1 Introduction

These notes shortly recall some basic concepts in classical probability. The main reference are sections from A to F
of chapter two of [[1] integrated with some extra examples, to be discussed in the exercise session.

2 Measure theoretic definitions
Let {2 a non-empty set.
Definition 2.1 (o-algebra). A o-algebra is a collection F of subsets of § with these properties

1. 0,Q € F.
2. if F € Qthen F° € Q for F¢:= Q\ F the complement of F.

3. if {Fi}re, € Qthen

Definition 2.2 (Probability measure). Let F be a o-algebra of subsets of Q). We call
P:F —[0,1]
a probability measure provided:
1. P0)=0,P(Q)=1

2. if {Fy}p, then

3. if{Fy};2, are disjoint sets

P(U2 Fr) = Y P(Fy) @1

It follows that if Iy , Fy, € F
Fy C Fy = P(Fl) < P(Fg)

Definition 2.3 (Borel o-algebra). The smallest o-algebra containing all the open subsets of RY is called the Borel
o-algebra, denoted by B

The Borel subsets of R? i.e. the content of 3 may be thought as the collection of all the well-behaved subsets of
R? for which Lebesgue measure theory applies.



3 Probability Space
Definition 3.1 (Probability space). A triple
(Q,F,P)
is called a probability space provided
1. Qis any set
2. Fis a o-algebra of subsets of ()

3. P is a probability measure on F

Points w € €2 are sample (outcome) points.

A set F' € F is called an event.

e P(F) is the probability of the event F'.

”a.s.”).

Example 3.1 (Single unbiased coin tossing). :

e outcomes: head, tail

o O = {head,tail}.

e g-algebra F: it comprises | F| = 2/Yl = 4 events
1 T=tail
2 H=head

3 ()=neither head nor tail
4 TV H=head or tail

e Probability measure:

PT)=PH)== & PWM)=0 & P(TVH) =1

Example 3.2 (Uniform distribution). :

e O =10,1].
e F: the o-algebra of all Borel subsets of [0, 1].

e P: the Lebesgue measure on [0, 1]. (Note: as 0 U 1 has zero measure [0, 1] ~ (0,1).)

A property which holds true but for events of probability zero is said to hold almost surely (usually abbreviated

3.1



Definition 3.2 (Probability density on RY). Let p be a non-negative, integrable function, such that

/Rd il p(a) = 1

then to each B € B (Borel g-algebra) is possible to associate a probability

P(B):/dea:p(a:)

so that (RY | B, P) is a probability space. The function p is called the density of the probability P.

Example 3.3 (Gaussian distribution). The function

s R—=Ry
_ (z—3)2
€ 202

9gzo(2) = Norrel
is a probability density on (R¢, B, P).

(3.2)

(3.3)

(3.4)

Example 3.4 (Dirac mass and Dirac d-function). Let y be the coordinate of a point in R?. Define for any B € B

f1 ifyeB
Py(B)_{o ify ¢ B

(3.5)

then (R¢, B, P) is a probability space. The probability P is the Dirac mass concentrated at . The “density” associ-

ated to P is the Dirac d-function (distribution). A possible definition of the Dirac §-function on R
5@ — y) < lim g, (x)
al0
The definition must be understood in weak sense. Namely, let
f:R—=R

a bounded Lebesgue measurable test function then

/R dr8(x — y) f(x) =lim [ degyo(e)f(x) =lim [ degor(2)f(ox +y) = f()

ol0 Jr ol0 Jr

The above chain of equalities show that the Dirac ¢ is not a density with respect to the standard Lebesgue measure as

it has support on a set of zero Lebesgue measure. A consequence is that indefinite integral

/ Lrd(s - y) — L sERE —1)
2
yields
1 Tz >y
Hy(y) =4 * r=y
0 z <y

meaning that the result is not defined on the zero measure set z = y. The result may be interpreted in weak sense as

the definition of the Heaviside distribution.



Properties of the Dirac ¢ distribution

In weak sense (i.e. applied to suitable test functions), the Dirac ¢ over R satisfies

i

i

iii

v

localization of the integral:

derivative of the Dirac ¢:

y+e
[ pseniw=-30 = oRE-n* - @iy

for h(z) having a simple zero x = x, and otherwise non-vanishing and smooth in (z, — &, 2, +¢) withe > 0

Tute
[ wr@sten = g = e o g
The d-dimensional Dirac-9d
d
0D (@ —y) = [ 6(x: — wi) (3.6)
i=1
maybe defined by repeating the limiting procedure on each variable e.g.
d
6D (x —y) £ 1;[1101?8 Gyi o () (3.7)
Let
h:R' SR (3.8)
such that
h(xz) =0 (3.9)

describes a smooth d — 1-dimensional hyper-surface . embedded in R, then

a _ [apI®
/Rdd zd(h(x)) = /dZ v (3.10)

4 Random variables

Definition 4.1 (Random variable). Let (2, F , P) be a probability space. A mapping

£€: Q0 — R?

is called an d-dimensional random variable if for each B € B one has

¢'(B) e F

i.e. if € is F-measurable.



The definition associates to each event a Borel subset.
Example 4.1 (Indicator function). Let F' € F. The indicator function of F' is

[l weF

W=l 0 ifwg¢F

Example 4.2 (Simple function). Let {F;};", € F are disjoint (i.e. F; N F; = ) and form a partition of Q (i.e.
ur, F; = Q) and {z;};~, € Rthen

£=> wixp W)
i=1

is a random variable, called a simple function.

Lemma 4.1. Let
£w): 2 — R
be a random variable. Then
F(&)={¢'(B)|B € B}

is a o-algebra, called the o-algebra generated by €. This is the smallest sub o-algebra of F with respect to which &
is measurable.

Proof. Tt suffices to verify that (&) is a o-algebra. O

Remark 4.1 (Meaning of measurability). : The o-algebra F (£) encodes all the information described by the random
variable £. This means that if ¢ is a second random variable, the statement

e ¢ = f (&) for some mapping f implies that ¢ is F(&)-measurable.
e ( is F(&)-measurable, implies that there exists a mapping f such that ¢ = f ().

S Expectation values

Expectation values of generic random variables are defined following the same steps taken to define the Lebesgue
integral of measurable functions. Let (2, F , P) a probability space and £ a simple 1-dimensional random variable

n
£= mixp
i=1

Definition 5.1 (Expectation value (integral) of a simple random variable).

n
[ are=>Ywpr)
Q i=1
Definition 5.2 (Expectation value (integral) of a non-negative random variable n). For
n:Q — Ry
we define

-<T]>E/dP77:: sup /dP§
Q £€<n Q

&=simple



Definition 5.3 (Expectation value a random variable n). For
n:0—>R
we define
N4 = max {n,0} & n— :=max {—n,0}
If
min{<ny >,<n- >} < 00
we define the expectation variable of

=70 —1-

/dPn::/dPn+—/dPn
Q Q Q

With these definitions all the standard rules of Lebesgue integrals apply to expectation values.

as

Proposition 5.1 (Chebyshev’s inequality). If € is a random variable and 1 < n < oo, then
1 n
Plgl z o) < = < [€]" = Vn

Proof.

e — dP n n dP n=p"P
<M>lé mzxﬂm 1" = 2" P(J¢] > )

6 Moments of a random variable

Definition 6.1 (Distribution function). The distribution function of a random variable & : Q@ — R? is the function
Pe:RY — R,

such that

Pe(x) = Pe(&1 < a1, &4 < 2q)

Definition 6.2 (PDF of a random variable). Let & : Q — R be a random variable and Py its distribution function.
If there exists a non-negative, integrable function

p: R — Ry
such that

~ d :Ei
&wzﬂ/(mmw
=17~

then pg specifies the probability density function of € (PDF).



Lemma 6.1. Let

£:0 — R?
be a random variable, with statistics described by PDF p¢. Suppose

f:RISR
and

y=f(z)
Then
<yr=Ely) = [ dope@)f(a)
In particular
 — /ddl‘ pe(x) zt average or mean value

and

< (- <€ )P = / dlzpe(w) 2~ <€ =2 variance

Proof. Suppose first f is a simple function on R% . Then

n n n
< 1@ =3 £ [xu(©iP =3 £PBI=Y 1 [ pele) (@)
i=1 i=1 i=1 VB
Consequently the formula holds for all simple functions g and, by approximation, it holds therefore for general
functions g. O
Definition 6.3 (Moments of a random variable). Let
E:Q —-R

we call the expectation value of the n-th power of €

<§">—pLdP§"

the moment of order n of €.

The lower order moments are those most recurrent in applications and as such are given special names such as the
average and the variance.

Example 6.1. (Average and variance of a Gaussian variable)

e Average:
< €= /Rdﬂsxgxg(x) = /Rd:c (Z +ox)go1()
As
901(z) = go1(— )
we find

<E&E-=7



e Variance

<(E—=<E-) = 02/ dz z? go1 ()
R

The remaining integral I can be evaluated for example using the identity

d2
dz 22 go1(z) = — AY
[ dea®ane) = 2

Z(3) 1=/Rd$901(1‘) e’

Namely

The statistical properties of a Gaussian variable are therefore fully specified by its first two moments.

7 Independence

Definition 7.1 (Conditional probability). Let (2, F , P) a probability space and Fy , F5 two events in F. Suppose

P(Fl) > 0
Then the probability of the event F5 given the occurrence of F is

P(FQ N Fl)

P(F2|F1): P(FQ)

A clear interpretation of this definition see [1]] pag. 17.

Definition 7.2 (Independence). Fj is said to be independent of I if

P(F2|F1):P(F2) < P(Fgﬂ Fl) :P(F1)P(F2)

Definition 7.3 (Independence of random variables). The random variables

& : Q- R

i =1,... are said to be independent if for all integers 1 < ki < ko < ky, and all choices of Borel sets { By, };~, C

R? the factorisation property

m

P(&, € B, &y, € Bryy- o1&y, € Br,) = [[ P&, € Br,)

i=1
holds true.

The definition implies that if there exists a PDF

. d d
p§k1-~~5km :R* xR —>R+

mtimes

8

(7.1)



such that

m
P(£k1 S Bk1 ,£k2 S BkQ yeun 7£km S Bkm) = / Hddxkipgkl I (ackl e ,mkm)
B

k1 X Brm =1

then
m
Pe,, &, (@ m,) = [ e, (1)
=1

Furthermore the characteristic function of m-independent random variables is equal to the product of the characteristic
functions.
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