
1 Introduction

These notes shortly recall some basic concepts in classical probability. The main reference are sections from A to F
of chapter two of [1] integrated with some extra examples, to be discussed in the exercise session.

2 Measure theoretic definitions

Let Ω a non-empty set.

Definition 2.1 (σ-algebra). A σ-algebra is a collection F of subsets of Ω with these properties

1. ∅ ,Ω ∈ F .

2. if F ∈ Ω then F c ∈ Ω for F c := Ω \ F the complement of F .

3. if {Fk}∞k=1 ∈ Ω then

∩∞k=1 Fk ,∪∞k=1Fk ∈ Ω

Definition 2.2 (Probability measure). Let F be a σ-algebra of subsets of Ω. We call

P : F → [0, 1]

a probability measure provided:

1. P (∅) = 0 , P (Ω) = 1

2. if {Fk}∞k=1 then

P (∪∞k=1Fk) ≤
∞∑
k=1

P (Fk)

3. if {Fk}∞k=1 are disjoint sets

P (∪∞k=1Fk) =
∞∑
k=1

P (Fk) (2.1)

It follows that if F1 , F2 ∈ F

F1 ⊂ F2 ⇒ P (F1) ≤ P (F2)

Definition 2.3 (Borel σ-algebra). The smallest σ-algebra containing all the open subsets of Rd is called the Borel
σ-algebra, denoted by B

The Borel subsets of Rd i.e. the content of B may be thought as the collection of all the well-behaved subsets of
Rd for which Lebesgue measure theory applies.
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3 Probability Space

Definition 3.1 (Probability space). A triple

(Ω ,F , P )

is called a probability space provided

1. Ω is any set

2. F is a σ-algebra of subsets of Ω

3. P is a probability measure on F

• Points ω ∈ Ω are sample (outcome) points.

• A set F ∈ F is called an event.

• P (F ) is the probability of the event F .

• A property which holds true but for events of probability zero is said to hold almost surely (usually abbreviated
”a.s.”).

Example 3.1 (Single unbiased coin tossing). :

• outcomes: head, tail

• Ω = {head, tail}.

• σ-algebra F : it comprises |F| = 2|Ω| = 4 events

1 T=tail

2 H=head

3 ∅=neither head nor tail

4 T ∨H=head or tail

• Probability measure:

P (T ) = P (H) =
1
2

& P (∅) = 0 & P (T ∨H) = 1 (3.1)

Example 3.2 (Uniform distribution). :

• Ω = [0, 1].

• F : the σ-algebra of all Borel subsets of [0, 1].

• P : the Lebesgue measure on [0, 1]. (Note: as 0 ∪ 1 has zero measure [0, 1] ∼ (0, 1).)
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Definition 3.2 (Probability density on Rd). Let p be a non-negative, integrable function, such that∫
Rd
ddx p(x) = 1 (3.2)

then to each B ∈ B (Borel σ-algebra) is possible to associate a probability

P (B) =
∫
B
ddx p(x) (3.3)

so that (Rd ,B , P ) is a probability space. The function p is called the density of the probability P .

Example 3.3 (Gaussian distribution). The function

gx̄ σ : R→ R+

gx̄ σ(x) =
e−

(x−x̄)2

2σ2

√
2πσ2

(3.4)

is a probability density on (Rd ,B , P ).

Example 3.4 (Dirac mass and Dirac δ-function). Let y be the coordinate of a point inRd. Define for any B ∈ B

Py(B) =
{

1 if y ∈ B
0 if y ∈/ B (3.5)

then (Rd ,B , P ) is a probability space. The probability P is the Dirac mass concentrated at x. The ”density” associ-
ated to P is the Dirac δ-function (distribution). A possible definition of the Dirac δ-function on R

δ(x− y)
w
:= lim

σ↓0
gy σ(x)

The definition must be understood in weak sense. Namely, let

f : R → R

a bounded Lebesgue measurable test function then∫
R
dx δ(x− y) f(x) = lim

σ↓0

∫
R
dx gy σ(x)f(x) = lim

σ↓0

∫
R
dx g0 1(x)f(σx+ y) = f(y)

The above chain of equalities show that the Dirac δ is not a density with respect to the standard Lebesgue measure as
it has support on a set of zero Lebesgue measure. A consequence is that indefinite integral

Hy(x) =
∫ x

−∞
dz δ(z − y) =

1 + sgn(x− y)
2

yields

Hy(y) =


1 x > y
∗ x = y
0 x < y

meaning that the result is not defined on the zero measure set x = y. The result may be interpreted in weak sense as
the definition of the Heaviside distribution.
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Properties of the Dirac δ distribution

In weak sense (i.e. applied to suitable test functions), the Dirac δ over R satisfies

i localization of the integral: ∫ y+ε

y−ε
dx δ(x− y) f(x) = f(y)

ii derivative of the Dirac δ:∫ y+ε

y−ε
dx

d

dx
δ(x− y) f(x) = − df

dy
(y) ⇒ f(x)

dδ

dx
(x− y) w= − df

dx
(x)δ(x− y)

iii for h(x) having a simple zero x = x? and otherwise non-vanishing and smooth in (x?− ε , x? + ε) with ε > 0∫ x?+ε

x?−ε
dx f(x)δ(h(x)) =

f(x?)∣∣dh
dx(x?)

∣∣ ⇒ δ(h(x)) w=
δ(x− x?)∣∣dh
dx(x?)

∣∣
iv The d-dimensional Dirac-δ

δ(d)(x− y) =
d∏
i=1

δ(xi − yi) (3.6)

maybe defined by repeating the limiting procedure on each variable e.g.

δ(d)(x− y) w=
d∏
i=1

lim
σ↓0

gyi σ(xi) (3.7)

v Let

h : Rd → R (3.8)

such that

h(x) = 0 (3.9)

describes a smooth d− 1-dimensional hyper-surface Σ embedded in Rd, then∫
Rd
ddx δ(h(x)) =

∫
dΣ

f(x)
||∇h||

(3.10)

4 Random variables

Definition 4.1 (Random variable). Let (Ω ,F , P ) be a probability space. A mapping

ξ : Ω → Rd

is called an d-dimensional random variable if for each B ∈ B one has

ξ−1(B) ∈ F

i.e. if ξ is F-measurable.
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The definition associates to each event a Borel subset.

Example 4.1 (Indicator function). Let F ∈ F . The indicator function of F is

χF (ω) =
{

1 if ω ∈ F
0 if ω ∈/ F

Example 4.2 (Simple function). Let {Fi}mi=1 ∈ F are disjoint (i.e. Fi ∩ Fj = ∅) and form a partition of Ω (i.e.
∪mi=1Fi = Ω) and {xi}mi=1 ∈ R then

ξ =
m∑
i=1

xiχFi(ω)

is a random variable, called a simple function.

Lemma 4.1. Let

ξ(ω) : Ω → Rd

be a random variable. Then

F(ξ) =
{
ξ−1(B) |B ∈ B

}
is a σ-algebra, called the σ-algebra generated by ξ. This is the smallest sub σ-algebra of F with respect to which ξ
is measurable.

Proof. It suffices to verify that F(ξ) is a σ-algebra.

Remark 4.1 (Meaning of measurability). : The σ-algebra F (ξ) encodes all the information described by the random
variable ξ. This means that if ζ is a second random variable, the statement

• ζ = f (ξ) for some mapping f implies that ζ is F(ξ)-measurable.

• ζ is F(ξ)-measurable, implies that there exists a mapping f such that ζ = f (ξ).

5 Expectation values

Expectation values of generic random variables are defined following the same steps taken to define the Lebesgue
integral of measurable functions. Let (Ω ,F , P ) a probability space and ξ a simple 1-dimensional random variable

ξ =
n∑
i=1

xiχFi

Definition 5.1 (Expectation value (integral) of a simple random variable).∫
Ω
dP ξ =

n∑
i=1

xiP (Fi)

Definition 5.2 (Expectation value (integral) of a non-negative random variable η). For

η : Ω → R+

we define

≺ η �≡
∫

Ω
dP η := sup

ξ≤η
ξ=simple

∫
Ω
dP ξ
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Definition 5.3 (Expectation value a random variable η). For

η : Ω → R

we define

η+ := max {η , 0} & η− := max {−η , 0}

If

min {≺ η+ � ,≺ η− �} < ∞

we define the expectation variable of

η ≡ η+ − η−

as ∫
Ω
dP η :=

∫
Ω
dP η+ −

∫
Ω
dP η−

With these definitions all the standard rules of Lebesgue integrals apply to expectation values.

Proposition 5.1 (Chebyshev’s inequality). If ξ is a random variable and 1 ≤ n <∞, then

P (||ξ|| ≥ x) ≤ 1
xn
≺ ||ξ||n � ∀n

Proof.

≺ ||ξ||n �=
∫

Ω
dP ||ξ||n ≥ xn

∫
||ξ||≥x

dP ||ξ||n ≡ xn P (||ξ|| ≥ x)

6 Moments of a random variable

Definition 6.1 (Distribution function). The distribution function of a random variable ξ : Ω→ Rd is the function

P̃ξ : Rd → R+

such that

P̃ξ(x) = Pξ(ξ1 ≤ x1 , . . . , ξd ≤ xd)

Definition 6.2 (PDF of a random variable). Let ξ : Ω→ Rd be a random variable and Pξ its distribution function.
If there exists a non-negative, integrable function

p : Rd → R+

such that

P̃ξ(x) =
d∏
i=1

∫ xi

−∞
dyi pξ(y)

then pξ specifies the probability density function of ξ (PDF).
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Lemma 6.1. Let

ξ : Ω → Rd

be a random variable, with statistics described by PDF pξ. Suppose

f : Rd → R

and

y = f(x)

Then

≺ y �≡ E {y} =
∫
ddx pξ(x)f(x)

In particular

≺ ξi �=
∫
ddx pξ(x)xi average or mean value

and

≺ (ξi− ≺ ξi �)2 �=
∫
ddx pξ(x)xi2− ≺ ξi �2 variance

Proof. Suppose first f is a simple function on Rd . Then

≺ f(ξ) �=
n∑
i=1

fi

∫
χBi(ξ)dP =

n∑
i=1

fiP (Bi) =
n∑
i=1

fi

∫
Bi

pξ(x) f(x)

Consequently the formula holds for all simple functions g and, by approximation, it holds therefore for general
functions g.

Definition 6.3 (Moments of a random variable). Let

ξ : Ω → R

we call the expectation value of the n-th power of ξ

≺ ξn �=
∫

Ω
dP ξn

the moment of order n of ξ.

The lower order moments are those most recurrent in applications and as such are given special names such as the
average and the variance.

Example 6.1. (Average and variance of a Gaussian variable)

• Average:

≺ ξ �=
∫

R
dxx gx̄ σ(x) =

∫
R
dx (x̄+ σ x) g0 1(x)

As

g0 1(x) = g0 1(−x)

we find

≺ ξ �= x̄
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• Variance

≺ (ξ− ≺ ξ �)2 �= σ2

∫
R
dxx2 g0 1(x)

The remaining integral I can be evaluated for example using the identity∫
R
dxx2 g0 1(x) =

d2

d2

∣∣∣∣
=0

Z()

Z() :=
∫

R
dx g0 1(x) ex

Namely

Z() = e
2

2

∫
R2

2∏
i=1

dxi
e−

x2
1+x2

2
2

2π
= e

2

2

∫ ∞
0

dr r e−
r2

2 = e
2

2

The statistical properties of a Gaussian variable are therefore fully specified by its first two moments.

7 Independence

Definition 7.1 (Conditional probability). Let (Ω ,F , P ) a probability space and F1 , F2 two events in F . Suppose

P (F1) > 0

Then the probability of the event F2 given the occurrence of F1 is

P (F2|F1) =
P (F2 ∩ F1)
P (F2)

A clear interpretation of this definition see [1] pag. 17.

Definition 7.2 (Independence). F2 is said to be independent of F1 if

P (F2|F1) = P (F2) ⇐⇒ P (F2 ∩ F1) = P (F1)P (F2)

Definition 7.3 (Independence of random variables). The random variables

ξi : Ω → Rd

i = 1, . . . are said to be independent if for all integers 1 ≤ k1 < k2 < km and all choices of Borel sets {Bki}
m
i=1 ⊂

Rd the factorisation property

P (ξk1
∈ Bk1 , ξk2

∈ Bk2 , . . . , ξkm ∈ Bkm) =
m∏
i=1

P (ξki ∈ Bki)

holds true.

The definition implies that if there exists a PDF

pξk1
... ξkm

: Rd × Rd︸ ︷︷ ︸
m times

→ R+ (7.1)
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such that

P (ξk1
∈ Bk1 , ξk2

∈ Bk2 , . . . , ξkm ∈ Bkm) =
∫
Bk1
×Bkm

m∏
i=1

ddxkipξk1
... ξkm

(xk1 , . . . ,xkm)

then

pξk1
... ξkm

(xk1 , . . . ,xkm) =
m∏
i=1

pξki
(xki)

Furthermore the characteristic function ofm-independent random variables is equal to the product of the characteristic
functions.
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