markov process are characterized by a drift (2.1a) and by a
variance (2.1a). One way to generate a Gaussian random vector η with mean b dt and covariance matrix gi j dt is to
start from a Gaussian vector ζ with zero mean and covariance 1 dt and proceed a linear transformation:

η = b dt+ σ[ζ]

where

g = σσ†

In this way one can choose σ to be the positive semi-definite symmetric square root of g. Reasoning along these lines
we conclude that

dξt = b (ξt , t) dt+ σ[dwt] (2.2)

governs the increments of the diffusion process. Existence and uniqueness of (2.2) are guaranteed by Lipschitz
continuity of the drift and diffusion fields. Since this latter (up to an orthogonal transformation) is the square root of
g, the Lipschitz condition can be imposed on g by requiring it either to be
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• Lipschitz and uniformly elliptic:

c
d∑
i=1

x2i ≤
∑
ij

xig
ijxj ≤ C

d∑
i=1

x2i

for some 0 < c ≤ C <∞ and all x ∈ Rd.

OR

• if the gij is continuously twice differentiable with a bound on the second derivatives.

twice differentiable with

3 Fokker-Planck equation: forward Kolmogorov equation

Let us denote by φt the fundamental solution of

dξt = b (ξt, t) dt+ dωt(ξt, t) (3.1)

with

dωit(ξt, t) = σij(ξt, t)dw
j
t

By fundamental solution we mean that given an intial condition

ξto = xo (3.2)

the unique solution of (3.1), (3.2) can be expressed for any t ≥ to through the map

ξt = φt(xo, to)

Henceforth, we assume that (3.1) not only satisfies the hypotheses of the theorem of existence ed uniqueness for any t
but also that b and σ are at least, respectively, differentiable and twice differentiable everywhere. For any given initial
condition xo at time to we have for t ≥ 0

pξ(x, t, |xo, to) =≺ δ(d)(x− φt(to,xo)) �

Differentiating both sides with respect to time applying Ito lemma and the martingale property of stochastic increments
we get into

∂tpξ(x, t, |xo, to) = ∂t ≺ δ(d)(x− φt(to,xo)) �

≺
[
b (φt, t) · ∂φt

+
(σikσjk) (φt, t)

2
∂φit∂φjt

]
δ(d)(x− φt(to,xo)) �

Using the translational invariance of the δ-function we can write the right hand side as

∂tpξ(x, t, |xo, to) =

≺
[
−b (φt, t) · ∂x +

(σikσik) (φt, t)

2
∂xi∂xj

]
δ(d)(x− φt(to,xo)) �
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a fact which entitles us to carry the derivatives over the average sign

∂tpξ(x, t, |xo, to) =

−∂xi ≺ bi (φt, t) δ
(d)(x− φt(to,xo)) � +∂xi∂xj ≺

(σikσjk) (φt, t)

2
δ(d)(x− φt(to,xo)) �

From the properties of the δ-function we finally conclude

∂tpξ(x, t, |xo, to) = ∂x · J(x, t, |xo, to) (3.3a)

J i(x, t, |xo, to) = −bi (x, t) pξ(x, t, |xo, to) + ∂xj

[
(σikσjk) (x, t)

2
pξ(x, t, |xo, to)

]
(3.3b)

It is readily seen that inserting the (conditional) probability current (3.3b) into (3.3a) we recover a Fokker-Planck
equation:

∂tpξ = −∂xi(bipξ) +
1

2
∂xi∂xj (g

ij pξ) (3.4)

with g being the covariance

gij = σikσjk

of the diffusion process specified by (3.1). In the probabilistic literature (3.3a) or equivalently (3.4) are referred to
as forward Kolmogorov equation. The describe the forward in time t evolution of a transition probability density
satisfying under our hypothesis the initial condition

lim
t→to

pξ(x, t, |xo, to) = δ(d)(x− xo) (3.5)

3.1 Boundary conditions in Rd

To simplify the discussion we suppose that g is uniformly elliptic. Technically, (3.4) is a parabolic differential equa-
tion. Under our working hypotheses it admits a unique solution once we specify an initial condition in time such as
(3.5) and boundary conditions in space. In establishing the correspondence between (3.1) and (3.4) we implied that
the normalization condition ∫

Rd

ddx pξ(x, t, |xo, to) = 1

to hold true. The corresponding spatial boundary conditions for (3.4) are

lim
||x||↑∞

||x||d+ε pξ(x, t, |xo, to) = 0

for some ε > 0.

3.2 Boundary conditions in A ⊂ Rd

WE may think of (3.4) as a providing the solution of (3.1) in probability and use it to construct diffusion processes in
a finite subset Ad of Rd. In order to accomplish such goal we can exploit the divergence form of the right hand side
of (3.3a) and invoke the dominated convergence theorem to derive the consequences of probability conservation

0 = ∂t

∫
A
ddx pξ (x, t |xo to) = n · J |∂Ad
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where n is the unit outward pointing vector normal orthogonal to the boundary of Ad. We see that probability
conservation is naturally enforced by the requirement of vanishing probability current on the boundary of Ad:

0 = ni

{
−bi (x, t) pξ(x, t, |xo, to) +

1

2
∂xj
[
gij (x, t) pξ(x, t, |xo, to)

]}
Ad

(3.6)

If we formally write the current as the sum

J = Joutwards + J inwards such that
n · Joutwards|Ad

≥ 0

n · J inwards|Ad
< 0

we can interpret (3.6) as a reflecting boundary condition: all incoming trajectories from the interior of Ad to the
boundary ∂Ad are subsequently reflected to the interior of Ad.

3.3 Probability conservation and Stratonovich calculus

The probability (mass) transport by the fundamental solution φt of an ordinary differential equation

ξ̇t = v (ξt, t)

can be shown using ordinary calculus and proceeding as in section 3 to satisfy

∂tpξ(x, t) = −∂x[v (x, t) pξ(x, t)] (3.7a)

pξ(x, to) = pξo(x) (3.7b)

Ordinary calculus can be applied also to the Stratonovich version of (3.1)

dξt =

[
b (ξt, t)−

I

2
(ξt, t)

]
dt+ dωt(ξt, t)

where I denotes the Ito drift

Ii = σjk∂xjσ
ik

We get into

∂tpξ(x, t, |xo, to) =

−∂xi
[(
bi(x, t)− Ii(x, t)

2

)
pξ(x, t, |xo, to)

]
+ ∂xi ≺ σij(x, t) δ(d)(x− φt(to,xo))dw

j
t � (3.8)

where now the last term is non vanishing as the Stratonovich stochastic increment does not enjoy the martingale
property. The overall result cannot, however, depend upon our choice to represent diffusion increments in Ito or
Stratonovich form. We can therefore determine the average by equating the right hand sides of (3.10) and (3.4). We
get into

∂xi [σ
ij(x, t) ≺ δ(d)(x− φt(to,xo))dw

j
t �]

=
1

2
∂xi
{[
∂xj (σ

jkσik)(x, t)−
(
σjk∂xjσ

ik
)
(x, t)

]
pξ(x, t |xo, to)

}
=

1

2
∂xi
{
σik(x, t)∂xj

[
σjk(x, t)pξ(x, t |xo, to)

]}
(3.9)

4



We have in this way somewhat indirectly derived the general expression for averages over Stratonovich increments:

≺ δ(d)(x− φt(to,xo))dwit �=
1

2
∂xj
[
σji(x, t)pξ(x, t |xo, to)

]
An immediate consequence of this equation is that Fokker-Planck equations are sometime cast in the form

∂tpξ(x, t, |xo, to) =

−∂xi
[
b̃i(x, t)pξ(x, t, |xo, to)

]
+

1

2
∂xi
[
(σjk∂xjσ

ik)(x, t)pξ(x, t |xo, to)
]

with

b̃ := b− I
2

4 Backward Kolmogorov equation

Suppose

f : Rd → Rd

is pξ-integrable i.e. the conditional average

≺ f(ξt) �(y,s)=

∫
Rd

ddx f(x) pξ(x, t|y, s)

is well defined. Then

F (y, s) =≺ f(ξt) �(y,s)

satisfies the backward Kolmogorov equation:{
∂s + bi(y, s)∂yi +

gi j(y, s)

2
∂yi∂yj

}
F (y, s) = 0 (4.1)

with

gi j(y, s) = (σikσjk)(y, s)

Proof. It is instructive to derive the proof in two equivalent ways

• First way. Using the Chapman-Kolmogorov equation

ds ∂sF (y, s) =

∫
ddxf(x) {pξ (x, t|y, s+ ds)− pξ (x, t|y, s)}

=

∫
ddxddz f(x)

{
pξt (x, t|y, s+ ds)− pξ (x, t|z, s+ ds)

}
pξ (z, s+ ds|y, s)

Using the Fokker-Planck (forward Kolmogorov) equation

ds ∂sF (y, s) =

∫
ddxddz f(x) {pξ (x, t|y, s+ ds)− pξ (x, t|z, s+ ds)}

×
{
−∂zibi (z, s+ ds) + ∂zi∂zj

σik(z, s+ ds)σjk(z, s+ ds)

2

}{
ds pξ (z, s|y, s) +O(ds2)

}
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Since

pξ (z, s|y, s) = δ(d)(z − y)

we have after integration by parts

ds ∂sF (y, s) = − ds
∫
ddxddz f(x)δ(d)(z − y)

×
{
bi (z, s+ ds) ∂zi +

σik(z, s+ ds)σjk(z, s+ ds)

2
∂zi∂zj

}
pξ (x, t|z, s+ ds)

whence the claim.

• Second way. Using the expression of the average in terms of the fundamental solution of the stochastic differ-
ential equation

≺ f(ξt) �(y,s+ds) − ≺ f(ξt) �(y,s)=≺ f(φ (t; s+ ds,y)) � − ≺ f(φ (t; s,y)) � (4.2)

Observing that

≺ f(φ(t; s,y)) �=≺ f(φ(t; s+ ds,φ(s+ ds; s,y)) � (4.3)

(4.2) becomes

≺ f(ξt) �(y,s+ds) − ≺ f(ξt) �(y,s)=

≺ f(φ(t; s+ ds,y) � − ≺ f(φ(t; s+ ds,φ(s+ ds; s,y)) �

The increment is acts on the initial position, whilst keeping fixed the initial and final time. It is expedient to
define

f̃(φ(u; s,y)) = f(φ(t; s+ ds,φ(u; s,y)) (4.4)

and to couch the increment into the form

≺ f(ξt) �(y,s+ds) − ≺ f(ξt) �(y,s)=≺ f̃(y)− f̃(φ (s+ ds; s,y)) � (4.5)

We can then apply Ito Lemma to the function g to get into

ds ≺ f(ξt) �(y,s+ds)

= −ds ≺
{
bi(φ, s+ ds)∂yi +

σik(φ, s+ ds)σjk(φ, s+ ds)

2
∂yi∂yj

}
f̃(φ (s+ ds; s,y)) �

= −ds
{
bi(y, s)∂yi +

σik(y, s)σjk(y, s)

2
∂yj∂yj

}
f̃(y) (4.6)
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4.1 Boundary conditions for the backward Kolmogorov equation

We can re-write the backward Kolmogorov equation into the form

∂spξ(x, t |y, s) = −Lypξ(x, t |y, s) (4.7)

with Ly the generator of the diffusion process:

Ly := bi(y, s)∂yi +
gij(y, s)

2
∂yi∂yj

The boundary condition in time is clearly

lim
s↑t

pξ(x, t |y, s) = δ(d)(x− y)

In order to derive spatial boundary conditions compatible with the interpretation of pξ as conditional probability
density, we may differentiate the Chapman-Kolmogorov equation in the form

0 = ∂upξ(x, t |y, s) =∫
Ad

ddz [∂upξ(x, t | z, u)]pξ(z, u |y, s) +
∫
Ad

ddz pξ(x, t | z, u)∂upξ(z, u |y, s) (4.8)

for any s ≤ u ≤ t. Upon defining

L†
xf(x) := − ∂xi [bi(x, s)f(x)] +

1

2
∂xj∂xj [g

ij(x, s) f (x)]

we can couch (4.8) in to the form

0 = ∂upξ(x, t |y, s) =

=

∫
Ad

ddz [Lzpξ(x, t | z, u)] pξ(z, u |y, s) +
∫
Ad

ddz pξ(x, t | z, u)Lzpξ(z, u |y, s)

whence we infer that for arbitrary (x , t) and (y , s) the equality

0 = ni

[
pξ(x, t | z, u)

(
bi(z, s) +

gij(z, s)

2
∂zj

)
pξ(z, u |y, s)

]
z∈Ad

−ni
[
(∂zjpξ)(x, t | z, u) gij(z, s) pξ(z, u |y, s)

]
z∈Ad

(4.9)

must hold true. for n as above denoting the unit outward pointing vector normal orthogonal to the boundary of Ad.
The equality is satisfied if pξ satisfies reflecting boundary conditions as a probability density (i.e. in (z , u)) and

ni g
ij(z, s) (∂zjp)ξ(x, t | z, u)|z∈Ad

= 0

In such a case we can interpret, as the notation suggests, L and L† as mutually adjoint operators acting on the space
of transition probability density associated to the diffusion process with drift b and covariance g. Interestingly, there
are other boundary conditions under which L, L† are adjoint operators. Of particular relevance in applications are
absorbing boundary conditions

pξ(x, t | z, u)|z∈Ad
= pξ(z, u |y, s)|z∈Ad

= 0

for arbitrary (x , t) and (y , s).
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