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An Inverse problem

Direct problem Inverse problem

Does this problem have a solution?

If there is a solution, is it unique?

Do we have some prior information about the numbers?
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Vibrating string 1

Let a, b ∈ R, a 6= 0. Recall that the 2nd order equation{
a2 d2

dx2 v(x) = 0, x ∈ (0, 1)

u(0) = 0, d
dx u(0) = b,

descripes the the motion of a vibrating string. Here a is related to
the material parameters of the string.
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Vibrating string 2

Direct Problem: If numbers a, b are given then{
a2 d2

dx2 v(x) = 0, x ∈ (0, 1)

u(0) = 0, d
dx u(0) = b,

has a unique solution.

Inverse Problem: Find a, if some information about the operator
a2 d2

dx2 is given.
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Definitions and domain

In this talk we will consider 2nd order differential operators that
have a general form

A = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x)

where x ∈ [0, 1] and a, b, c ∈ C∞([0, 1]), a(x) > 0 and a(0) = 1.

We define the domain of A

D(A) := H1
0 (0, 1) ∩ H2(0, 1) ∼ {f ∈ C 2(0, 1) : f (0) = f (1) = 0}

Then A : D(A)→ L2(0, 1).
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Spectrum of a differential operator

Recall that a function ϕ ∈ D(A) is an eigen function of A, if ϕ 6= 0
and there exists λ ∈ R such that

Aϕ = λϕ.

Actually one can show that every eigen function of A is smooth.

Theorem

There exists a L2-orthonormal sequence (ϕj)
∞
j=1 ⊂ D(A) of eigen

functions of differential operator A such that

0 < λ1 ≤ λ2 ≤ λ3 ≤ λ4 . . .→∞
ϕ1(x) 6= 0, x ∈ (0, 1)

For any f ∈ L2(0, 1), f (x) =
∑∞

j=1(f |ϕj)2ϕj(x)

Proof: Take a course PDE 2 (Spring 2017) or Spectral theorem
(Fall 2016)
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Spectral boundary data

We say that the spectral boundary data (SBD) of differential
operator A is the collection

{
(
λj
)∞
j=1

,
(
ϕ̇j(0)

)∞
j=1
}.

Problem (Inverse spectral boundary problem)

Let

A = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x)

where x ∈ [0, 1] and a, b, c ∈ C∞([0, 1]), a(x) > 0, a(0) = 1.
Suppose that the spectral boundary data

{
(
λj
)∞
j=1

,
(
ϕ̇j(0)

)∞
j=1
}

is given. Can you find functions a, b, c?
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Gauge transformations

Let κ ∈ C∞([0, 1]) such that

κ(0) = 1, and κ(x) > 0, x ∈ [0, 1].

We define a Gauge transformation Aκ of differential operator A by
formula

Aκf = κA

(
f

κ

)
, f ∈ D(A).

Let ϕ ∈ D(A) be an eigen function of A w.r.t. eigen value λ. Then
function ϕκ := κϕ satisfies

Aκϕκ = λϕκ and
d

dx
ϕκ(0) = κ̇(0)ϕ(0) + κ(0)ϕ̇(0) = ϕ̇(0).

Therefore any Gauge transform of operator A preserves the SBD.
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Changes of Coordinates 1

Let ` > 0, X : [0, `]→ [0, 1] be a smooth function such that

Ẋ (y) > 0, X (0) = 0, Ẋ (0) = 1 and X (`) = 1,

Any such a function is called a change of coordinates. Recall that
in these new coordinates we have

d

dx
=

(
dX

dy

)−1 d

dy

and
d2

dx2
=

(
dX

dy

)−2[ d2

dy2
− d2X

dy2

(
dX

dy

)−1 d

dy

]
.



What is an Inverse problem? Properties of 2nd order differential operators Formulation of the main problem The sketch of proofs

Changes of Coordinates 2

Thus operator A transforms to operator AX defined as

AX f (y) := aX (y)
d2

dy2
f (y) + bX (y)

d

dy
f (y) + cX (y)f (y),

where
aX (y) = a(X (y))Ẋ (y)−2

bX (y) = −a(X (y))Ẋ (y)−3Ẍ (y) + Ẋ (y)−1b(X (y))

cX (y) = c(X (y)).

Let ϕ ∈ D(A) be an eigen function of A w.r.t. eigen value λ.
Define ϕX := ϕ ◦ X . Then

AXϕX = λϕX and ϕ̇X (0) = ϕ̇(X (0))Ẋ (0) = ϕ̇(0).

Thus a change of coordinates preserves SBD
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The invariance of the spectral boundary data

Theorem

Let A and B be two second order differential operators as before.
Then SBD of A coincides with SBD of B if and only if there exists
a change of coordinates X and a Gauge transform κ such that

B = (AX )κ.
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Main theorem

We consider 2nd order differential operators with special forms

A := − d2

dx2
+ q(x) and B := −a(x)2 d2

dx2

where q, a ∈ C∞([0, 1]), a(x) > 0, x ∈ [0, 1] and a(0) = 1.

Theorem (Inverse spectral boundary problem)

Suppose that the boundary spectral data

{
(
λj
)∞
j=1

,
(
ϕ̇j(0)

)∞
j=1
}

of operator A (respectively B) is given. Then we can reconstruct
the potential q (respectively the wave speed a).
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We will provide a proof for the case

A :=
d2

dx2
+ q(x).

All we need to do is to recover the first eigen function ϕ1 since then

q(x) =
d2

dx2ϕ1(x) + λ1ϕ1(x)

ϕ1(x)
.

Recall that we know that ϕ1(x) 6= 0.
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Initial/Boundary value problem of Wave equation

To solve the Inverse spectral boundary problem we will employ one
dimensional wave equation

(∗)

 ( d2

dt2 − d2

dx2 + q(x))u(t, x) = 0, (t, x) ∈ (0, 1)× (0, 1)
u(t, 0) = f (t), u(t, 1) = 0

u(0, x) = ∂
∂t u(0, x) = 0,

where f ∈ C∞0 (0, 1) is called a boundary source.

Theorem

Let f ∈ C∞0 (0, 1). Then there exists a unique
uf (t, x) ∈ C∞((0, 1)× (0, 1)) that solves (∗).

Proof: Take course PDE 1 next fall!
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A series representation of waves

Recall that (ϕj)
∞
j=1 ⊂ C∞((0, 1)) is an ON basis of L2(0, 1).

Therefore for every boundary source f ∈ C∞0 ((0, 1)) we can write

uf (t, x) =
∞∑
j=1

ufj (t)ϕj(x),

where the Fourier coefficients are given by

ufj (t) := (uf (t, ·)|ϕj)L2(0,1) =

∫ 1

0
uf (t, x)ϕj(x)dx .

Theorem (Fourier coefficients of waves)

For any f ∈ C∞(0, 1) we can find the Fourier coefficients ufj (t)
from SBD.
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Finding the Fourier coefficients from SBD 1

Since uf is smooth we can differentiate under the integral to get

d2

dt2
ufj (t) =

∫ 1

0

∂2

∂t2
uf (t, x)ϕj(x)dx

=

∫ 1

0

[
∂2

∂x2
uf (t, x)− q(x)uf (t, x)

]
ϕj(x)dx

=

∫ 1

0
uf (t, x)

[
∂2

∂x2
ϕj(x)− q(x)ϕj(x)

]
︸ ︷︷ ︸

=−λjϕj (x)

dx

+
∂

∂x
uf (1, t)ϕj(1)︸ ︷︷ ︸

=0

− uf (1, t)︸ ︷︷ ︸
=0

∂

∂x
ϕj(1)

− ∂

∂x
uf (0, t)ϕj(0)︸ ︷︷ ︸

=0

+ uf (0, t)︸ ︷︷ ︸
=f (t)

∂

∂x
ϕj(0)
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Finding the Fourier coefficients from SBD 2

Thus we obtain the following initial value problem:{
d2

dt2 u
f
j (t) = −λjufj (t) + ϕ̇j(0)f (t)

ufj (0) = d
dt u

f
j (0) = 0.

Solution: Take courses ODE 1 and ODE 2 (Spring 2017).

Thus we conclude that for all f , h ∈ C∞0 (0, 1) we have recovered
the Fourier coefficients

(ufj (t))∞j=1, of the wave uf (t, x).

and the inner products

(uf (t, ·)|uh(t, ·))L2(0,1) =
∞∑
j=1

ufj (t)uhj (t)

This is the Parseval identity (Funktionaali analyysin peruskurssi
Spring 2017).
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Controllability

Next we ask can we control the end state of a wave. I.e.

a(x)

(0, 0)

f (t)

(0, 1)

(1, 0)

(1, 1)

Theorem (Controllability)

Let a ∈ C∞(0, 1). There exists a unique f ∈ C∞(0, 1) such that

uf (1, x) = a(x).
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Projectors

Let t ∈ [0, 1] then we define a projection

Pt : L2(0, 1)→ L2(0, 1), Pt(f ) = χ[0,t]f .

Define a function Mjk : [0, 1]→ R by formula

Mjk(t) = (Ptϕj |ϕk)L2(0,1) =

∫ t

0
ϕj(x)ϕk(x)dx .

Suppose that function M11 is known then

d

dt
M11(t) = ϕ1(t)2 ⇒ eigen function ϕ1 is recovered.
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Recovery of matrix valued mapping t 7→ Mjk(t)

Let t0 ∈ [0, 1].

Choose any smooth orthogonal basis (gk)∞k=1 of L2(0, t0). By
controllability theorem

span(ugk (t0, ·))∞k=1 ⊂ L2(0, t0) is dense.

Use Gram-Schmidt to orthonormalise ugk (t0, ·) to orthonormal
basis (vk)∞k=1 of L2(0, t0).

Since solution mapping f 7→ uf is linear it holds that

vk(x) = ufk (x , t0), fk(t) :=
k∑

j=1

djkgj(t), djk ∈ R.
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Since (vk)∞k=1 of L2(0, t0) is ON-basis it holds that

Pt0ϕj =
∞∑
`=1

(ϕj |v`)L2(0,t0)v`

Thus

Mjk(t0) = (Pt0ϕj |ϕk)L2(0,1) =
∞∑
`=1

(ϕj |v`)L2(0,1)(ϕk |v`)L2(0,1)

Notice that (ϕj |v`)L2(0,1) is a Fourier coefficient of v` w.r.t
basis (ϕj)

∞
j=1 i.e

(ϕj |v`)L2(0,1) = uf`j (t0).

By the Theorem for the Fourier coefficients of waves, we can
recover these from SBD.
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Thank you for your attention!


