
1 Introduction

The content of these notes is also covered by chapter 3 section A and B of [1].

2 Counter-example: process with jumps

In the derivation of the Fokker-Planck equation we used

Dx2 = σ2Dt (x = iDx & t = nDt) (2.1)

with Dx, Dt respectively the “space” and “time” mesh (spacing) sizes of the lattice (i, n) ∈ Z2 and σ2 some finite
function σ2 ≡ σ2(x, t). By doing so, we are ruling out the possibility that the process performs finite jumps in
space in an infinitesimal amount of time. The hypothesis (2.1) is necessary as far we are looking for an evolution
law for (conditional) probability densities governed by a parabolic partial differential equation (i.e. the Fokker-Planck
equation itself). It is, however, not necessary as well defined master equations governing the evolution of (conditional)
probability densities are also obtained in the presence of finite jumps. In order to see this, let us consider

p̃Dt(i, n+ 1) =
∞∑

k=−∞
W̃Dt(i, n+ 1|k, n) p̃Dt(k, n)

or equivalently

p̃Dt(i, n+ 1)− p̃Dt(i, n) =
∞∑

k=−∞
W̃Dt(i, n+ 1|k, n) p̃Dt(k, n)−

∞∑
k=−∞

W̃Dt(k, n+ 1|i, n) p̃Dt(i, n)

using the normalization condition

∞∑
k=−∞

W̃Dt(k, n+ 1|i, n) = 1 (2.2)

for the transition probabilities W̃Dt(i, n+ 1|j, n) ≥ 0, ∀ , i, j, n. We now suppose that

W̃Dt(k, n+ 1|i, n) = W̄ δk,i + T (k, t|i)Dt+O(Dt2)

and pass to the limit Dt ↓ 0 whilst keeping t = nDt finite and “quantized” (i.e. lattice valued) the spatial variable.
We obtain

∂tp(n, t) =
∞∑

n=−∞
T (n, t|n′) p(n′, t)−

∞∑
n=−∞

T (n′, t|n) p(n, t) (2.3)

i.e. a master equation for the evolution in a continuous time of a lattice valued stochastic process.

2.1 Poisson process

Let us now further assume for γ ∈ R+

T (n, t|n′) = γ δn ,n′+1

The master equation reduces to

∂tp(k , t) = γ p(k − 1 , t)− γ p(k , t)
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This is the evolution for a process that can make (or not make) jumps only towards the right of its current position. If
we assume that the initial distribution

p(i, 0) = po(i)

has support on N then the process will stay there for any further time. The equation can be solved exactly by computing
the characteristic function

p̌(u, t) :=
∞∑
k=0

eı k u p(k, t)

Namely, it is straightforward to see that p̌(u, t) satisfies:

∂tp̌(u, t) = γ (eı u − 1) p̌(u, t)

The solution for the initial condition p̌(u, 0) = p̌o(u)

p̌(u, t) = eγ t (e
ı u−1)p̌o(u)

If we specialize for an initial condition

po(i) = δi 0

(i.e. we assume that the process starts from the origin) we obtain

p̌(u, t) = eγ t (e
ı u−1)

In order to infer the probability distribution associated to the characteristic function we can write

p̌(u, t) = eγ t e
ı u
e−γ t = e−γ t

∞∑
j=0

(γ t)j

Γ (j + 1)
eı u j

which implies that p̌(u, t) is the characteristic function of the Poisson process, with probability distribution:

p(j , t) =
(γ t)j

Γ (j + 1)
e−γ t

3 An alternative derivation of the Fokker-Planck equation

In order to further emphasize the assumptions underlying the derivation of the continuum limit of the lattice dynamics
leading to the Fokker-Planck equation, we can try to recover the result by considering the following master equation

∂tp(x, t) =
∫

R
dyW (x , t|y)p(y, t)−

∫
R
dyW (y , t|x)p(x, t) (3.1)

with continuous transition rates W (x , t|y). It is readily seen that (2.3) and (3.1) have the same structure. We make
now the following fundamental assumption:

W (x , t|y) = f(x− y, y, t)

with

f(x, y, t)

{
sharply peaked around the origin of the first argument (x)

smoothly varying in its second argument (y)
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Note that the first argument controls the size of the displacement from y to x. Furthermore we assume that∣∣∣∣∫
R
dxxn f(x, y, t)

∣∣∣∣ < ∞
for any n ∈ N. We can then write

∂tp(x, t) =
∫

R
dy f(x− y, y, t) p(y, t)−

∫
R
dy f(y − x, x, t) p(x, t)

=
∫

R
dy f(y,−y + x, t) p(−y + x, t)−

∫
R
dy f(y, x, t) p(x, t)

Taylor expanding yields

∂tp(x, t) = −
∫

R
dy y∂x [f(x, y, t)p(x, t)] +

1
2

∫
R
dy y2∂x2 [f(x, y, t)p(x, t)] + . . . (3.2)

Upon setting

b(x, t) :=
∫

R
dy y f(x, y, t)

σ2(x, t) :=
∫

R
dy y2 f(x, y, t)

and neglecting higher order terms, we recover the Fokker-Planck equation:

∂tp (x, t) + ∂x [b (x, t) p (x, t)] =
1
2
∂2
x

[
σ2 (x, t) p (x, t)

]
(3.3)

3.1 Comments on the derivation of the Fokker-Planck equation

Some comments and observations are in order.

• Both when we allowed for jumps (section 2) and in the derivation of the Fokker-Planck equation, we worked
under the assumption that the probability at discrete time n + 1 depends only on the state of the system at
discrete time n. This means that the master or Fokker-Planck equations brought about by the continuum limit,
always describe so called Markov processes. A loose definition of Markov process is that of a stochastic process
for which the future state depends only upon the current state (and not on past states) of the process.

• The Taylor expansion in retains (and requires the existence) of the first two moments of f . The observation
establishes a point of contact with the central limit theorem on which we will further elaborate.

• Suppose now that σ2 vanishes, so that we truncate the Taylor expansion at first order. Then (3.3) reduces to

∂tp(x, t) + ∂x[b(x, t)p(x, t)] = 0 (3.4)

This equation describes the evolution of a probability density or alternatively the mass transport by the flow
solution of

dxt
dt

= b (xt , t) (3.5)

Namely if we take the initial condition

p (x , to) = po(x) & xt0 = xo

3



then we see that

p(xt , t) = po(xo)e
−

R t
to
ds (∂xsb)(xs,s) (3.6)

yields an implicit solution of (3.4) provided

xt = ϕ(t; to, xo)

satisfies (3.5). Namely, taking the total derivative with respect to time of both sides

∂tp(xt, t) +
dxt
dt
∂xtp(xt, t) = −p(xt, t) ∂xtb(xt, t)

Furthermore if po(x) is chosen positive, then (3.6) remains positive at any subsequent time. Note finally that in
order to extract from (3.6) the explicit representation of the solution we need to invert the relation

x = xt(xo)

for any fixed x.
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