1 Introduction

The content of these notes is also covered by chapter 3 section C of [1].An alternative reference for Brownian motion
and it properties is provided by Varadhan’s lecture notes [2].

2 Kolmogorov—éentsov theorem

Theorem 2.1 (Kolmogorov-Centsov). If &(w) is a stochastic process on (Q, F, P) satisfying
<& — £ =< Ot — st

for some positive constants o, (3 and C, then if necessary , &(w) can be modified for each t on a set of measure zero,
to obtain an equivalent version & (w) that is almost surely continuous with exponent -y for every v € [0, /3] and
some § > 0:
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The countable union 7 := U2 7, is a countable dense subset of [0,T']. By linear interpolation we can construct a
sequence of approximations to the original process £(t) coinciding with it on dyadic rationals e.g.
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e The 7,1 1-based interpolation is
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so that t € 7, we have
£(t) = &u(t) = Enya () te 7,
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which can be rewritten as
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so that by the triangular inequality:
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e if the occurrence of the event B implies the occurrence of the event A we must have A C B and therefore
P(A) < P(B) which translates for us into
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e By Cebysev inequality and using the theorem’s hypothesis
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The inequality entails that

sup ’§n+l (t) - fn(t” < sup
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The following inequalities hold true:

Gleaning the above information together we obtain
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the inequality entitle us to apply Borel-Cantelli lemma and conclude
sup & (t) — &1 (B)| — 0 a.s.
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and consequently
lim &, (t) = £ (1)
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The limit £(t) will be continuous on [0, '] and will coincide with £(¢) on 7 thereby establishing our result. O



3 Summary of notions of convergence

There are free notion of convergence

e Convergence in probability: {£;};°, converges to & in probability if for every positive ¢

1iTm P(lgn =&l <€) =0

e Mean square convergence:{¢;};°, converges to & in mean square if for every positive e
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o Almost sure convergence: {§;};- converges to { almost surely (i.e. P = 1) if the event
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has probability one.
Convergence in probability is the weakest notion
n g § =& £ 13 by Ceby§ev
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Almost sure convergence does not imply mean square convergence:
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For example let {&,},° , independent uniformly distributed such that
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COI’IVCI’SGly, mean square convergence does not almost sure convergence:
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4 Non differentiability of the Brownian motion

Even if we adopt the weakest notion of convergence, i.e. convergence in probability, Brownian motion turns out to be

non-differentiable.
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so that for any c € R
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the measure concentrates for infinite values of the differential ratio.
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