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Seismic imaging a geometric inverse problem

Propagation of seismic waves:
http://www.cyberphysics.co.uk/topics/earth /geophysics/SeismicWavesEarthStructure.html
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Notations and Main results
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Distance difference function

Let (N, g) be a Riemannian manifold, M C N open. Denote
F := N\ M. For every x € M we define

Dy : FxF =R, Di(z1,2) = d(x,z1) — d(x, z).

Distance difference function
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Distance difference data 1

Let (N1,g1) and (N2, g2) be compact and connected
n—dimensional Riemannian manifolds without boundary. Let
d;j(x, y) denote the Riemannian distance of points x,y € N;,
J=1,2. Let M; C N; be open sets and define closed sets

Fj = N; \ M;. Suppose F; are smooth n — manifolds with smooth
boundary 0F; = OM;.
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Distance difference data 2

We asumme that:
3 diffeomorphism ¢ : F1 — F2 s.t. ¢*g|F, = g1lF
(1)
{Di(-,) ; x € M} ={D(¢(-), ¢(-)) ; ¥ € Ma}.
Here for each x € M;

Dl (z1, ) = dj(x, z1) — dj(x, 22), 21,22 € F;j.
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Main result

Theorem (Lassas-S)

Let (N1, g1) and (Na, g2) be closed and connected n—dimensional
Riemannian manifolds, n > 2. Let M; C N; be open sets and
define closed sets Fj = N; \ M;. Suppose that F; is a smooth
n—dimensional manifold with boundary OF .

If the Distance difference data of Ny and N, coincide i.e. (1) is
valid, then manifolds (N1, g1) and (N, g2) are Riemannian
isometric.
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Main result

Theorem (Lassas-S)

Let (N1, g1) and (Na, g2) be closed and connected n—dimensional
Riemannian manifolds, n > 2. Let M; C N; be open sets and
define closed sets Fj = N; \ M;. Suppose that F; is a smooth
n—dimensional manifold with boundary OF .

If the Distance difference data of Ny and N, coincide i.e. (1) is
valid, then manifolds (N1, g1) and (N, g2) are Riemannian
isometric.

Idea of the proof:
@ Recover topology
@ Recover smooth structure

© Recover Riemannian structure
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Boundary distance functions and Inverse problem

Let (M, g) be a compact n-dimensional Riemannian manifold with
boundary and x € M. We define a boundary distance function of
X as

re: OM — R, r(z) = d(x, z).

Let R(M) :={rc: x € M} C L>®(OM).
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Boundary distance functions and Inverse problem

Let (M, g) be a compact n-dimensional Riemannian manifold with
boundary and x € M. We define a boundary distance function of

X as
re: OM — R, r(z) = d(x, z).

Let R(M) :={rc: x € M} C L>®(OM).

Theorem (Kurylev 97, Katchalov-Kurylev-Lassas 01)

Knowing only a Riemannian manifold (OM, g|om) and functions
R(M) C L>®(OM) one can construct such a smooth structure to
set R(M) that mapping R : M — R(M) is a diffeomorphism. In
addition one can explicitly construct such a Riemannian metric
tensor g of R(M) that (M, g) and (R(M), g) are isometric.
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Broken scattering relation

Let (M, g) be a compact n-dimensional Riemannian manifold with
boundary and x € M. Let

Q ={(x,&) € SM : x € OM, (£, v(x)) > 0},
Q- ={(x,n) € SM : x € OM, (n,v(x)) < 0} and
), t<s, (x,§4) € Q4

s 2(t) = { et

t<s, _
Vzn(t —s), t >'s, (z,1) € SM™.

oM
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Let {(aye, 2n) > 0 be the first time when ay ¢, () hits OM.

The broken scattering relation

R = {((Xag-f—)?(yag—)? t) S Q-‘r X x R-f— :
t = K(ax7f+7z777) and (y’gi) = (axvg7z7n(t)’ atax7§72777(t)),
for some (z,7n) € SM}

oM
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Inverse problem of the Broken scattering relation

Theorem (Kurylev-Lassas-Uhlmann 2010)

Let (M, g) be a compact connected Riemannian manifold with a
nonempty boundary of dimension n > 3. Then OM and the broken
scattering relation R determine the isometry type of the manifold
(M, g) uniquely.
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Inverse problem of the Broken scattering relation

Theorem (Kurylev-Lassas-Uhlmann 2010)

Let (M, g) be a compact connected Riemannian manifold with a
nonempty boundary of dimension n > 3. Then OM and the broken
scattering relation R determine the isometry type of the manifold
(M, g) uniquely.

We define a scattering distance of z € M as
D} (x,y) = d(z,x)+d(z,y), x,y €M
Notice that, if v ¢, and 7., are distance minimizers then

D;_(X’y) = g(axvé‘iﬂzvn)'
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An application for a wave equation

Let (N;,gj), j = 1,2 be smooth Riemannian manifolds. M; C N;
open and F; := N; \ M; Consider a wave equation

(07 = Dg)Gj(,,y,5) =6y s(-,-), in N; xR, (y,s) € Mj x R.
Gi(x,t,y,s) =0, fort<s, xeN,.

§ SN
6,:], =




Related topics and an application for a wave equation

[eJelelele] le}

. N
)

N

M;
Suppose that the spontanuous point source data is valid:

3 diffeomorphism ¢ : F1 — F> s.t. ¢*@|F, = g1lF

(2)
Wi = W

Wi = {supp(Gi(-, -, y1,51)) N (F1 X R); y1 € My, 51 € R}  2F>R
and

Wa = {supp(Ga(o(-), -, y2, 2))N(F1xR); y2 € M, s, € R} ¢ 2f1<%
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Theorem (Lassas-S)

Let (Nj,gj), j = 1,2 be a closed compact Riemannian n-manifolds,
n>2 and M; C N; be an open set such that F; = N; \ M; are
smooth n-manifolds with boundary. If the spontanuous point
source data of these manifolds coincide, that is, we have (2), then
(N1, g1) and (Ny, g») are isometric.
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Theorem (Lassas-S)

Let (Nj,gj), j = 1,2 be a closed compact Riemannian n-manifolds,
n>2 and M; C N; be an open set such that F; = N; \ M; are
smooth n-manifolds with boundary. If the spontanuous point
source data of these manifolds coincide, that is, we have (2), then
(N1, g1) and (Ny, g») are isometric.

Proof: let ye M;, zz€ Fj,scRi,j=1,2.

7;,1'75(2,-) = sup{t € R; the point (z,t) has a neighborhood

U C Nj R such that Gi(-,-,y, )|, = 0}

Hence one can deduce that 7}{5(2,-) = dj(zj,y) — s and therefore
distance difference functions satisfy equation

Dj;(zl7z2) = dj(Zl,y) - dj(z27y) = 7;/{5(21) - 7;/{5(22)'
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The mapping

We define mappings D/ : N; — L(F; x F;), Dj(x) = Di(-,-) and
& L®(F X FR) = L®(F1 x F1), ®(f) = (¢, ¢). Recall that
mapping ¢ : F1 — F> was assumed to be a diffeomorphism that
pullbacks the metric.

The aim is to show that mapping
\U::DI10¢OD2:N2_)N]_
is a diffeomorphism s.t.
Vg1 = g.

Notice that range of D; is the same as ® o D, by distance
difference data (1)!
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Extension of data

By Distance difference data (1) we only know Dj|p;,. That's why
we have to show that we can get the following:

Q@ The map ¢ : F; — Fp, is a metric isometry, that is,
di(z, w) = do(¢(z), p(w)) for all z,w € F.

@ {Di(-,7): x € M} ={DJ((-), ¢(-)) ; y € No}.

Proof: Omitted
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Reconstruction of topology

It suffices to show that D : N — L°°(F x F) is continuous and
1-to-1. Proof: By A-inequality it holds that D is 2-Lipschitz.

Suppose that x,y € N, x # y s.t. Dy = D,. Let g € F',

lx =d(x,q)and ¢, = d(q,y). Let v, : [0,4] = N be a
minimizing geodesic from g to x. Let s > 0 be s.t.

s < min(¢x, ¢y,inj(q)) and v4,,([0, s]) C F"t. Denote p = yq.(s).

q

oM

Vq,n = blue
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By Dy = D,,
d(q,p) + (d(p,y) — d(q,y)) = d(q,p) + (d(p,x) — d(q,x)) = 0.

Thus p is on a minimizing geodesic from g to y and therefore 7,
is also a minimizing geodesic from g to y. Since we assumed
X # y we can assume £, < /.

oM

Vq,n = blue
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Since FMt is open, we can choose point g € F"t s.t.
q ¢ vq,n(—00,00). Let B be a minimizing geodesic from g to x.

B = red, vq,, = blue

Now 8 U g, = (red U blue) would be a distance minimizing curve
from g to y. This a contradiction and x = y. Thus D is 1-to-1.
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Smooth structure: Suitable atlases

For each x € M; there exist a neighborhood W, of x, point
z€ F™ands>0st.

Hj = Wy = R", Hi(y) = (dj(v, zi) = di(y, 2))]=1, Zi = Yz, (5)
is a smooth coordinate system.

Proof: Omitted.
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Riemannian structure: Geodesically equivalent metrics

Definition

Let N be smooth manifold with two Riemannian metric tensors gi
and g». We say that metrics g1 and g» are geodesically equivalent,
if for all geodesics 1 of metric g1 there exists a reparametrization
@1 S.t. y1 0 a1 Is a geodesic of g» and vice versa.
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Examples of geodesic equivalence:

R"” with Euclidean metric e and ce, where ¢ > 0 is constant.
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Examples of geodesic equivalence:

R"” with Euclidean metric e and ce, where ¢ > 0 is constant.

Gnomonic projection F of Sphere:
Wikipedia,

Consider metrics F.gs2 and
Euclidean metric e on R?



The proofs

O0®@000000

Examples of geodesic equivalence:

R"” with Euclidean metric e and ce, where ¢ > 0 is constant.

Gnomonic projection F of Sphere:
Wikipedia,

Consider metrics F.gs2 and
Euclidean metric e on R?

Beltrami-Klein model for disc:
Wikipedia, Hyperbolic disc
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Our goal is first to show that gy and g» := W, g» are geodisically
equivalent on Nj.

Let z € Fj and £ € S;N;. Define a set

wi(z,€) :={x €N, ; 3w € Fj such that DL(-, w) is C'-smooth,
near z and VDL(-, w)|, = £} U {z}.

.,
.
.....
"
»
»
»
»

Then
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Let z € Fp, £ € S,N. Then curve \U(’Yig(')) 10, 72(2,€)) — Ny is
smooth and non self-intersecting. By distance difference data we
have

V(32([0,72(2,€))) = W(wa(2,€)) = wi(dH(2), (¢71)"E).

Thus we know that " quite many” geodesics of g» are also
geodesics of g3.
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Since F; contains an open set, it holds that for each p € M; there
exists an open conic neighbourhood ¥, C T,N; s.t. for each
§ € X, geodesic v, ¢ is a pre-geodesic of g».

oM

There can be a trapped geodesic in M. red curve

Use a modified version of a results of V. Matveev to show that this
is enough
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Invariants of Geodesic flow

We define a function Iy : TN; — R as

o((x, v)) = (j:gggg;) g2 v,
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Invariants of Geodesic flow

We define a function Iy : TN; — R as

o((x, v)) = (j:gggg;) g2 v,

Theorem (Matveev-Topalov 2003)

Let N be a smooth manifold with geodesically equivalent
Riemannian metrics g1 and g». Then function Iy is constant on
curves t — (v(t),5(t)). Where 4! is any geodesic of metric gi.




The proofs
00000000

Metrics g3 and g» coincide on N;

Let pe Mand z € Fli”t and denote by ~ an unit speed geodesic of
g1 from z to p. By distance difference data (1) it holds that

1=1lo(z,7) = h(p,?)-

and therefore

fer = 1= (e

Tt )) g0, ()



The proofs
00000000

Metrics g3 and g» coincide on N;

Let pe Mand z € Fli”t and denote by ~ an unit speed geodesic of
g1 from z to p. By distance difference data (1) it holds that

1=1lo(z,7) = h(p,?)-

and therefore

oo () "ot

Since metrics are bilinear, 3 an open conic set W C T,N s.t.
Vv € W equation (3) holds. Thus

det(g(p))\ "1 -
g&(p):((ﬁi%) gﬁ-(p),Vl,le,...,n
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And therefore

det(g1(p)) "%_1_
(det(gz(P))) =t

Since we assumed n > 1, it holds that

det(g1(p))
det(g2(p))

Then we can conclude that

=1

g1(p) = &(p)

Thus we have proved that W : N, — Nj is a Riemannian
isomorphism.
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Why did we assume that F* £ ()

N




Thank you for your attention!



