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Problem setting 1

Let (N, g) be a smooth and complete Riemannian manifold
without boundary and X ⊂ N open.

N

X
known

(N \ X , g)
unknown

Model:

(∂2t −∆g)w(t, x) = f, in (0,∞)×N,
w|t=0 = ∂tw|t=0 = 0,

where

f ∈ C∞0 ((0,∞)×N).

Let Λ be the solution
operator of the wave
equation above. Denote
Λf = wf .
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Problem setting 2

N

X
known

(N \ X , g)
unknown

Local source-to-solution
operator:

For f ∈ C∞0 ((0,∞)×N), we
define

ΛXf := Λf |(0,∞)×N = wf |(0,∞)×N .

What does ΛX tell about (N, g)?
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Main theorem

Theorem (Helin-Lassas-Oksanen-S 2016)

Let (N, g) be a smooth and complete Riemannian manifold of dimension n ≥ 2.
Let X ⊂ N be an open and nonempty set. Consider the following initial value
problem for the wave equation

∂2tw(t, x)−∆gw(t, x) = f, in (0,∞)×N,
w|t=0 = ∂tw|t=0 = 0.

Let ΛX : C∞0 ((0,∞)×X )→ C∞((0,∞)×X ) be the local source-to-solution
operator defined by

ΛX f = wf |(0,∞)×X .

Then the data (X ,ΛX ) determines (N, g) up to an isometry.
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Three components of the proof

(1) Show that the local the source-to-solution map ΛX determines
dg : X × X → R and g|X (Not considered today, sorry).

(2) Show that local the source-to-solution map ΛX determines a certain family of
distance functions

(3) Show that this family of distance functions determines the Riemannian
manifold (N, g) (Not considered today, sorry).
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Inverse spectral problem

Corollary

Let (N, g) be a smooth, connected and compact Riemannian manifold of
dimension n ≥ 2 without boundary. Let X ⊂ N be an open and nonempty set.
Let (ϕk)∞k=1 ⊂ C∞(N) be the collection of orthonormal eigenfunctions of
operator ∆g in L2(N). Let (λk)∞k=1 be the collection of corresponding eigenvalues
of ∆g. Then the Spectral data

(X , (ϕk|X )∞k=1, (λk)∞k=1)

determines (N, g) up to isometry.

Let f ∈ C∞0 ((0,∞)×N) and wf be the solution of wave equation. Denote the
jth Fourier coefficient of wf

Ij(t) := 〈wf (t, ·), ϕj〉L2(N).

By Greens formula and initial values of wf we have

d2

dt2 Ij(t)− λjIj(t) =
∫
X f(t, x)ϕj(x)dVg(x)

Ij(0) = d
dtIj(0) = 0.
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History

Let (M, g) be smooth, compact manifold with boundary.

∂2tw(t, x)−∆gw(t, x) = 0, in (0,∞)×M,

w|t=0 = ∂tw|t=0 = 0.

u = f, in (0,∞)× ∂M, f ∈ C∞0 ((0,∞)× ∂M)

Let Θ be the hyperbolic Dirichlet-to-Neuman map of above problem.

Does Θ determine (M, g)?

The approach that we use is a modification of the Boundary Control method.
This method was first developed by Belishev to the acoustic wave equation
on Rn with an isotropic wave speed

A geometric version of the method, suitable when the wave speed is given by
a Riemannian metric tensor as in the present paper, was introduced by
Belishev and Kurylev.

Partial data problem is also considered for instance by: Katchalov–Kurylev,
Lassas–Oksanen, Milne
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Essential tool: Finite speed of wave propagation

Let X ⊂ N be an open and bounded set. Define

CX = {(t, p) ∈ [0,∞]×X : dist(X , p) ≥ t}

X
CXCX

(∂2t −∆g)u = f, in (0,∞)×N
f |CX = 0
u|N×{t=0} = ∂tu|N×{t=0} = 0,

Then
u|CX = 0.
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Essential tool: Unique continuation, by Tataru

Consider an open double cone created by a cylindrical set (0, 2T )×X

C(T,X ) = {(t, x) ∈ (0, 2T )×N : distg(x,X ) < min{t, 2T − t}}.

We write
M(T,X ) = {x ∈ N : distg(x,X ) ≤ T}.

Let u ∈ C∞0 (R×N). Suppose that (∂2t −∆g)u = 0 in (0, 2T )×N and
u|(0,2T )×X ≡ 0. Then u|C(T,X ) ≡ 0.

t = 0 N

t = T

t = 2T
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Essential tool: Approximate controllability

Let T > 0. The collection

WT := {wf (T, ·) : f ∈ C∞0 ((0, T )×X )}

is dense in Hilbert space L2(M(T,X )).

t = 0 N

t = T
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Essential tool: Blagovestchenskii identity

Let T > 0 and f, h ∈ C∞0 ((0, 2T )×X ), then

〈wf (T, ·), wh(T, ·)〉L2(N) = 〈f, (JΛX − Λ∗XJ)h〉L2((0,T )×N)

where

J : L2(0, 2T )→ L2(0, T ), Jφ(t) =
1

2

∫ 2T−t

t

φ(s) ds.
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From ΛX to distance functions 1

Lemma

Let (p, ξ) ∈ SX . The data (X ,ΛX , dg|X×X ) determines
τ(p, ξ) := sup{t > 0 : dg(p, γp,ξ(t)) = t}.

Let s > 0 so small that γp,ξ([0, s]) ⊂ X . Denote y = γp,ξ(s). Denote
x = γp,ξ(s+ r). Let ε > 0. If r + s < τ(p, ξ),
then for every ε > 0 holds

Bg(y, r + ε) \Bg(p, r + s) 6= ∅ (∗).

Claim:

τ(y, ξ) = {s+ r > 0 : r > 0,
(∗) holds for every ε > 0).}

Bg(p, r + s)

Bg(y, r + ε)

p γp,ξ y x

Teemu Saksala (UH) Geometry from the local source-to-solution map June 2017 13 / 19



Riemannian balls are not nice!

Let N = S2, p = (0,−1), s = π/2, y = (−1, 0) and r > π/2. for
every ε > 0 we have

Bg(y, r + ε) \Bg(p, r + s) = ∅

y

p
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From ΛX to distance functions 2

Let ε > 0. If r + s < τ(p, ξ). Then Bg(y, r + ε) \Bg(p, r + s) 6= ∅ (∗).

Using The approximate controllability and the Blagovestchenskii identity we can
test if (∗) holds.

Bg(p, ε) Bg(y, ε)

t = r + s− ε

t = s− ε
y

t = 0
pN

Bg(y, ε)
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From ΛX to distance functions 3

Lemma

Let p, z ∈ X , ξ ∈ TpX , ‖ξ‖ = 1 and r̃ < τ(y, ξ). Then data (X ,ΛX , dg|X×X )
determines dg(y, z), where y = γp,ξ(r̃).

ω(p) y

γp,ξ

p z

X
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From ΛX to distance functions 4

Theorem

Let (N, g) be a complete Riemannian manifold. Then the local source-to-solution
data (X ,ΛX , dg|X×X ) determines the following family of distance functions

RX (N) := {dg(x, ·)|X : x ∈ N} ⊂ C(X ).

X

y

z

x
dg(x, z)

dg(x, y)
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From distance functions to reconstruction of (N, g)

Theorem

Let (N, g) be a complete smooth Riemannian manifold without a boundary. Let
U ⊂ N be open, bounded and have a smooth boundary. Suppose that the
topological and smooth structure of U are known, and g|U is also known. Then

R(N) := {dg(·, x)|U : x ∈ N} ⊂ C(U)

determines, topological, smooth and Riemannian structure of (N, g) up to
isometry.
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Thank you for your attention!
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