Iterative solution methods for inverse problems: VI Adaptive discretization of inverse problems

Iterative solution methods for inverse problems: VI Adaptive discretization of inverse problems

Barbara Kaltenbacher, University of Graz

28. Juni 2010

overview

Motivation: Parameter Identification in PDEs

refinement/coarsening based on predicted misfit reduction

goal oriented error estimators

Motivation: Parameter Identification in PDFs

- instability: sufficiently high precision (amplification of numerical errors)
- computational effort:
 - large scale problem: each regularized inversion involves several PDF solves
 - repeated solution of regularized problem to determine regularization parameter

```
Example -\Delta u = q:
```

- refine grid for u and q: at jumps or large gradients or
 - at locations with large error contribution

Motivation: Parameter Identification in PDEs

- instability: sufficiently high precision (amplification of numerical errors)
- computational effort:
 - large scale problem: each regularized inversion involves several PDF solves
 - repeated solution of regularized problem to determine regularization parameter

```
Example -\Delta u = q: refine grid for u and q:
```

- at jumps or large gradients or
- at locations with large error contribution
- → location of large gradients / large errors a priori unknown

Motivation: Parameter Identification in PDEs

- instability: sufficiently high precision (amplification of numerical errors)
- computational effort:
 - large scale problem: each regularized inversion involves several PDE solves
 - repeated solution of regularized problem to determine regularization parameter

```
Example -\Delta u = q:
```

refine grid for u and q:

- at jumps or large gradients or
- at locations with large error contribution
- → location of large gradients / large errors a priori unknown
- \rightarrow general strategy for mesh generation possibly separately for q and u (example $-\nabla q(u)\nabla u$) = f)

- instability: sufficiently high precision (amplification of numerical errors)
- computational effort:
 - large scale problem: each regularized inversion involves several PDF solves
 - repeated solution of regularized problem to determine regularization parameter

```
Example -\Delta u = q:
```

- refine grid for u and q: at jumps or large gradients or
 - at locations with large error contribution
- → location of large gradients / large errors a priori unknown
- → general strategy for mesh generation possibly separately for q and u (example $-\nabla q(u)\nabla u$) = f)

- instability: sufficiently high precision (amplification of numerical errors)
- computational effort:
 - large scale problem: each regularized inversion involves several PDF solves
 - repeated solution of regularized problem to determine regularization parameter

```
Example -\Delta u = q:
```

- refine grid for u and q: at jumps or large gradients or
 - at locations with large error contribution
- → location of large gradients / large errors a priori unknown
- → general strategy for mesh generation possibly separately for q and u (example $-\nabla q(u)\nabla u$) = f)
- instability \Rightarrow regularization necessary!

Regularization

- ▶ unstable operator equation: F(q) = g with $F: q \mapsto u$ or C(u)
- ▶ solution $q = F^{-1}(g)$ does not depend continuously on g i.e., $(\forall (g_n), g_n \to g \not\Rightarrow q_n := F^{-1}(g_n) \to F^{-1}(g))$
- only noisy data $g^\delta pprox g$ available: $\|g^\delta g\| \le \delta$
- ▶ making $||F(q) g^{\delta}||$ small \Rightarrow good result for q!
- ▶ regularization means approaching solution along stable path: given $(g_n), g_n \to g$ construct $q_n := R_{\alpha_n}(g_n)$ such that $q_n = R_{\alpha_n}(g_n) \to F^{-1}(g)$
- ▶ regularization method: family $(R_{\alpha})_{\alpha>0}$ with parameter choice $\alpha=\alpha(g^{\delta},\delta)$ such that worst case convergence as $\delta\to 0$:

$$\sup_{\|\mathbf{g}^{\delta}-\mathbf{g}\|\leq \delta}\|R_{\alpha(\mathbf{g}^{\delta},\delta)}(\mathbf{g}^{\delta})-F^{-1}(\mathbf{g})\|\ \to 0 \text{ as } \delta\to 0$$

- instability: sufficiently high precision (amplification of numerical errors)
- computational effort:
 - large scale problem: each regularized inversion involves several PDF solves
 - repeated solution of regularized problem to determine regularization parameter

```
Example -\Delta u = q:
```

- refine grid for u and q: at jumps or large gradients or
 - at locations with large error contribution
- → location of large gradients / large errors a priori unknown
- → general strategy for mesh generation possibly separately for q and u (example $-\nabla q(u)\nabla u$) = f)

computational effort \Rightarrow efficient numerical strategies necessary!

Efficient Methods for PDEs

multilevel iteration:

start with coarse discretization refine successively

adaptive discretization:

coarse discretization where possible fine grid only where necessary

Efficient Methods for PDEs

combined multilevel adaptive strategy:

courtesy to [R.Becker&M.Braack&B.Vexler, App.Num.Math., 2005]

start on coarse grid

successive adaptive refinement

Some Ideas on Adaptivity for Inverse Problems

- Haber&Heldmann&Ascher'07: Tikhonov with BV type regularization: Refine for u to compute residual term sufficiently precisely;
 - Refine for a to compute regularization term sufficiently precisely
- ▶ Neubauer'03, '06, '07: moving mesh regularization, adaptive grid regularization: Tikhonov with BV type regularization: Refine where q has jumps or large gradients
- ▶ Borcea&Druskin'02: optimal finite difference grids (a priori refinement): Refine close to measurements
- ► Chavent&Bissell'98, Ben Ameur&Chavent&Jaffré'02, BK&Ben Ameur'02: refinement and coarsening indicators
- ► Becker&Vexler'04, Griesbaum&BK&Vexler'07, Bangerth'08, BK&Vexler'09: goal oriented error estimators
- **.** . . .

Iterative solution methods for inverse problems: VI Adaptive discretization of inverse problems \Box refinement/coarsening based on predicted misfit reduction	i

1st approach:

 $refinement/coarsening\ based\ on\ predicted\ misfit\ reduction$

Identification of a Distributed Parameter:

Groundwater modelling

$$s\frac{\partial u}{\partial t} - div(q \ grad \ u) = f \ in \Omega \subseteq \mathbb{R}^2$$

with initial and boundary conditions

```
u\dots hydraulic potential (ground water level), s(x,y)\dots storage coefficients, q(x,y)\dots hydraulic transmissivity, f(x,y,t)\dots source term,
```

space and time discretization (time step Δt , mesh size h).

Parameter Identification

$$s\frac{\partial u}{\partial t} - \operatorname{div}\left(q \text{ grad } u\right) = f \text{ in } \Omega$$

Reconstruction of the transmissivity q (pcw. const.) from measurements of u.

Find zonation and values of q such that

$$J(q) := ||u(q) - u^{obs}||^2 = \min!$$

[Ben Ameur&Chavent&Jaffré'02], [Chavent&Bissell'98], [BK&Ben Ameur'02]

Refinement Indicators

$$q^* := \min \text{ of } J(q) \text{ solves } \begin{pmatrix} q_1^* \\ q_2^* \end{pmatrix} := \min \text{ of } J(\binom{q_1}{q_2}) \text{ solves} \\ \begin{cases} \min J(\binom{q_1}{q_2}) & \text{s.t.} \\ d^T(\frac{q_1}{q_2}) = q_1 - q_2 = B \\ \end{cases} =: 0 \begin{cases} \min J(\binom{q_1}{q_2}) & \text{s.t.} \\ d^T(\frac{q_1}{q_2}) = q_1 - q_2 = B \\ \end{cases} =: q_1^* - q_2^* \\ \frac{\partial}{\partial B} J(\binom{q_1^B}{q_2^B}) = \lambda^B \Rightarrow J(\binom{q_1^*}{q_2^*}) \approx J(q^*) + \lambda^0(q_1^* - q_2^*) \end{cases}$$

 $|\lambda^0|$ large \Rightarrow large possible reduction of data misfit J_{opt}^B $\lambda^0 = (1/d^Td)d^T\nabla J(q^*)$ (negligible computational effort) Compute all refinement indicators for zonations generated systematically by families of vertical, horizontal, checkerboard and oblique cuts.

Mark those cuts that yield largest refinement indicators $|\lambda^0|$

Coarsening Indicators

Multilevel Refinement and Coarsening Algorithm

```
[H.Ben Ameur, G.Chavent, J.Jaffré, 2002]
```

Abstract Setting for Refinement and Coarsening

discretization: $X_N = \operatorname{span}\{\phi_1, \dots, \phi_N\}$ s.t. $X = \bigcup_{N \in \mathbb{N}} X_N$ misfit minimization

$$\min_{q \in X_N} \|F(q) - g^{\delta}\|^2 = \min_{\mathbf{a} \in \mathbb{R}^N} \underbrace{\|F(\sum_{i=1}^N a_i \phi_i) - g^{\delta}\|^2}_{= \mathcal{J}(\mathbf{a})}$$

consider misfit minimization on some index set $\mathcal{I} \subseteq \{1,2,\ldots,N\}$:

$$\min_{\mathbf{a} \in \mathbb{R}^{|\mathcal{I}|}} \| F(\sum_{i \in \mathcal{I}} a_i \phi_i) - g^{\delta} \|^2 (P^{\mathcal{I}})$$

 \rightsquigarrow solution $\mathbf{a}^{\mathcal{I}}$, $q^{\mathcal{I}}$ with $a_i := 0$ for $i \notin \mathcal{I} \rightsquigarrow$ sparsity

Find index set \mathcal{I}^{\dagger} and coefficients $\mathbf{a}^{\mathcal{I}^{\dagger}}$ such that $\|F(\sum_{i\in\mathcal{I}^{\dagger}}a_{i}^{\mathcal{I}^{\dagger}}\phi_{i})-g^{\delta}\|^{2}=\min_{\mathbf{a}\in\mathbb{R}^{|\mathcal{I}^{\dagger}|}}\|F(\sum_{i\in\mathcal{I}^{\dagger}}a_{i}^{\mathcal{I}^{\dagger}}\phi_{i})-g^{\delta}\|^{2}=\min_{\mathbf{a}\in\mathcal{X}_{N}}\|F(\mathbf{q})-g^{\delta}\|^{2}$

Refinement Indicators

current index set \mathcal{I}^k with computed solution $a^{\mathcal{I}^k}$ of $(P^{\mathcal{I}^k})$;

$$\min_{\mathbf{a} \in \mathbb{R}^{|\mathcal{I}^k|+1}} \underbrace{\|F(\sum_{i \in \mathcal{I}^k \cup \{i_*\}} a_i \phi_i) - g^{\delta}\|^2}_{=:\mathcal{I}(\mathbf{a})} \quad \text{s.t. } a_{i_*} = \beta \qquad (P_{\beta}^{\mathcal{I}^k, i_*})$$

for some index $\{i_*\} \notin \mathcal{I}^k$ consider constrained minimization prob.

$$ightharpoonup ext{solution } \mathbf{a}_{\beta} ext{ with } a_i := 0 ext{ for } i
otin \mathcal{I}^k \cup \{i_*\}; ext{ note: } \mathbf{a}_{\beta=0} = \mathbf{a}^{\mathcal{I}^k} ext{ solves } (P^{\mathcal{I}^k})$$

Lagrange function $\mathcal{L}(\mathbf{a},\lambda) = \mathcal{J}(\mathbf{a}) + \lambda(\beta - a_{i_*})$

necessary optimality conditions: $0 = \frac{\partial \mathcal{L}}{\partial a_{i_*}}(\mathbf{a}_{\beta},\lambda_{\beta}) = \frac{\partial \mathcal{J}}{\partial a_{i_*}}(\mathbf{a}_{\beta}) - \lambda_{\beta} ext{ (*)}$

Lagrange multipliers = sensitivities: $\frac{d}{d\beta}\mathcal{J}(\mathbf{a}_{\beta}) = \frac{d}{d\beta}\mathcal{L}(\mathbf{a}_{\beta},\lambda_{\beta}) = \lambda_{\beta}$

Taylor expansion $\mathcal{J}(\mathbf{a}_{\beta}) \approx \mathcal{J}(\mathbf{a}_{0}) + \frac{d}{d\beta}\mathcal{J}(\mathbf{a}_{0})\beta = \mathcal{J}(\mathbf{a}^{\mathcal{I}^{k}}) + \lambda_{\beta=0}\beta$

$$\Rightarrow r^{i_*} := |\lambda_{\beta=0}| \stackrel{(*)}{=} |\frac{\partial \mathcal{J}}{\partial a_i}(\mathbf{a}^{\mathcal{I}^k})| \dots$$
 refinement indicator

Coarsening Indicators

current index set $\tilde{\mathcal{I}}^k$ with computed solution $a^{\tilde{\mathcal{I}}^k}$ of $(P^{\tilde{\mathcal{I}}^k})$;

for some index
$$\{I_*\} \in \tilde{\mathcal{I}}^k$$
 consider constrained minimization probl.

$$\min_{k} \|F(\sum_{i} x_i \phi_i) - \sigma^{\delta}\|^2 \quad \text{s.t.} \quad x_i = x_i \quad (\tilde{P}^{\tilde{\mathcal{I}}^k}, I_*)$$

 $(\tilde{P}_{2}^{\tilde{\mathcal{I}}^{k}, l_{*}})$ $\min_{\mathbf{a} \in \mathbb{R}^{|\tilde{\mathcal{I}}^k|}} \| F(\sum_{i \in \tilde{\mathcal{I}}^k} a_i \phi_i) - g^{\delta} \|^2 \quad \text{s.t. } a_{l_*} = \gamma$

$$= \mathring{\mathcal{J}}(\mathbf{a})$$
 \Longrightarrow solution \mathbf{a}_{γ} with $a_i := 0$ for $i \not\in \tilde{\mathcal{I}}^k$; note: $\mathbf{a}_{\gamma_*} = \mathbf{a}^{\tilde{\mathcal{I}}^k}$ with $\gamma_* := a_{I_*}^{\tilde{\mathcal{I}}^k}$ solves $(P^{\tilde{\mathcal{I}}^k})$

Lagrange function $\mathcal{L}(\mathbf{a}, \mu) = \mathcal{J}(\mathbf{a}) + \mu(\gamma - a_{L})$ necessary optimality conditions: $0 = \frac{\partial \mathcal{L}}{\partial \mathbf{a}_{l}}(\mathbf{a}_{\gamma}, \mu_{\gamma}) = \frac{\partial \mathcal{J}}{\partial \mathbf{a}_{l}}(\mathbf{a}_{\gamma}) - \mu_{\gamma}$ (*)

Lagrange multipliers = sensitivities: $\frac{d}{d\gamma}\mathcal{J}(\mathbf{a}_{\gamma}) = \frac{d}{d\gamma}\mathcal{L}(\mathbf{a}_{\gamma}, \mu_{\gamma}) = \mu_{\gamma}$

Taylor expansion $\mathcal{J}(\mathbf{a}_{\gamma=0}) \approx \mathcal{J}(\mathbf{a}_{\gamma_*}) - \frac{d}{d\gamma} \mathcal{J}(\mathbf{a}_{\gamma_*}) \gamma_* = \mathcal{J}(\mathbf{a}^{\tilde{\mathcal{I}}^k}) - \mu_{\gamma_*} \gamma_*$

 $\Rightarrow c^{l_*} := \mu_{\gamma_*} \gamma_* \stackrel{(*)}{=} \frac{\partial \mathcal{J}}{\partial z_*} (\mathbf{a}^{\tilde{\mathcal{I}}^k}) \gamma_* \dots$ coarsening indicator

Multilevel Refinement and Coarsening Algorithm

```
k=0: Minimize \mathcal{J} on starting index set \mathcal{I}^0 \leadsto minimal value \mathcal{J}^0
Do until refinement indicators = 0
         Refinement: compute refinement indicators r^{i_*}, i_* \notin \mathcal{I}^k
                 choose index sets \mathcal{I}^k \cup \{i_*\} with largest r^{i_*}
         Minimize \mathcal{J} on each of these index sets
                and keep \tilde{\mathcal{I}} := \mathcal{I}^k \cup \{i_*\} with largest reduction in \mathcal{J} \rightsquigarrow \tilde{\mathcal{J}}
        Coarsening (only if \tilde{\mathcal{J}} < \mathcal{J}^k): evaluate coarsening indicators c^{l_*}
                 choose index sets \tilde{\mathcal{I}}^k \setminus \{I_*\} with largest c^{l_*}
         Minimize \mathcal{J} on each of these index sets
                 and keep \overline{\mathcal{I}} := \widetilde{\mathcal{I}}^k \setminus \{l_*\} with largest reduction in \mathcal{I} \rightsquigarrow \overline{\mathcal{I}}
        If \overline{\mathcal{J}} \leq \widetilde{\mathcal{J}} + \rho(\mathcal{J}^k - \widetilde{\mathcal{J}}) (coarsening does not deteriorate optimal value too much)
                 set \mathcal{I}^{k+1}:=\overline{\mathcal{I}}, \mathcal{J}^{k+1}:=\overline{\mathcal{J}} (refinement and coarsening)
         Else set \mathcal{I}^{k+1} := \tilde{\mathcal{I}}. \mathcal{I}^{k+1} := \tilde{\mathcal{I}} (refinement only)
```

Convergence Proof

For fixed $N < \infty$, Algorithm stops after finitely many steps k = K;

$$q^K := \sum_{i \in \mathcal{I}^K} a_i^K \phi_i$$

- ▶ \mathbf{a}^{K} solves $(P^{\mathcal{I}^{K}})$ \Rightarrow $0 = \nabla \mathcal{J}(\mathbf{a}^{K})$ \Rightarrow $0 = \langle F(q^{K}) g^{\delta}, F'(q^{K})\phi_{i} \rangle \ \forall i \in \mathcal{I}^{K}$
- ► refinement indicators vanish ⇒ $0 = r^{i_*} = \langle F(q^K) g^{\delta}, F'(q^K) \phi_i \rangle \ \forall i \notin \mathcal{I}^K$ ⇒ $\Pr{j_{X_N} F'(q^K)^* (F(q^K) g^{\delta})} = 0$

Stability and convergence follow from (existing) results on regularization by discretization

[BK&Offtermatt '09, '10]

Remarks

- more systematic coarsening based on problem specific properties (related dofs due to local closeness in groundwater example)
- ► Lagrange multipliers = gradient components (but we do not carry out gradient steps!): possible improvement by taking into account Hessian information (Newton type)
- Greedy type approach (Burger&Hofinger'04, Denis&Lorenz&Trede'09)
- ▶ relation active set strategy → semismooth Newton (Hintermüller&Ito&Kunisch'03)

2nd approach:

goal oriented error estimators

Tikhonov Regularization and the Discrepancy Principle

Parameter identification as a nonlinear operator equation

$$F(q) = g$$

 $g^{\delta} \approx g \dots$ given data; noise level $\delta \geq \|g^{\delta} - g\|$ $F \dots$ forward operator: $F(q) = (C \circ S)(q) = C(u)$ where u = S(q) solves

$$A(q,u)(v)=(f,v) \quad \forall v \in V \quad \dots \; \mathsf{PDE} \; \mathsf{in} \; \mathsf{weak} \; \mathsf{form}$$

Tikhonov regularization:

Minimize
$$j_{\alpha}(q) = ||F(q) - g^{\delta}||^2 + \alpha ||q||^2$$
 over $q \in Q$,

Choice of α : discrepancy principle (fixed constant $\tau \geq 1$)

$$\|F(q_{\alpha_*}^{\delta}) - g^{\delta}\| = \tau \delta$$

Convergence analysis: [Engl& Hanke& Neubauer 1996] and references there

Goal Oriented Error Estimators in PDE Constrained Optimization (I)

 $[Becker\&Kapp\&Rannacher'00],\ [Becker\&Rannacher'01],\ [Becker\&Vexler\ '04,\ '05]$

Minimize
$$J(q, u)$$
 over $q \in Q$, $u \in V$ under the constraints $A(q, u)(v) = f(v)$ $\forall v \in V$,

Lagrange functional:

$$\mathcal{L}(q, u, z) = J(q, u) + f(z) - A(q, u)(z).$$

First order optimality conditions:

$$\mathcal{L}'(q, u, z)[(p, v, y)] = 0 \quad \forall (p, v, y) \in Q \times V \times V \tag{1}$$

Discretization $Q_h \subseteq Q$, $V_h \subseteq V \rightsquigarrow$ discretized version of (1).

Estimate discretization error in some quantity of interest 1:

$$I(q, u) - I(q_h, u_h) \leq \eta$$

Goal Oriented Error Estimators (II)

 $\mathcal{M}(q, u, z, p, v, y) = I(q, u) + \mathcal{L}'(q, u, z)[(p, v, y)] \quad (q, u, z, p, v, y) \in (Q^2)$

Consider additional equations:
$$\mathcal{M}'(x_h)(dx_h) = 0 \quad \forall dx_h \in X_h = (Q_h \times V_h \times V_h)^2$$

$$\mathcal{H}(\lambda_{ll})(\omega_{ll}) = 0 \quad \forall \omega_{ll} \in \mathcal{H}_{ll} = (\mathcal{L}_{ll} \wedge \mathcal{L}_{ll} \wedge \mathcal{L}_{ll})$$

Proposition ([Becker&Vexler, J. Comp. Phys., 2005]:

$$I(q,u)-I(q_h,u_h)=\underbrace{\frac{1}{2}\mathcal{M}'(x_h)(x-\tilde{x}_h)}_{=:\eta}+O(\|x-x_h\|^3)\quad\forall \tilde{x}_h\in X_h.$$

error estimator
$$\eta = \text{sum of local contributions due to } q, u, z, p, v, y$$
:
$$\eta = \sum_{i=1}^{N_q} \eta_i^q + \sum_{i=1}^{N_u} \eta_i^u + \sum_{i=1}^{N_z} \eta_i^z + \sum_{i=1}^{N_p} \eta_i^p + \sum_{i=1}^{N_v} \eta_i^v + \sum_{i=1}^{N_y} \eta_i^y$$

 \rightsquigarrow local refinement separately for $q \in Q_h$, $u \in V_h$, $z \in V_h$, ...

Choice of Quantity of Interest?

aim:

recover infinite dim. convergence results for Tikhonov + discr. princ. in the adaptively discretized setting

challenge: carrying over infinite dimensional results is

... straightforward if we can guarantee smallness of operator norm $\|F_h - F\|$

... not too hard if we can guarantee smallness of

$$||F_h(q^{\dagger}) - F(q^{\dagger})||$$

→ large number of quantities of interest!

... but we only want to guarantee precision of one or two quantities of interest goal oriented error estimators

Convergence Analysis → Choice of Quantity of Interest

Proposition [Griesbaum&BK& Vexler'07], [BK& Kirchner&Vexler'10]:

$$lpha_* = lpha_*(\delta, g^\delta)$$
 and $Q_h imes V_h imes V_h$ such that for
$$I(q, u) := \|C(u) - g^\delta\|_G^2 = \|F(q) - g^\delta\|_G^2$$

$$\underline{\underline{\tau}}^2 \delta^2 \le I(q_{h, lpha_*}^\delta, u_{h, lpha_*}^\delta) \le \overline{\overline{\tau}} \delta^2$$

(i) If additionally

$$|I(q_{h,\alpha_*}^\delta, u_{h,\alpha_*}^\delta) - I(q_{\alpha_*}^\delta, u_{\alpha_*}^\delta)| \le cI(q_{h,\alpha_*}^\delta, u_{h,\alpha_*}^\delta)$$

for some sufficiently small constant c>0 then $q_{lpha_*}^\delta \ \longrightarrow \ q^\dagger$ as $\delta \to 0$.

Optimal rates under source conditions (logarithic/Hölder).

 $J_{\alpha}(a,u) := J_{\alpha}(a,u)$

Convergence Analysis → Choice of Quantity of Interest

Proposition [Griesbaum&BK& Vexler'07], [BK&Kirchner&Vexler'10]:

$$lpha_* = lpha_*(\delta, g^\delta)$$
 and $Q_h imes V_h imes V_h$ such that for
$$I(q, u) := \|C(u) - g^\delta\|_G^2 = \|F(q) - g^\delta\|_G^2$$
 $\underline{\underline{\tau}}^2 \delta^2 \le I(q_{h, lpha_*}^\delta, u_{h, lpha_*}^\delta) \le \overline{\overline{\tau}} \delta^2$

(ii) If additionally for

$$|I_2(q_{h,\alpha_*}^{\delta},u_{h,\alpha_*}^{\delta})-I_2(q_{\alpha_*}^{\delta},u_{\alpha_*}^{\delta})|\leq \sigma\delta^2$$

for some constant C>0 with $\underline{\underline{\tau}}^2\geq 1+\sigma$, then $q_{h,\alpha_*}^{\delta}\longrightarrow q^{\dagger}$ as $\delta\to 0$

see also [Neubauer&Scherzer 1990]

J as quantity of interest \leadsto [Becker&Kapp&Rannacher'00], [Becker&Rannacher'01],

Idea of Proof

error bound $|J_{\alpha_*}(q_{h,\alpha_*}^\delta,u_{h,\alpha_*}^\delta)-J_{\alpha_*}(q_{\alpha_*}^\delta,u_{\alpha_*}^\delta)|\leq \sigma\delta^2$ and optimality of $q_{\alpha_*}^\delta,u_{\alpha_*}^\delta$ imply

$$J_{\alpha_*}(q_{h,\alpha_*}^\delta,u_{h,\alpha_*}^\delta) \leq J_{\alpha_*}(q_{\alpha_*}^\delta,u_{\alpha_*}^\delta) + \sigma\delta^2 \leq J_{\alpha_*}(q^\dagger,u^\dagger) + \sigma\delta^2$$

on the other hand, by the discrepancy principle $\underline{\underline{\tau}}^2 \delta^2 \leq \|F(q_{h,\alpha_*}^\delta) - g^\delta\|^2 \leq \overline{\overline{\tau}} \delta^2$ and the definition of the cost functional $J_\alpha(q,u) = \|F(q) - g^\delta\|^2 + \alpha \|g\|^2$

$$J_{\alpha_*}(q_{h,\alpha_*}^{\delta}, u_{h,\alpha_*}^{\delta}) \ge \underline{\underline{\tau}}^2 \delta^2 + \alpha_* \|q_{h,\alpha_*}^{\delta}\|^2$$
$$J_{\alpha_*}(q_{h,\alpha_*}^{\dagger}, u_{h,\alpha_*}^{\dagger}) \le \delta^2 + \alpha_* \|q_{h,\alpha_*}^{\dagger}\|^2$$

Combining these estimates and the choice $\underline{\tau}^2 > 1 + \sigma$ we get

$$\|q_{h,\alpha_*}^{\delta}\|^2 \leq \|q^{\dagger}\|^2 + \frac{1}{\alpha_*}(1+\sigma-\underline{\tau}^2)\delta^2 \leq \|q^{\dagger}\|^2$$
.

The rest of the proof is standard.

(Also works for stationary points q_{h,α_*}^{δ} instead of global minimizers.)

Remarks

- some quantity of interest
 suff. small error in residual norm $i(\frac{1}{\alpha})$ and its derivative $i'(\frac{1}{\alpha})$
- \bullet suff. small error in residual norm $I(\frac{\pi}{\alpha})$ and its derivative $I'(\frac{\pi}{\alpha})$ \Rightarrow fast convergence of Newton's method for choosing α_* (discr. principle)

goal oriented error estimators allow to control the error in

- sufficiently small error in residual norm and Tikhonov functional
 - ⇒ convergence of Tikhonov regularization preserved
- other regularization methods: regularization by discretization [BK&Kirchner&Vexler] IRGNM [BK&Veljovic]
- → other regularization parameter choice strategies: e.g., balancing principle

— goal o	riented error estimators	
Т	Thank you for your attention!	

Iterative solution methods for inverse problems: VI Adaptive discretization of inverse problems