
1 Introduction

The lecture notes cover sections F and G of chapter 2 and appendix Appendix A of [1]. The notes also discuss some
extra examples.

2 Borel -Cantelli lemma

Let {Fk}∞k=1 a sequence of events in a probability space.

Definition 2.1 (Fn infinitely often). The event specified by the simultaneous occurrence an infinite number of the
events in the sequence {Fk}∞k=1 is called “Fn infinitely often” and denoted Fn i.o.. In formulae

Fn i.o. := ∩∞n=1 ∪∞k=n Fk = {ω ∈ Ω |ω belongs to infinitely many of theFn}

An alternative notation may help. Observe that the set-theoretic union (∪) operation has the probabilistic meaning
of “at least”. The event F̃n = ∪∞k=nFk defines a sampling of the tail (starting from n) of the sequence. It occurs if at
least one event in the tail occurs. The intersection ∩∞n=1F̃n differs from the empty set if disregarding how long is the
tail (how large is n) we can observe the occurrence of an Fn′ for n′ ≥ n. This is possible only if an infinite number
of the events in the sequence indeed occur:

Fn i.o. = lim
n↑∞
∪k≥nFk = lim

n↑∞
sup
k≥n

Fk

Recall also that

P (Fk) =
∫
dP χFk(ω)

for χFk the characteristic function of the event χ and that

lim
n↑∞

sup
k≥n

χFk(ω) = χlimn↑∞ supk≥n Fk(ω)

Lemma 2.1 (Borel-Cantelli). The following claims hold:

• if
∑

n P (Fn) < ∞ then P (Fn i.o.) = 0

• if
∑

n P (Fn) = ∞ and {Fn}∞n=1 consists of independent events P (Fn i.o.) = 1

Proof. :

• By definition

P (Fn i.o.) = P (∩∞n=0 ∪∞k=n Fk) = P ( lim
n↑∞
∪∞k=nFk) (2.1)

Lebesgue’s dominated convergence theorem (see e.g. [2] pag. 187), allows us to carry out the limit from the
integral

P (Fn i.o.) = lim
n↑∞

P (∪∞k=nFk) ≤ lim
n↑∞

∞∑
k=n

P (Fk) = 0

whilst the definition of probability measure enforces the inequality

P (Fn i.o.) ≤ lim
n↑∞

∞∑
k=n

P (Fk)

The proof of the first statement follows from the hypothesized convergence of the series.
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• We can turn to the complementary event:

(∪k≥nFk)c = ∩k≥nF ck

and use independence

P (∩k≥nF ck) =
∞∏
k=n

P (F ck) =
∞∏
k=n

[1− P (Fk)]

The inequality

1− x ≤ e−x

then provides us with an upper bound for each factor in the product

P (∩k≥nF ck) ≤
∞∏
k=n

e−P (Fk) = e−
P∞
k=n P (Fk)

whence the claim follows if the series diverges.

The Borel-Cantelli lemma provides an extremely useful tool to prove asymptotic results about random sequences
holding almost surely (acronym: a.s.). This mean that such results hold true but for events of zero probability. An
obvious synonym for a.s. is then with probability one.

3 Characteristic function of a random variable

Definition 3.1 (Characteristic function). Let

ξ : Ω→ Rd

the expectation value

p̌ξ(q) :=≺ eıξ·q �

is referred to as the characteristic function of the random variable

Example 3.1 (Characteristic function of a Gaussian random). Let

ξ : Ω→ R

distributed with Gaussian PDF. The characteristic function is

ǧx̄ ,σ(q) =
∫
dx eıqxgx̄ ,σ(x) = eıqx−

σ2 q2

2

For a Gaussian variable it is also true

Ǧx̄ ,σ(q) =
in qn

Γ (n+ 1)
≺ ξn �

having used the Γ-function representation of the factorial (see appendix B). The remaining expectation value is

≺ ξn �=
Γ (2n+ 1)
2n Γ (n+ 1)

= (2n− 1)!! (3.1)
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Formally for a random variable ξ one can write

≺ ξn �=
1
ın

dn

dqn
p̌ξ(q)

∣∣∣∣
q=0

(3.2)

The relation is formal because it may be a relation between infinities.

Example 3.2 (Lorentz distribution). Let
p : R → R+

be

py σ(x) =
σ

π {(x− y)2 + σ2}

the Lorentz probability density so that (R ,B , Py σ(B)) a probability space. Note that

p0σ(x) = p0σ(−x)

Using a change of variable and it is straightforward to verify that∫
R
dxx py σ(x) = y

however ∫
R
dxx2 py σ(x) =∞

The characteristic function can be computed using Cauchy theorem

p̌y σ(q) = eıqy
∫
dx eıqxp0σ(x)

=
eıqy

2 ı π

∫
R
dx eıqx

{
1

x− ı σ
− 1
x+ ı σ

}
= eıqy

{
e−q σ if q > 0
eq σ if q < 0

The characteristic function develops a cusp for q = 0

p̌y σ(q) = eıqy−σ|q|

Finally note that

δ(x− y) w= lim
σ↓0

py σ(x)

Remark 3.1 (The Fourier representation of the δ-Dirac). Let fi : Rd → R , i = 1, 2 some smooth integrable functions
and

f̌i(q) =
∫

Rd
ddx eıq·xfi(x) i = 1, 2

their Fourier transform. The convolution identity

(f1 ? f2)(x) :=
∫
ddy f1(x− y) f2(x) =

∫
ddq

(2π)d
eı q·xf̌1(q)f̌2(q)

maybe thought as a consequence of

δ(d)(x− y) w=
∫

ddq

(2π)d
eı q·(x−y)

The δ-Dirac in such a case could be very formally though as the characteristic function of a ”random variable”
uniformly distributed over Rd.
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4 Probability density and Dirac-δ

Let
ξ : Ω → Rd

with PDF pξ(·). From the properties of the δ function we have

≺ δ(d)(ξ − x) �=
∫

Rd
ddy pξ(y)δ(d)(y − x) = pξ(x)

This relation allows us to derive the relation between the PDF’s of functionally dependent random variables

4.1 Derivation in one dimension

Suppose the random variable has the

Pξ(x < ξ < x+ dx) = pξ(x) dx

Functional relation between random variables

φ = f(ξ) (4.1)

again

Pφ(y < φ < y + dy) = pφ(y) dy

From

Pξ(x < ξ < x+ dx) = Pφ(y < φ < y + dy)

one gets into

pξ(x) = pφ(f(x))
df

dx

4.2 Multi-dimensional case using the δ-function

Suppose f is one-to-one and write

pφ(y) =≺ δ(d)(φ− y) �=≺ δ(d)(f(ξ)− y) �

It follows

pφ(y) =
∫

Rd
ddx δ(d)(f(x)− y)pξ(x) ≡ lim

σ↓0

∫
Rd
ddx

e−
||f(x)−y||2

2σ2

(2π σ2)
d
2

pξ(x)

Since f is one-to-one

f−1(y) = x? (4.2)

is globally well defined. Taylor-expanding the argument of the exponential we get for the i-th component of y

yi = f i(x?) + (xj − xj?)
∂f i

∂xj
(x?) +O((xj − xj?)2)
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Call

Aij :=
∂f i

∂xj
(x?)

zi =
xj − xj?
σ

the integral becomes

pφ(y) = lim
σ↓0

∫
Rd
ddz

e−
ziAliAljz

j+O(σ)

2

(2π)
d
2

pξ(x? +O(σ)) =
pξ(x?)
|detA|

(4.3)

5 Limit theorems for Bernoulli variables

Definition 5.1 (i.i.d. random variables). A sequence of random variables {ξi}∞i=1 is said identically distributed if

Pξ1(x) = Pξ2(x) = · · · = Pξn(x) = . . . (5.1)

Furthermore if they are mutually independent they are usually referred to with the acronym i.i.d.

Let {ξi}∞i=1 a sequence of i.i.d. Bernoulli variables i.e. for all i, ξi
d= ξ (equality in distribution) and

ξ : Ω→ {−x, x} & Pξ(x) = p

From the characteristic function

≺ eıtξ �= cos(xt) + ı (2 p− 1) sin(xt)

we find

≺ ξn �=
{
xn n = 2 k
xn (2 p− 1) n = 2 k + 1

whence

≺ ξ �= (2 p− 1)x & ≺ (ξ− ≺ ξ �)2 �= 4 p (1− p)x2

and

≺ (ξ− ≺ ξ �)4 �= 16 p (1− p) [1− 3 (1− p) p]

If we introduce the random variable

Sn :=
∑n

i=1 ξi
n

then

≺ Sn �=≺ ξ � & ≺ (Sn− ≺ ξ �)2 �=
4 p (1− p)

n

• We can apply Chebyshev lemma to show

P (|Sn− ≺ ξ � | ≥ ε) ≤ ≺ (Sn− ≺ ξ �)2 �
ε2

=
4 p (1− p)

n ε2

n↑∞→ 0 (5.2)

This is law of large numbers for i.i.d. Bernoulli variables.
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• Upon setting

ξ̃i = ξi− ≺ ξ � (5.3)

≺ (Sn− ≺ ξ �)4 �=
∑
i=1

≺ ξ̃4
i �
n4

+ 3
∑
ijkl

δijδkl(1− δjk)
≺ ξ̃2

i �2

n4

=
16 p (1− p)

n3
[1− 3 (1− p) p] + 3n (n− 1)

16 p2 (1− p)2

n4
≤ C

n2

for n � 1, we also find

P (|Sn− ≺ ξ � | ≥ ε) ≤ ≺ (Sn− ≺ ξ �)4 �
ε4

≤ C

n2 ε4

n↑∞→ 0

The new bound tends to zero sufficiently fast at infinity to be useful in order to apply the Borel-Cantelli lemma
which entitles us to conclude:

Sn
n↑∞→ ≺ ξ � a.s.

i.e. we have proved the strong law of large numbers for Bernoulli schemes.

• Let us convene that S0 is zero. Then we can write (see appendix A)

P
(
Sn =

mx

n

)
=

Γ(n+ 1)
Γ
(
n+m

2 + 1
)

Γ
(
n−m

2 + 1
)pn+m

2 (1− p)
n−m

2

For n ,m � 1 we can extricate the asymptotics of the probability using Stirling’s formula (see formula B.1 in
appendix (B)):

P
(
Sn =

mx

n

)
' 1√

2π n2−m2

n

e
n+m

2
ln p+n−m

2
ln(1−p)+n(lnn−1)−n+m

2 (ln n+m
2
−1)−n−m2 (ln n−m

2
−1) (5.4)

The strong law of large numbers allows us to relate asymptotically m to the empirical probability (i.e. the
observed frequency) of a displacement to the right

m = (2 p̃− 1)

As n tends to infinity the observation allows as to recast (5.4) into the form

P
(
Sn =

mx

n

)
' e−nK(p̃|p)+o(n)√

2π 4 p̃ (1−p̃)
n

with

K(p̃|p) = −
{
p̃ ln

p̃

p
+ (1− p̃) ln

1− p̃
1− p

}
(5.5)

the Kullback-Leibler divergence (entropy) between the empirical and the Bernoulli distribution. This quantity
measure the (rate of) discrepancy between two probability measures.

6



• Let z be an indicator of the discrepancy between p and p̃ i.e.

p̃ = p+
z

2

Taylor expanding (5.5) around z equal zero yields

K(p̃|p) =
z2

8 p(1− p)
+O(z3) (5.6)

We can use this result to estimate the probability with which Sn asymptotically deviates from its expected value

P

(
Sn− ≺ ξ �

≺ (Sn− ≺ ξ �)2 �1/2
= z

)
n↑∞
' e−

z2

2√
2π ≺(Sn−≺ξ�)2�

x2

This is the content of the central limit theorem for Bernoulli variables. It is tempting to interpret the vanishing
of the variance in the denominator as n tends to infinity, as a weight in a Riemann sum so to infer

P

(
Sn− ≺ ξ �

≺ (Sn− ≺ ξ �)2 �1/2
≤ z
)
n↑∞
'
∫ z

−∞
du

e−
u2

2

√
2π

• Consider now the characteristic function

≺ eıSn t �=≺ eıξ t �n=
[
cos
(
x t

n

)
+ ı (2 p− 1) sin

(
x t

n

)]n
The limit

lim
n↑∞

ln ≺ eıSn t �= ı (2 p− 1)x t− x2 t2

2
4 p (p− 1)

n
+ o

(
1
n

)
contains the same type of information of the central limit theorem. Namely we can couch the result into the
form

lim
n↑∞

ln ≺ eıSn t �

= ı ≺ ξ � t− t2

2
≺ (ξ− ≺ ξ �)2 �

n
+ o

(
1
n

)
= ı ≺ Sn � t− t2

2
≺ (Sn− ≺ Sn �)2 � +o

(
1
n

)
The rescaling

t → t

≺ (Sn− ≺ Sn �)2 �1/2

suggests that the characteristic function

≺ e
ı Sn−≺Sn�
≺(Sn−≺Sn�)2�1/2

t
�n↑∞→ e−

t2

2

tends indeed to the characteristic function of the Gaussian distribution.
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Appendices

A Random walk

Let

Rn = nSn

and suppose that of the n steps nr were to the right and nl to the left:

n = nl + nr (A.1)

The displacement from the origin in units of x is then given by

m = nr − nl (A.2)

We can solve for nl, nr and obtain

nr =
n+m

2
& nl =

n−m
2

The probability of an individual sequence of samples of Bernoulli variables such that Rn(ω) = mx is

P (ω) = p
n+m

2 (1− p)
n−m

2

In order to evaluate the total probability P (Rn = mx) we must count all possible sequences of samples such that
(A.1), (A.2) are verified. This number is equal to the number of ways we can extract nr out of n indistinguishable
object (this means that the extraction order does not matter):

Cnrn =
n!

nr!(n− nr)!
≡ n!
nr!nl!

The conclusion is

P (Rn = mx) =
n!(

n+m
2

)
!
(
n−m

2

)
!
p
n+m

2 (1− p)
n−m

2

Using binomial formula it is straightforward to check the normalization condition form = −n,−(n−1), . . . , n−1, n.

B Gamma function

The Γ function for any x ∈ R+ is specified by the integral

Γ(x) =
∫ ∞

0

dy

y
yx e−y

For x ∈ N the integral can be performed explicitly and it is equal to the factorial:

Γ(x) = (x− 1)! x ∈ N

For x ∈ R+, integration by parts yields the identity

Γ(x+ 1) =
∫ ∞

0

dy

y
yx+1 e−y = xΓ (x)

which is trivially satisfied by factorials. For x � 1 the value of the integral is approximated by Laplace’s stationary
point method

Γ(x+ 1) ' ex (lnx−1)

∫
R
dy e−

y2

2 x =
√

2π x ex (lnx−1) x � 1 (B.1)

Such asymptotic estimation is usually referred to as Stirling formula.
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