1 Introduction

The lecture notes cover sections F and G of chapter 2 and appendix Appendix A of [1]. The notes also discuss some
extra examples.

2 Borel -Cantelli lemma

Let { F}, } -, a sequence of events in a probability space.

Definition 2.1 (F), infinitely often). The event specified by the simultaneous occurrence an infinite number of the
events in the sequence {F},},-, is called “F, infinitely often” and denoted F), i.o.. In formulae

Fyio. =2 U, Fr, = {w € Q|w belongs to infinitely many of theF,, }

An alternative notation may help. Observe that the set-theoretic union (U) operation has the probabilistic meaning
of “at least”. The event F}, = Upe,, Ik defines a sampling of the tail (starting from n) of the sequence. It occurs if at
least one event in the tail occurs. The intersection ﬂ;’f:lﬁn differs from the empty set if disregarding how long is the
tail (how large is n) we can observe the occurrence of an F,,; for n’ > n. This is possible only if an infinite number
of the events in the sequence indeed occur:

F,i.0. = lim Up>, F. = lim sup Fj
nfoo = nloo g>n

Recall also that
P(Fy) = /dPka (w)
for x r, the characteristic function of the event x and that

lim Sup X ry (w) = Xlimp oo SUPy>,, F (W)
nfoo k>n =

Lemma 2.1 (Borel-Cantelli). The following claims hold:

o ify P(F,) < oothen P(Fyi.0.)=0
o ify . P(F,) = ooand {F,}, | consists of independent events P (Fi.0.) =1
Proof. -

e By definition
P(F,i.0.) = P(NY2y U, Fi) = P(liTm Une,, Fx) 2.1)
n|oo

Lebesgue’s dominated convergence theorem (see e.g. [2] pag. 187), allows us to carry out the limit from the
integral

P(F,i.0.) = lim P(Up, F) < lim P(F,) =0
(Frio) = lim PUER) < lm 5 P(R)

whilst the definition of probability measure enforces the inequality

o0

P(F,i.0.) < lim P(Fy)
nloo i

The proof of the first statement follows from the hypothesized convergence of the series.



e We can turn to the complementary event:
(Uk>nEk)® = Nizn by

and use independence

P(MiznF) = [T PFE) = TL 1 = P(F)]
k=n k=n

The inequality
1l—z<e™
then provides us with an upper bound for each factor in the product

P(uonF) < [ e P00 = o Zitn PO
k=n

whence the claim follows if the series diverges.
O

The Borel-Cantelli lemma provides an extremely useful tool to prove asymptotic results about random sequences
holding almost surely (acronym: a.s.). This mean that such results hold true but for events of zero probability. An
obvious synonym for a.s. is then with probability one.

3 Characteristic function of a random variable

Definition 3.1 (Characteristic function). Let
£:Q—R?
the expectation value
pe(q) =< e®9 =
is referred to as the characteristic function of the random variable
Example 3.1 (Characteristic function of a Gaussian random). Let
£E:Q—R

distributed with Gaussian PDF. The characteristic function is

0_2
9 o(q) = / 0z 9 gy o(x) = =73

For a Gaussian variable it is also true

- /Ln qn
Gi 70'(q) = 1—1

Fnrn &7

having used the I'-function representation of the factorial (see appendix B). The remaining expectation value is

L '2n+1)

= Srr gy = @n - D! (3.1)



Formally for a random variable £ one can write
d?‘L
<& == —p
3 o dqnzz(Q)q:O
The relation is formal because it may be a relation between infinities.
Example 3.2 (Lorentz distribution). Let
p: R — R,

be

g
m{(z —y)* + 0%}
the Lorentz probability density so that (R, B, P, ,(3)) a probability space. Note that

pyo(x) =

pOa(x) = pOa'(_ .T)

Using a change of variable and it is straightforward to verify that

/ drxpys(x) =y
R

however

/ dx 2% py o (7) = 00
R

The characteristic function can be computed using Cauchy theorem

Dyo(q) = e’qy/dm " pos(x)

_ ety /daj e 1 B 1 _ g e—qo %fq >0
2am Jp r—10 z+410 e?? ifg <O

The characteristic function develops a cusp for g = 0

Py »(q) = e1ay—old|

Finally note that

é(x—y) = lgl?gpya(x)

3.2)

Remark 3.1 (The Fourier representation of the §-Dirac). Let f; : R — R, i = 1,2 some smooth integrable functions

and
filq) = dd 9% f(x) 1=1,2
R4
their Fourier transform. The convolution identity
diq

——— ' 9" f1(q) fa(q)

()@= [dyfi@—v b = [ 5

maybe thought as a consequence of

w [ 4 (e
5(d)(m_y):/<27gd€<1(w Y)

The §-Dirac in such a case could be very formally though as the characteristic function of a “random variable”

uniformly distributed over R



4 Probability density and Dirac-o

Let
£: 0 — R?

with PDF pg(-). From the properties of the ¢ function we have

<8¢ —z) -= /Rd dy pe(y)6' D (y — x) = pe(x)

This relation allows us to derive the relation between the PDF’s of functionally dependent random variables

4.1 Derivation in one dimension

Suppose the random variable has the

Pe(r < & <z +dx) = pe(x)do
Functional relation between random variables

¢ =f(¢)

again

Py(y <o <y+dy) =py(y) dy
From

Pe(r <§{<z+dx) =Pyly < ¢ <y+dy)

one gets into

pela) = polf () >

4.2 Multi-dimensional case using the J-function

Suppose f is one-to-one and write

Po(y) == 6D (¢ —y) ===< 8D (f(&) —y) =

It follows
_ i) —yl?
(v) / a2 5 (f(2) - y)pe(@) = lim | dle "
p = - =
¢ Rd ¢ ol0 Jpa (27”).2)%

Since f is one-to-one

f_l(y) = Tx

.1

pe(x)

4.2)

is globally well defined. Taylor-expanding the argument of the exponential we get for the :-th component of y

oft
oxJ

y' = fl(@) + (27 = ad) 5= (@) + O((2? — 2])?)

4



Call

the integral becomes

ziAliAljzj+O(U)

el +O(0) = & (@) (4.3)

— 1 dtz € =
poly) =litg fu @ [det A]

710 Ja 27)

5 Limit theorems for Bernoulli variables

Definition 5.1 (i.i.d. random variables). A sequence of random variables {&;};° is said identically distributed if
P (x) = Pey(x) == P, () = ... (5.1)
Furthermore if they are mutually independent they are usually referred to with the acronym i.i.d.
Let {¢}:°, a sequence of i.i.d. Bernoulli variables i.e. for all ¢, &; 4 & (equality in distribution) and
§: Q0 —{—=zx} & Pe(z) =p
From the characteristic function

< pZs p— cos(:ct) +1 (2p — 1) Sin(l‘t)

we find
< en >:{ " n=2k
2"(2p—1) n=2k+1
whence
<&-=02p—-1z & <(E==<€E-)2 ==4p(1 —p)a?
and

< (==& ==16p (1—p) [1—-3 (1—p) p]
If we introduce the random variable

Sn = Z?:l 67'

n

then

4p (1 —
< S, === &> & <(Sn—<£>)2>zu

e We can apply Chebyshev lemma to show

< (Sn—<€=)? = 4p(l—p) nix

P(|Su— < €| > ) < . 130 (5.2)

€ ne2

This is law of large numbers for i.i.d. Bernoulli variables.



e Upon setting

§=6—<E- (5.3)
B R el e B
< (Sp— <€) >_; et +3%5wém(l djk) i
16p(1 —p 16p%(1—p)2 _C
B LT R Y L Bl

forn > 1, we also find

< (Sp— < &=) - C nioo

P(|Sp,—=<¢&-| > ¢) < 7 — 0

IN

€ n2 gt

The new bound tends to zero sufficiently fast at infinity to be useful in order to apply the Borel-Cantelli lemma
which entitles us to conclude:

S, M- a.s.

i.e. we have proved the strong law of large numbers for Bernoulli schemes.

e Let us convene that Sy is zero. Then we can write (see appendix A)

P<Sn:m$) B [(n+1) mm ) .

TTEEanT (e 0

For n,m > 1 we can extricate the asymptotics of the probability using Stirling’s formula (see formula B.1 in
appendix (B)):

P (S _ mx) ~ 1 enJrTmlnp—i-%1n(1—p)+n(lnn—l)—"+Tm(ln HTm—l)—%(ln "Em—l) (5.4)
" n o 27 n2—m?2 .

n

The strong law of large numbers allows us to relate asymptotically m to the empirical probability (i.e. the
observed frequency) of a displacement to the right

m=(2p—1)

As n tends to infinity the observation allows as to recast (5.4) into the form

—n K (plp)+o(n)
P (s, =My < Y
n o - 45 (1)
with
- P ., 1—=p
K(p!p)Z—{plniﬂl—p)lnl_p} (5.5)

the Kullback-Leibler divergence (entropy) between the empirical and the Bernoulli distribution. This quantity
measure the (rate of) discrepancy between two probability measures.



e Let z be an indicator of the discrepancy between p and p i.e.

5—=p-+ %
Taylor expanding (5.5) around z equal zero yields
_ 22 3
K(plp) = Sp=p) + O(z°) (5.6)

We can use this result to estimate the probability with which .S, asymptotically deviates from its expected value

2

_z
2

P( Sp— < &= >moo
S (Sp— <€ =) 12 \/277 =(s <§>

This is the content of the central limit theorem for Bernoulli variables. It is tempting to interpret the vanishing
of the variance in the denominator as n tends to infinity, as a weight in a Riemann sum so to infer

w2

Sp— < & = njoo [* N
P < ~ d
<<(Sn—<£>)2 1/2‘Z> oo u\/27r

e Consider now the characteristic function
xt zt\ 1"
e [cos () +12(2p —1) sin ()}
n n

224p(p-1 1
limIn < ent =4 (2p — 1) at — e dpp—l) +o <)
nloo 2 n n

The limit

contains the same type of information of the central limit theorem. Namely we can couch the result into the
form

1S t

Iimln<e -

nfoo

2 _ 2
C<es o EREE=ET) >+0<1>

2 n n
2

t 1
=1 < S, - t—2<(Sn—<Sn>)2>+o<n)

The rescaling

t
< (Sp— < Sy =)2 =1/2

t —

suggests that the characteristic function

Sn—=<Sn> 2
g —— 20— —PRe ot njoo _t=
< e <(Sn—=Sn=)2=1/27 L e 2

tends indeed to the characteristic function of the Gaussian distribution.



Appendices
A Random walk

Let
R,=nS,
and suppose that of the n steps n, were to the right and n; to the left:
n=mn;+n, (A.1)
The displacement from the origin in units of x is then given by
m=n, —n (A.2)

We can solve for n;, n, and obtain

n—;m & nl:n—m

The probability of an individual sequence of samples of Bernoulli variables such that R,,(w) = mx is

ny =

n-gm, (1 - p) n—2m
In order to evaluate the total probability P(R,, = mx) we must count all possible sequences of samples such that
(A.1), (A.2) are verified. This number is equal to the number of ways we can extract n, out of n indistinguishable
object (this means that the extraction order does not matter):

Pw)=p

n! n!
=15 I = ot
nl(n—n)! nglng!
The conclusion is
n! n+m n—m
P(Rn:miv)zmp 2 (1-p) =
) (")!
Using binomial formula it is straightforward to check the normalization condition form = —n, —(n—1),...,n—1,n.

B Gamma function

The I" function for any = € R is specified by the integral
oo
d
M) = [ Pyre
o Y
For x € N the integral can be performed explicitly and it is equal to the factorial:

I(z) =(x—1)! reN

For x € R, integration by parts yields the identity

* dy rz+1 —

MNzx+1)= —y"e Y=zl (x)
o Y

which is trivially satisfied by factorials. For z >> 1 the value of the integral is approximated by Laplace’s stationary

point method

2

T(z+1)~ el‘“”l)/dye%’z =V2rzer el x> 1 (B.1)
R

Such asymptotic estimation is usually referred to as Stirling formula.
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