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Regularization

» unstable operator equation: F(gq) =g with F: g+ uor C(u)
» solution g = F~1(g) does not depend continuously on g
€., (v(gn)vgn — g # qn:= Fﬁl(gn) — Fﬁl(g»
> only noisy data g° ~ g available: [|g° —g|| < ¢
» making ||F(q) — g°|| small % good result for g!
» regularization means approaching solution along stable path:
given (gn), gn — g construct g, := Ry,,(gn) such that
an = Ran(gn) - F_l(g)
> regularization method: family (R, )a>0 with parameter choice
a = a(g?’,0)
such that worst case convergence as § — 0:

| 5SUFT\<5H (g56( )—Ffl(g)H —0asd—0
g-g



Iterative solution methods for inverse problems: VI Adaptive discretization of inverse problems

LMotivation: Parameter ldentification in PDEs

Motivation: Parameter ldentification in PDEs

> instability: sufficiently high precision (amplification of
numerical errors)
» computational effort:
> large scale problem: each regularized inversion involves several
PDE solves
» repeated solution of regularized problem to determine
regularization parameter

Example —Au = g:
refine grid for v and g: e at jumps or large gradients or
e at locations with large error contribution

— location of large gradients / large errors a priori unknown

— general strategy for mesh generation possibly
separately for q and u (example —Vq(u)Vu) = f)

computational effort =- efficient numerical strategies necessary !
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Efficient Methods for PDEs

multilevel iteration: . . ...
adaptive discretization:

. .
—1 od

start with coarse discretization
refine successively

coarse discretization where possible
fine grid only where necessary
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Efficient Methods for PDEs

combined multilevel adaptive strategy:

courtesy to [R.Becker&M.Braack&B.Vexler, App.Num.Math., 2005]
start on coarse grid
sucessive adaptive refinement
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Some Ideas on Adaptivity for Inverse Problems

>

Haber&Heldmann&Ascher'07: Tikhonov with BV type
regularization:

Refine for u to compute residual term sufficiently precisely;
Refine for q to compute regularization term sufficiently
precisely

Neubauer'03, '06, '07: moving mesh regularization, adaptive
grid regularization: Tikhonov with BV type regularization:
Refine where q has jumps or large gradients

Borcea& Druskin'02: optimal finite difference grids (a priori
refinement): Refine close to measurements
Chavent&Bissell'98, Ben Ameur&Chavent& Jaffré’02,
BK&Ben Ameur'02: refinement and coarsening indicators
Becker&Vexler'04, Griesbaum&BK&\Vexler'07, Bangerth'08,
BK&\Vexler'09: goal oriented error estimators
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refinement/coarsening based on predicted misfit reduction
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Identification of a Distributed Parameter:

Groundwater modelling

s%—div(qgradu): f in Q C R?
with initial and boundary conditions

u ... hydraulic potential (ground water level),
s(x,y) ...storage coefficients,

q(x,y) ...hydraulic transmissivity,

f(x,y,t) ...source term,

space and time discretization (time step At, mesh size h).
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Parameter ldentification

ou
ot
Reconstruction of the transmissivity g (pcw. const.) from
measurements of w.

s— —div (g grad u) =f in Q

Find zonation and values of q such that
J(q) = [|u(q) — u®®*||* = min!

[Ben Ameur& Chavent&Jaffré'02], [Chavent&Bissell’98], [BK&Ben Ameur’'02]
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Refinement Indicators

1 zone — 2 zones

q*:= min of J(q) solves (qi*‘):: min of J((Z;)) solves
2

mmJ«ZiD s.t. { min J(( 7)) s.t.
i
5

Ty _ _ .
d(CI2)_q1_q2_B =0 dT(ql)I%*qz:B =1q] —q

)) = J(q") +X°(ai — 43)

])\0\ Iarge = large possible reduction of data misfit J2,

= (1/d"d)d"VJ(g*) (negligible computational effort)
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Compute all refinement indicators for zonations generated
systematically by families of vertical, horizontal, checkerboard and
oblique cuts.

(a) (b) (c) (d)
Mark those cuts that yield largest refinement indicators |\°|
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Coarsening Indicators

(91 ):=solution of min J((?))
9@ 92
q11
min J( ZE ) s.t.
solves 2
g1 —q =5
qi2—q2 =B
q13—q =B
with Bj :== B* :=q] — q;
B
qu
an J(% B B~
J( o )B=0.8=8*jzi = ((q§ ) — A
qs coarsening

) - — - indicator
optimum if gy; is aggregated with g,
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Multilevel Refinement and Coarsening Algorithm

[H.Ben Ameur, G.Chavent, J.Jaffré, 2002]

Minimize J on starting zonation
Do until refinement indicators = 0
Refinement: compute refinement indicators A
chooose cuts with largest ||
Coarsening: if chosen cuts yield several sub-zones:
evaluate coarsening indicators
and aggregate zones where possible
Minimize J for each of the retained zonations

and keep those with largest reduction in J
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Abstract Setting for Refinement and Coarsening

discretization: Xy = span{¢1,...,on} st. X = Uyen Xn
misfit minimization
min [|F(q) — g°|I> = min |[F(XN,ai0i) — &°?
min [|F(q) ~ ' = min | F(CX 1100 — &'
=J(a)
consider misfit minimization on some index set Z C {1,2,..., N}:

min ||F(>_;czaidi) _g6H2 (P%)

aeR\I\

~ solution a?, g% with a; := 0 for i & T ~ sparsity

Find index set I and coefficients a* such that

t . 1
||F(Ziezfaiz bi) — g6||2 = min, gzt ||F(Zieﬂaiz ®i) — g6||2 =
mingexy |F(q) — &°|
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Refinement Indicators
current index set Z¥ with computed solution o of (PIk);

for some index {i.} & Z* consider constrained minimization prob.

. ki,
min HF(ZieIku{i*}aiﬁbi) —g5||2 st.a, =0 (Pg ™)

acRIZK+1

=J(a)
~ solution ag with a; := 0 for i ¢ ZK U {i.}; note: ag—o = aZ" solves (PT")
Lagrange function L(a,\) = J(a) + \(8 — a;,)

necessary optimality conditions: 0 = %(aﬁ, Ag) =

8l (ag) — s (%)
Lagrange multipliers = sensitivities: d%j(ag) = d%ﬁ(ag, Ag) = g
Taylor expansion J(ag) ~ J(ag) + di/’gj(ao) 3= j(aIk) + Ag=o 3

= ri = |\go ) |gT{7(aIk)\ ... refinement indicator
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Coarsening Indicators
current index set Z¥ with computed solution a* 2 of (PIk)

for some index {/,} € Z* consider constrained minimization probl.

512 DIk, Iy
mmk IF( icqnaidi) —g°lI° st oa, =7 (Py ™)
acRIZ
=J(a)
~ solution a, with a; := 0 for / ¢ Tk note: a, = aZ" with Yy 1= a, “ solves (Pik)

Lagrange function  L(a,u) = J(a) + p(y — ay,)

necessary optimality conditions: 0 = %(ay, ) = gT{(av) — iy ()

Lagrange multipliers = sensitivities: d%j(aw) ddyﬁ(av,,uﬂ/) = 1ty
Taylor expansion [J(ay—o) ~ J(a,,) — d%j(ay*) Y. = J(ar") — Loy, Vs

*

= choi= v = ‘9 ( 7 )Yx - . .coarsening indicator

—~
~
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Multilevel Refinement and Coarsening Algorithm

k = 0: Minimize J on starting index set Z° ~» minimal value J°
Do until refinement indicators =0
Refinement: compute refinement indicators ri i, §ZI"
chooose index sets 7% U {i,} with largest r'*
Minimize J on each of these index sets
and keep Z := Z¥ U {i,} with largest reduction in J ~» J
Coarsening (only if J < J¥): evaluate coarsening indicators c*
chooose index sets 7% \ {I.} with largest c*
Minimize J on each of these index sets
and keep 7 := Ik \ {/} with largest reduction in J ~ J
If 7 < j + p(jk . j) (coarsening does not deteriorate

optimal value too much)
set ZKt1 .= 7, gk+1.=7 (refinement and coarsening)
Else set ZKt1:=7, Jkt1.=7F (refinement only)
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Convergence Proof

For fixed N < oo, Algorithm stops after finitely many steps k = K;;
g = ZieZKalK@
> af solves (PT*) = 0=VJ(a¥) =
0= (F(q") — &’ F'(q")¢i) Vi € TK
» refinement indicators vanish =
0=rt=(F(q")—g° F(q")i) Vi ¢ T
= Projx, F(¢")"(F(¢") - g’) =0
Stability and convergence follow from (existing) results on

regularization by discretization

[BK&Offtermatt '09, '10]
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Remarks

> more systematic coarsening based on problem specific
properties
(related dofs due to local closeness in groundwater example)
» Lagrange multipliers = gradient components (but we do not
carry out gradient steps!): possible improvement by taking into
account Hessian information (Newton type)

» Greedy type approach (Burger&Hofinger'04,
Denis&Lorenz& Trede'09)

» relation active set strategy <> semismooth Newton
(Hintermiiller&Ito&Kunisch'03)



e
Iterative solution methods for inverse problems: VI Adaptive discretization of inverse problems

[

goal oriented error estimators

2nd approach:

goal oriented error estimators
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Tikhonov Regularization and the Discrepancy Principle
Parameter identification as a nonlinear operator equation
Flq)=¢
g’ ~ g...given data; noise level § > ||g% — g

F...forward operator: F(q) = (Co S)(q) = C(u) where u = 5(q)
solves

A(q,u)(v) =(f,v) VYveV ... PDE in weak form
Tikhonov regularization:
Minimize  Jja(q) = [|F(q) — &°|I* + allq]* over g € Q,
Choice of «a: discrepancy principle (fixed constant 7 > 1)
IF(a0,) —&°ll =76

Convergence analysis: [Engl& Hanke& Neubauer 1996] and references there
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Goal Oriented Error Estimators in PDE Constrained
Optimization (1)
[Becker&Kapp&Rannacher'00], [Becker&Rannacher'01], [Becker&Vexler '04, '05]

Minimize J(q,u) overge Q, uecV
under the constraints A(q,u)(v) =f(v) VYveV,

Lagrange functional:
L(q,u,z) = J(q,u) + f(z) — Alq, u)(2).
First order optimality conditions:
L'(q,u,2)[(p,v,y)] =0 Y(p,v,y) e@xVxV (1)
Discretization Qn C Q, Vj, C V ~» discretized version of (1).
Estimate discretization error in some quantity of interest I:

I(q, u) — 1(qn, un) <7
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Goal Oriented Error Estimators (1)
Auxiliary functional:
M(q,u,z,p,v,y) = I(q, u)+L(q,u,2)[(p,v,y)] (q,u,2,p,v,y) € (Q:
Consider additional equations:
M (xp)(dxp) =0 Vdxy € Xy = (Qn x Vi x V)?

Proposition ([Becker&Vexler, J. Comp. Phys., 2005]:

1
I(q,u) — 1(qn, up) = 5M(xh)(x —%n) +O(|Ix — xnl]?) V& € Xp.

—m

error estimator 17 = sum of local contributions due to q, u, z, p, v, y:

Ng Ny N, Np N, Ny
n=> nf Ed 0t Y nF > P> ol + > !
i=1 i=1 i=1 i=1 i=1 i=1

~ local refinement separately for g € Qp, u€ Vp,, z€ Vy, ...
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Choice of Quantity of Interest ?
aim:
recover infinite dim. convergence results for Tikhonov + discr. princ.
in the adaptively discretized setting

challenge: carrying over infinite dimensional results is

... straightforward if we can guarantee smallness of operator norm
1Fn— Fl
~ huge number of quantities of interest!

... not too hard if we can guarantee smallness of
IFa(a") — F(g")]
~> large number of quantities of interest!

... but we only want to guarantee precision of
one or two quantities of interest
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Convergence Analysis ~ Choice of Quantity of Interest

Proposition [Griesbaum&BK& Vexler'07], [BK& Kirchner& Vexler'10]:
e = i (6,8%) and Qp x Vj, x V4, such that for

I(q,u) = [|C(u) - &°lIF = IF(a) — £°lI%
22(52 S l(qi,w*? ui,(y*) S ?52

(i) If additionally

“(qi,a Uh Qs )7 l(q(\*, (();V) < Cl(qzﬂu*’ U?;ﬂu*)

Optimal rates under source conditions (logarithic/Holder).

for some sufficiently small constant ¢ > 0 then qg* —qfasé—0.
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Convergence Analysis ~~ Choice of Quantity of Interest

Proposition [Griesbaum&BK& Vexler'07], [BK&Kirchner& Vexler'10]:
e = i (8,g%) and Qp x Vj, x Vj, such that for
I(g, u) == [|C(u) - &°lIz = IF(a) — &°l%

720% < (Gh o Uh0,) < 702
(i) If additionally for

h(q, u) = Ju(q, u)

)

‘l2(qi,u'*’ uh,u*) B l2(q?;><’ Uf\'*) < 06

for some constant C > 0 with 22 > 1+ o, then qﬁ « — gtasd —0

see also [Neubauer&Scherzer 1990]
J as quantity of interest ~» [Becker&Kapp&Rannacher'00], [Becker&Rannacher'01],
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|dea of Proof
error bound |J,, (g 0 ul w)— Jo. (5., ud )| < 062 and
optimality of qg*, ug* imply
Ja*(qfw*, ufw*) < Ja*(qg*, ug*) +06% < Ja*(qf’ uT) + 06

on the other hand, by the discrepancy principle
%6% < 1F(q} o)~ g%||? < 762 and the definition of the cost
functional Ju(g, u) = ||F(q) — &°[I* + allq|]?

Ja*(qi,a*7 ug,a*) Z 2262 + Oé*Hqg,a* H2
Jo(q", u") < 6% + g2
Combining these estimates and the choice ;2 > 1+ 0 we get
lah.a? < g™ + (1 +0 —22)6% < |q'|>.

The rest of the proof is standard.
(Also works for stationary points qiﬂ* instead of global minimizers.)
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Remarks

e goal oriented error estimators allow to control the error in
some quantity of interest

o suff. small error in residual norm i(1) and its derivative i'(%)
= fast convergence of Newton's method for choosing a.. (discr. prin
~» coarse grids at the beginning of Newton's method

— save computational effort

e sufficiently small error in residual norm and Tikhonov
functional
=- convergence of Tikhonov regularization preserved

e other regularization methods:
regularization by discretization [BK&Kirchner& \Vexler|
IRGNM [BK& Veljovic]

— other regularization parameter choice strategies: e.g.,

balancing principle
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Thank you for your attention!
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