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Abstract. Let (N, g) be a complete smooth Riemannian mani-
fold with the distance function d(x, y), U ⊂ N be relatively com-
pact, open subset with smooth boundary. We also assume that U
is geodesically convex. Also, let M ⊂ U be an open subset with
smooth boundary such thatM ⊂ U . We assume that the topology
ofM and metric g|M are unknown. Let F = U \M be the observa-
tion domain. For x ∈ M we denote by Dx the distance difference
function Dx : F ×F → R, given by Dx(z1, z2) = d(x, z1)−d(x, z2),
z1, z2 ∈ F . We show that the manifoldM and the metric g|M on it
can be determined uniquely, up to an isometry, when we are given
the set F , the metric g|F , and the collection D(M) = {Dx; x ∈M}
of distance difference functions. The embedded image D(M) of the
manifoldM , in the vector space C(F×F ), is the distance difference
representation of manifold M .

The inverse problem of determining (M, g) from D(M) arises
for example in the study of the wave equation on R × N when
we observe in F the waves produced by spontaneous point sources
at unknown points (t, x) ∈ R ×M . The results presented in this
paper generalize the earlier results where N is assumed to be com-
pact that the observation domain F is assumed to be the whole
complement of M in N .

Keywords: Inverse problems, distance functions, wave equation.

1. Introduction

1.1. Formulation of problem and motivation. Let us consider a
body in which there are point sources that create propagating waves.
Such point sources can either appear spontaneously, or they are caused
by reflections of some propagating wave from small scatterers. In many
applications one encounters a geometric inverse problem where we de-
tect such waves emanating from point sources, either outside or at the
boundary of the body, and we need to determine the unknown wave
speed inside the body. As an example of such situation, one can con-
sider the micro-earthquakes that appear very frequently near active
faults. The related inverse problem is whether the surface observa-
tions of elastic waves produced by the micro-earthquakes can be used
in the geophysical imaging of Earth’s subsurface [21, 43], that is, to
determine the speed of the elastic waves in the studied volume. In
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this paper we consider an idealized version of the above inverse prob-
lem: We consider the problem on an n dimensional manifold N with
a Riemannian metric g that corresponds to the travel time of a wave
between two points. The Riemannian distance of points x, y ∈ N is
denoted by d(x, y). For simplicity we assume that the manifold N is
complete and has no boundary. Here, completeness is considered in the
sense of metric spaces, so also compact, closed manifolds are considered
to be complete manifolds. We assume that the manifold contains an
unknown partM ⊂ N and the metric is known in a certain area F out-
side of the set M . When a spontaneous point source produces a wave
at some unknown point x ∈M at some unknown time t ∈ R, the pro-
duced wave is observed at the point z ∈ F at time Tx,t(z) = d(z, x) + t.
These observation times at two points z1, z2 ∈ F determine the distance
difference function

Dx(z1, z2) = Tx,t(z1)− Tx,t(z2) = d(z1, x)− d(z2, x).(1)
Physically, this function corresponds to the difference of times when
the wave produced by a point source at (x, t) is observed to arrive at
points z1 and z2, see Fig 2. and Section 4. An assumption there is a
large number point sources and that we do measurements over a long
time can be modeled by the assumption that we are given the set F
and the family of functions

{Dx ; x ∈ X} ⊂ C(F × F ),

where X ⊂M is either the whole manifold M or its dense subset,

1.2. Definitions and the main result. Let us consider a smooth
complete Riemannian manifold (N, g) with dimension n ≥ 2 (Here and
below, smooth means C∞-smooth).

Definition 1.1. Let (N, g) be a smooth complete Riemannian mani-
fold. Let A ⊂ N . We say that A is convex in N , if for every x, y ∈ A
any distance minimizing geodesic segment γ : [0, d(x, y)] → N from x
to y is contained in A.

Suppose that M ⊂ N is a relatively compact open set such that
∂M is a smooth submanifold of dimension (n − 1). We also assume
that there exists an open, relatively compact U that ∂U is smooth
submanifold of N of dimension (n−1), U containsM and U is convex.
Notice, that M does not need to be convex and that both M and U
may have non-trivial topology. We denote F := U \M . Note that then
it holds that F int 6= ∅ (see Figure 1).

We are interested about the following family of Distance difference
functions

D(M) := {Dx ∈ C(F × F ) : x ∈M},
where for each x ∈ N the corresponding distance difference function is

Dx(z1, z2) := dg(x, z1)− dg(x, z2), z1, z2 ∈ F.



DISTANCE DIFFERENCE FUNCTIONS 3

Figure 1. In the figure the boundary of the unknown
domain M is the blue circle and M is contained in a
larger domain U which boundary is the black rectangle.
We make no assumptions on topology of the set M . The
distance difference functions Dx(z1, z2) of the points x ∈
M are evaluated at the points z1, z2 ∈ F = U \M .

x

M

F

z1

z2

Figure 2. Distance difference function Dx(z1, z2) =
d(x, z1) − d(x, z2) of the point x ∈ M is evaluated at
the points z1, z2 ∈ F = U \M . Note that below we will
assume for simplicity that the boundaries of M and U
are smooth.

The main result considered in this paper is the following.

Theorem 1.2. Let n ≥ 2 and (Ni, gi), i = 1, 2 be complete Riemannian
manifolds. Also, let Ui ⊂ Ni be a relatively compact open set with
smooth boundary. Let U i be convex and Mi ⊂ Ui be an open subset
which boundary is a smooth submanifold of dimension (n−1) andM i ⊂
Ui. Denote Fi = Ui \Mi.

Assume that there exists a diffeomorphism φ : F1 → F2 such that

(2) g1|F1 = φ∗g2|F2 .

Moreover, assume that the distance difference data for manifolds M1

and M2 are the same in the sense that
(3)
{D1

x ∈ C(F1×F1) : x ∈M1} = {D2
y(φ(·), φ(·)) ∈ C(F1×F1) : y ∈M2}.
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Here, Di
x(z1, z2) = dgi(x, z1)− dgi(x, z2) for x ∈ Ni and z1, z2 ∈ Fi.

Then the Riemannian manifolds with boundary (U1, g1|U1
) and (U2, g2|U2

)
are isometric.

This means that, if (N, g), M , U and F are as above and if we are
given the following Distance difference data

(4) {(F, g|F ),D(M)},

then the Riemannian structure of (U, g|U) is uniquely determined. Note
that the sets in (3) are given in unindexed sets, that is, for a given
D ∈ {D1

x ∈ C(F1 × F1) : x ∈ M1} we do not know the point x for
which D = D1

x.
We start with recalling some known and related results. The main

theorem is to be proved in parts after these.

1.3. The distance function of a complete Riemannian mani-
fold. Here we recall some basic properties of a complete Riemannian
manifolds and Riemannian distance function.

Let (N, g) be a smooth Riemannian manifold without boundary and
let dg : N ×N → (0,∞) be the distance function related to the metric
tensor g. Notice that for an arbitrary q ∈ N , the distance function
dg(q, ·) in N \ {q} is not necessarily smooth. We assume below that
(N, g) is complete.

Let p ∈ N and ξ ∈ TpN be such that ‖ξ‖g = 1. We denote by
γp,ξ : R→ N the unique unit speed geodesic with initial conditions

γp,ξ(0) = p and γ̇p,ξ(0) = ξ.

A general geodesic γx,ξ is not a distance minimizer from x to γx,ξ(t) for
all t ∈ R. We define a cut distance function

(x, ξ) 7→ τ(x, ξ) := sup{t > 0 : dg(p, γx,ξ(t)) = t} ∈ (0,∞].

Function τ is continuous (see [24] Lemma 2.1.5.) and tells how long
each geodesic is a distance minimizer. Actually, for a point p ∈ N
and a distance function dg(p, ·) the following holds: Function d(p, ·) is
smooth at q ∈ N if and only if there exists ξ ∈ TpN, ‖ξ‖ = 1 such that
q = γp,ξ(d(p, q)) and d(p, q) < τ(p, ξ).

Let S ⊂ N be a bounded, smooth n− 1 dimensional submanifold of
N . Therefore there exist, locally, precisely two vector fields ν+ and ν−
on S that are orthogonal to S and of unit length. Let q ∈ N . Since S
is compact, there exists a point zq ∈ S that is a closest point of S to q.
Since (N, g) is complete, it holds that there exists a unit speed distance
minimizing geodesic γ from zq to q. It can be proved that geodesic γ
is orthogonal to S (see [10], III.6). Then it must hold that γ = γzq ,ν+
or γ = γzq ,ν− . Suppose that γ = γzq ,ν+ . Then it also holds that (see
Lemma 7.7 of [2])

τ(zq, ν+) > dg(q, zq).
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This means that the geodesic γ from zq to q can be continued over the
end point q to some point p = γ(s), where dg(q, zq) < s < τ(zq, ν+),
so that it remain to be a distance minimizing curve between zq and p.
Note that the continued geodesic might not be a distance minimizing
curve from p to ∂S. These topics are covered for instance in [30], [23],
[10] and [24].

1.4. Embeddings of a Riemannian manifold. Often one is inter-
ested in embedding a manifold M to some Euclidean space that has
as small dimension as possible. Two main examples of this nature are
the well known Whitney and Nash embedding theorems. In our case
we are interested in quite different kind of embeddings. We will embed
M into infinite dimensional Banach-space using the distance difference
functions. Similar techniques are also well known in literature. A clas-
sical distance function representation of a Riemannian manifold is the
Kuratowski-Wojdyslawski embedding,

K : x 7→ distM(x, · ),

from M to the space of continuous functions C(M) on it. The map-
ping K : M → C(M) is an isometry so that K(M) is an isometric
representation of M in a vector space.

An other important example is the Berard-Besson-Gallot represen-
tation [9]

G : M → C(M × R+), G(x) = ΦM(x, · , · )

where (x, y, t) 7→ ΦM(x, y, t) is the heat kernel of the manifold (M, g).
The asymptotics of the heat kernel ΦM(x, y, t), as t → 0, determines
the distance d(x, y), and by endowing C(M × R+) with a suitable
topology, the image G(M) ⊂ C(M × R+) can be considered as an
embedded image of the manifold M .

Theorem 1.2 implies that the set D(M) = {Dx; x ∈ M} can be
considered as an embedded image (or a representation) of the manifold
(M, g) in the space C(F × F ) in the embedding x 7→ Dx. Moreover,
in the proof of Theorem 1.2 we show that (F, g|F int) and the set D(M)
determine uniquely an atlas of differentiable coordinates and a metric
tensor on D(M). These structures make D(M) a Riemannian manifold
that is isometric to the original manifold M . Note that the metric is
different than the one inherited from the inclusion D(M) ⊂ C(F ×F ).
Hence, D(M) can be considered as a representation of the manifoldM ,
given in terms of the distance difference functions, and we call it the
distance difference representation of the manifold of M in C(F × F ).

The embedding D is different to the above embeddings K and G in
the following way that makes it important for inverse problems: With
D one does not need to know a prori the setM to consider the function
space C(F ×F ) into which the manifold M is embedded. Similar type
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of embedding have been also considered in context of the boundary
distance functions, see Subsection 1.5.2.

1.5. Earlier results and the related inverse problems. The in-
verse problem for the distance difference function is closely related to
many other inverse problems. We review some results below:

1.5.1. Determination of a compact Riemannian manifold from the dis-
tance difference functions. This paper is closely related to the inverse
problem of reconstructing a compact Riemannian manifold (N, g) from
distance difference functions considered in [1]. There, the unknown set
M is assumed to be an open subset of N with smooth boundary ∂M .
The known measurement area is the compact set F := N \M . It is also
assumed that F int is not empty. This is actually a crucial assumption
since in [1] a counterexample is provided.

With this setup the distance difference data

{(F, g|F ),D(M)}
determines uniquely, up to an isometry, the topological, smooth and
Riemannian structure of (N, g).

1.5.2. Boundary distance functions and the inverse problem for a wave
equation. The reconstruction of a compact Riemannian manifold (M, g)
with boundary from distance information has been considered e.g. in
[23, 25]. There, one defines for x ∈M the boundary distance function
rx : ∂M → R given by rx(z) = d(x, z). Assume that one is given
the boundary ∂M and the collection of boundary distance functions
corresponding to all x ∈M that is,

(5) ∂M and R(M) := {rx ∈ C(∂M); x ∈M}.
It is shown in [23, 25] that only knowing the boundary distance data (5)
one can reconstruct the topology of M , the differentiable structure of
M (i.e., an atlas of C∞-smooth coordinates), and the Riemannian met-
ric tensor g. Thus R(M) ⊂ C(∂M) can be considered as an isometric
copy of M , and the pair (∂M,R(M)) is called the boundary distance
representation ofM , see [23, 25]. Similar results for non-compact man-
ifolds is considered in [14, 2]. Constructive solutions to determine the
metric from the boundary distance functions have been developed in
[12] using a Riccati equation [42] for metric tensor in boundary normal
coordinates and in [41] using the properties of the conformal killing
tensor.

The results of this paper are closely related to data (5): Knowing
the distance difference functions D∂M

x : ∂M × ∂M → R

D∂M
x (z1, z2) = d(x, z1)− d(x, z2), (z1, z2) ∈ ∂M × ∂M

is equivalent to knowing the boundary distance functions with error
ε(x), depending on x ∈ M , that is, the functions z 7→ rx(z) + ε(x)
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where x ∈ M . Indeed, we can write rx(z) + ε(x) = D∂M
x (z, z2) where

ε(x) = −d(x, z2).
Physically speaking, functions rx are determined by the wave fronts

of waves produced by the delta-sources δx,0 that take place at the point
x at time s = 0. The distance difference functions D∂M

x are determined
by the wave fronts of waves produced by the delta-sources δx,s that
take place at the point x at an unknown time s ∈ R.

Many hyperbolic inverse problems with time-independent metric re-
duce to the problem of reconstructing the isometry type of the manifold
from its boundary distance functions. Indeed, in [22, 23, 28, 38, 39] it
has been shown that the boundary measurements for the scalar wave
equation, Dirac equation, and for Maxwell’s system (with isotropic
scalar impedance) determine the boundary distance functions of the
Riemannian metric associated to the wave velocity.

1.5.3. Reconstruction from the Spherical surface data. Let (N, g) be
a complete or closed Riemannian manifold of dimension n ∈ Z+ and
M ⊂ N be an open subset of N with smooth boundary. We denote by
U := N \M . Suppose that we are given the data

(6) {(U, g|U),D(M)},
where

D(M) = {Dx ∈ C(U × U) : x ∈M}.
Let D = Dx ∈ D(M) and w ∈ U . Suppose that a point z0 ∈ U is

not a cut point of x. Then it holds that there exists a neighborhood V
of z0 such that the function

fw(z) := D(z, w) = d(x, z)− d(x,w),

for some x ∈M , is smooth in V and sets

SD,V,w,r = {z ∈ V : fw(z) = r} = {z ∈ V : d(x, z) = r + d(x,w)}
are metric spheres. Therefore, using the data (6) one can find the
family of smooth hyper-surfaces

S = {SD,V,w,r : D ∈ D(M), w ∈ U, V ⊂ U is open,
D(· , w)|V ∈ C∞(V ), r ∈ R}.

In [12] one considers the Spherical surface data consisting of the set
U and the collection of all pairs (Σ, r) where Σ ⊂ U is a smooth (n−1)
dimensional submanifold that can we written in the form

Σ = Σx,r,W = {expx(rv) ∈ N : v ∈ W},
where x ∈ M , r > 0 and W ⊂ SxN is an open and connected set.
Such surface Σ is called spherical surfaces, or more precisely, subsets
of generalised spheres of radius r. Also, in [12] one assumes that U is
given with its C∞-smooth coordinate atlas. The data (6) is close to
Spherical surface data in the sense that data (6) contain only some of
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the spherical surfaces Σ and there is no information on the radii r of
the spherical surfaces Σ. Notice that in general, the spherical surface Σ
may be related to many centre points and radii. For instance consider
the case where N is a two dimensional sphere.

In [12] it is shown that the Spherical surface data determine uniquely
the Riemannian structure of U . However these data are not sufficient
to determine (N, g) uniquely. In [12] a counterexample is provided. In
[12] it is shown that the Spherical surface data determine uniquely the
universal covering space of (N, g) up to an isometry.

1.5.4. Inverse problems of micro-earthquakes. The earthquakes are pro-
duced by the accumulated elastic strain that at some time suddenly
produce an earthquake. As mentioned above, the small magnitude
earthquakes (e.g. the micro-earthquakes of magnitude 1 < M < 3) ap-
pear so frequently that the surface observations of the produced elastic
waves have been proposed to be used in the imaging of the Earth
near active faults [21, 43]. The so-called time-reversal techniques to
study the inverse source and medium problems arising from the micro-
seismology have been developed in [5, 13, 20].

In geophysical studies, one often approximates the elastic waves with
scalar waves satisfying a wave equation. Let us also assume that the
sources of such earthquakes are point-like and that one does measure-
ments over so long time that the source-points are sufficiently dense
in the studied volume. Then the inverse problem of determining the
the speed of the waves in the studied volume from the surface obser-
vations of the microearthquakes is close to the problem studied in this
paper. We note that the above assumptions are highly idealized: For
example, considering the system of elastic equations would lead to a
problem where travel times are determined by a Finsler metric instead
of a Riemannian one.

1.5.5. Broken scattering relation. If the sign in the definition of the
distance difference functions is changed in (1), we come to distance
sum functions

D+
x (z1, z2) = d(z1, x) + d(z2, x), x ∈M, z1, z2 ∈ F.(7)

This function gives the length of the broken geodesic that is the union
of the shortest geodesics connecting z1 to x and the shortest geodesics
connecting x to z2. Also, the gradients of D+

x (z1, z2) with respect to
z1 and z2 give the velocity vectors of these geodesics. The functions
(7) appear in the study of the radiative transfer equation on manifold
(N, g), see [11, 34, 35, 36, 40]. Also, the inverse problem of determining
the manifold (M, g) from the broken geodesic data, consisting of the
initial and the final points and directions, and the total length, of the
broken geodesics, has been considered in [26].
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(z1, ξ+) (z2, ξ−)

∂M

x

αz1,ξ+,z2,ξ−

Figure 3. Broken geodesic data consists of initial direc-
tion (z1, ξ+), final direction (z2, ξ−) and total length of
of broken geodesic αz1,ξ+,z2,ξ− .

2. Extension of the data and topological equivalence

We will prove Theorem 1.2 in several steps. In order to do this we
start with a series of auxiliary results. Our first task is to extend the
family D(M) to family

D(U) := {Dx ∈ C(F × F ) : x ∈ U}.

Proposition 2.1. The data {(F, g|F ),D(M)} determine

dg|F×F : F × F → R.

Proof. Let z1, z2 ∈ ∂M . We start with finding dg(z1, z2). This can
be obtained by using the triangular inequality and that dg(z1, z2) =
Dz2(z1, z2). Thus we see easily that

(8) dg(z1, z2) = sup
x∈M

Dx(z1, z2).

Let z, w ∈ F . As we are given the pair (F, g|F ), we can determine the
length of any smooth path α : [0, L] → F . Since manifold N is com-
plete, it holds that there exists a distance minimizing geodesic segment
γ from z to w. Moreover, as U is convex, the segment γ([0, dg(x,w)])
is contained in U .

When γ([0, dg(x,w)]) does not intersect M , we can compute the
length L(γ) of γ. Consider next the case when γ intersects M . Then
it holds that

dg(z, w) = inf{L(α) + d(q1, q2) + L(β) : q1, q2 ∈ ∂M,

α is a smooth curve in F connecting z to q1,
β is a smooth curve in F connecting q2 to w}.

This shows that we can determine the function dg|F×F . �

Corollary 2.2. The data {(F, g|F ),D(M)} determine D(U).
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Proof. Let x ∈ U and z1, z2 ∈ F . If x ∈ M , then Dx ∈ D(M). If
x /∈M , then by Proposition 2.1, we can compute dg(x, z1) and dg(x, z2)
from {(F, g|F ),D(M)}. Thus we can determine Dx(z1, z2). �

Proposition 2.3. Suppose that mapping φ : F1 → F2 is as in The-
orem 1.2 and (2)-(3) are valid. Then φ is a metric isometry, this is,
d1(x, y) = d2(φ(x), φ(y)) for all x, y ∈ F1.

Proof. Let x, y ∈ F1 and let γ : [0, d(x, y)] → N be a distance min-
imizing unit speed geodesic segment of g1 from x to y contained in
U1. If the geodesic segment γ : [0, d1(x, y)] → N1 is contained in F1,
then we have that φ ◦ γ is a curve connecting φ(x) to φ(y). Thus
d1(x, y) ≥ d2(φ(x), φ(y)).

Suppose that set S := γ([0, d1(x, y)] ∩ ∂M 6= ∅. Then there exist
closest points e1, e2 ∈ S to x and y respectively. We denote by α the
part of geodesic segment γ from x to e1 and β the part of geodesic
segment γ from e2 to y. Then α and β are contained in F1. Using
formulas (3) and (8) we can conclude that

d1(x, y) = L(α) + d1(e1, e2) + L(β)

= L(φ ◦ α) + d2(φ(e1), φ(e2)) + L(φ(β)) ≥ d2(φ(x), φ(y)).

Thus we have proved that d1(x, y) ≥ d2(φ(x), φ(y)) in all cases.
Switch the roles of x and φ(x) and y and φ(y) and notice that φ−1 also
preserves the metric tensor. Therefore we can conclude that d1(x, y) =
d2(φ(x), φ(y)). �

Since F is compact, it holds that C(F × F ) ⊂ L∞(F × F ).

Corollary 2.4. Suppose (Ni, gi) i = 1, 2 Ui, Mi and Fi are as in the
Theorem 1.2 and (2)-(3) are valid. Then
(9)
{D1

x ∈ C(F1 × F1) : x ∈ U1} = {D2
y(φ(·), φ(·)) ∈ C(F1 × F1) : y ∈ U2},

Proof. The claim follows from Corollary 2.2 and Proposition 2.3. �

We consider the mapping

D : U → L∞(F × F ), D(x) := Dx.

Theorem 2.5. Mapping D : U → D(U) ⊂ L∞(F × F ) is a homeo-
morphism.

Proof. Let x, y ∈ U and z, w ∈ F . By triangle inequality we have

|Dx(z, w)−Dy(z, w)| ≤ |d(x, z)−d(y, z)|+|d(x,w)−d(y, w)| ≤ 2d(x, y).

Thus ‖Dx−Dy‖∞ ≤ 2d(x, y) and therefore D is 2-Lipschitz. Hence, D
is continuous.

Next we prove that D is one-to-one. To show this, assume x, y ∈ U
are such that Dx = Dy. We split the proof into three different cases.
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(1) If x, y ∈ F , then
d(x, y) = Dx(y, x) = Dy(y, x) = −d(x, y).

Thus d(x, y) = 0 and x = y.
(2) If x ∈ F\∂M and y ∈M , let L = d(x, y) and γ : [0, L]→ N be a

distance minimizing geodesic from x to y. Since dist(∂U, ∂M) >
0 there exists s ∈ (0, L) such that we have z = γ(s) ∈ F . Then
d(x, z) = s and d(y, z) = L− s. As Dx = Dy,

d(x, z) = Dx(z, x) = Dy(z, x) = d(y, z)− d(y, x) = d(y, z)− L.
These yield L = d(y, z) − d(x, z) = L − 2s < L. Hence, it is
not possible that there are x ∈ F \ ∂M and y ∈ M satisfying
Dx = Dy.

(3) Consider the case x, y ∈ M . To show that x and y have to be
equal, assume on the contrary that x 6= y. Let zx, zy ∈ ∂M
be some closest points of F to x and y, respectively. Since
Dx = Dy, d(x, zx) − d(x, zy) ≤ 0 and d(y, zx) − d(y, zy) ≥ 0, it
holds that

d(x, zx) = d(x, zy) and d(y, zy) = d(y, zx).

Therefore zx is also a closest point of F to y and zy is a closest
point of F to x.

Let sx = d(x, zx) = d(x, zy) and sy = d(y, zx) = d(y, zy).
Without lost of generality we can assume that sx ≤ sy. Since
boundary ∂M is a smooth (n−1) dimensional submanifold ofN ,
there exists a unique inward pointing unit normal vector field
ν of ∂M . Then it holds that γzx,ν is the distance minimizing
geodesic from ∂M to x and y.

x = γzx,ν(sx) and y = γzx,ν(sy).

As geodesic segment γzx,ν : [0, sy]→M is a distance minimizing
curve between all of its points,

d(x, y) = d(y, zx)− d(x, zx) = sy − sx.(10)

Since γzx,ν is orthogonal to boundary ∂M , there exists s > 0
such that γzx,ν(−s, 0) ∩ ∂M = ∅. Thus there exists a point
z ∈ ∂M \ {zx} that is close to zx, but the distance minimizing
geodesic γx from z to x is not the same geodesic as γzx,ν , that is,
the angle β of the curves γx and γzx,ν at the point x is strictly
between 0 and π. Let γy be a distance minimizing geodesic from
y to z. Since Dx(z, zx) = Dy(z, zx), we have d(x, z)−d(x, zx) =
d(y, z)− d(y, zx), that further yields

d(y, z)− d(x, z) = d(y, zx)− d(x, zx) = sy − sx = d(x, y).

Hence,

L(γy) = d(y, z) = d(y, x) + d(x, z) = L(γzx,ν |[sx,sy ]) + L(γx).
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Thus the union µ of the curves γzx,ν([sx, sy]) and γx is a dis-
tance minimising curve from z to y, and hence it is a geodesic.
However, as the angle β defined above is strictly between 0 and
π, the union µ of the curves γzx,ν([sx, sy]) and γx is not smooth
at x, and hence it is not possible that µ is a geodesic. Thus
the assumption x 6= y led to a contradiction and hence x and y
have to be equal.

γzx,νγy

γx

x

zxz

∂M

y

Figure 4. A schematic picture about the final setting
of case (3).

We conclude that in all cases the assumption Dx = Dy implies that
x = y. Therefore D is one-to-one.

Since U is compact it follows from continuity that D is a closed
mapping. This shows that D : U → D(U) is a continuous and closed
bijection that proves the claim. �

We are now ready to define a mapping Ψ : U2 → U1 that we will
use to show that (U1, g1|U1

) and (U2, g2|U2
) are isometric Riemannian

manifolds with boundary. Let Di : U i → C(Fi×Fi), i = 1, 2 be defined
as Di(x) := Di

x. We also define a mapping

Φ : C(F2 × F2)→ C(F1 × F1), Φ(f) := f(φ(·), φ(·)).

Lemma 2.6. Mapping Φ is a homeomorphism.

Proof. Since φ : F1 → F2 is one-to-one and onto, it holds that mapping
f 7→ f(φ−1(·), φ−1(·)), f ∈ C(F1 × F1) exists and is the inverse of Φ.

Let f, h ∈ C(F2 × F2). Then it holds that

‖f(φ(·), φ(·))− h(φ(·), φ(·))‖∞ ≤ ‖f − h‖∞.
Thus Φ is continuous. The same arguments, with the mapping Φ being
replaced by Φ−1, show that Φ−1 is continuous. �

By formula (9), Theorem 2.5 and Lemma 2.6 it holds that mapping

Ψ : U2 → U1, Ψ := D−11 ◦ Φ, ◦D2,

is well defined.
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Theorem 2.7. Mapping Ψ : U2 → U1 is a homeomorphism and

(11) Ψ|F2 = φ−1.

Proof. By formula (9), Theorem 2.5 and Lemma 2.6 it holds that map-
ping Ψ is a homeomorphism. The second claim follows from formula
(9) and the definition of Ψ. �

3. Smooth and Riemannian structures

Our next goal is to show that the mapping Ψ : U2 → U1 is a dif-
feomorphism. The task at hand is to construct smooth atlases on U2

and U1 and show that with respect to these differential structures the
mapping Ψ is a diffeomorphism.

Let p ∈ U2. By [1] there exist points {yi}ni=0 ∈ F int
2 such that

mappings

x 7→ (D2
x(yi, y0))

n
i=1 and x̃ 7→ (D1

x̃(φ(yi), φ(y0)))
n
i=1

are smooth local coordinate mappings defined in a sufficiently small
neighborhood of p and Ψ(p), respectively. It also holds that the local
representation of Ψ in this coordinate system is an identity mapping of
Rn. Thus the following theorem holds.

Suppose that p ∈ ∂U2. Since we assumed that M ⊂ U it holds that
dist(∂U, ∂M) > 0. Therefore there exists some r > 0 such that sets
Bg2(p, r) ⊂ N2 and M2 are disjoint. By Theorem 2.7 it holds that

Ψ|Bg2 (p,r)∩U
= φ−1|Bg2 (p,r)∩U

.

Therefore Ψ is also smooth at p. Thus we have proved the following
theorem.

Theorem 3.1. Mapping Ψ : U2 → U1 is a diffeomorphism.

The last step is to show that mapping Ψ : U2 → U1 is a Riemannian
isometry. This means that Ψ∗(g1|U1

) = g2|U2
. We denote g := g2

and g̃ := Ψ∗(g1|U1
). From now on we will use short hand notations

N2 = N, F2 = F, M2 = M and U2 = U . Next we consider the
properties of the metric tensors g and g̃ on U . We recall that two
metric tensors g and g̃ defined on the same manifold U are said to
be geodesically equivalent, if the geodesic curves corresponding these
metric tensors are the same as unparametrized curves. In other words,
any geodesic of (U, g) can be re-parametrized so that it becomes a
geodesic of (U, g̃) and vice versa.

Definition 3.2. Let p ∈ F and ξ ∈ TpN be such that ‖ξ‖g = 1. Define
a set.

σ(p, ξ) := {x ∈ U ; there is w ∈ F such that Dx(·, w) is C1-smooth
in some neighbourhood of p and ∇Dx(·, w)|p = ξ}.
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Let p ∈ F and ξ ∈ TpN be such that ‖ξ‖g = 1. By [1] it holds that

(12) σ(p, ξ) = γp,−ξ({s ; 0 < s < τ(p,−ξ)}) ∩ U,

where τ : SN → (0,∞] is the cut distance function of metric g and
γp,−ξ is the unique unit speed geodesic of g with initial point p and
initial direction −ξ, (see Figure 5). This means that we can find the
geodesic γp,−ξ({s ; 0 < s < τ(p,−ξ)})∩U as a point set. Note that the
segments of geodesics of (U, g) we know as non-parametrized curves are
not self-intersecting, since cut points occur before a geodesic stops to
be one-to-one.

(p, ξ)

∂M

γp,−ξ

Figure 5. σ(p, ξ) is the part image of geodesic γ(p,−ξ)
contained in U .

By formulas (9) and (12), it holds that set σ(p, ξ) is also an image
of some geodesic of (U, g̃). Furthermore, it is easy to see that there is
a re-parametrization

s :
[
0, τ̃
(
p,
−ξ
‖ξ‖g̃

))
→ [0, τ(p,−ξ))

such that γp,−ξ(s(t)), t ∈ [0, t1), is an unit speed geodesic of (U, g̃) and
τ̃ is the is the cut distance function of metric g̃.

Since F int 6= ∅, it holds that for each q ∈ M , there exists an open
cone Σq contained in TqN such that for each v ∈ Σq the corresponding
geodesic segment γq, v

‖v‖g
intersects F and this geodesic segment is also

a pre-geodesic of metric g̃, i.e., there exists a re-parametrization of the
curve γq, v

‖v‖g
that is a geodesic curve with respect to the metric g̃. By

using results of [33] for general affine connections, see [1, Lem. 2.13] for
details, this is a sufficient condition for the metric tensors g and g̃ on
U to be geodesically equivalent.

We provide here a rough idea for the proof. Let (V,X) be a smooth
local coordinate chart in M . We denote the Christoffel symbols of
metrics g and g̃ by Γ and Γ̃, respectively. The first step is to show
that there exists a smooth local 1-form ϕ on V such that the following
equation holds.

(13) Γ̃ki,j = Γki,j + δki ϕj + δkjϕi, for k, i, j ∈ {1, 2, . . . , n}.
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To do this we define, for each p ∈ V , a collection C(p) of geodesics γ of
(U, g) and real numbers t0 ∈ R, given by

C(p) = {(γ, t0) ; γ : (a, b)→ U is a geodesic of (U, g), γ(t0) = p, and
there are z ∈ F int and ξ ∈ TzU such that γ((a, b)) = σ(z, ξ)}.

Here γ is given as a pair of the set dom(γ) = (a, b) ⊂ R, −∞ ≤ a < b ≤
∞, where the mapping γ is defined and the function γ : dom(γ)→ U .
Also, t0 ∈ (a, b). Moreover, above γ((a, b)) = σ(z, ξ) means that the
sets γ((a, b)) ⊂ U and σ(z, ξ) ⊂ U are the same, or equivalently, that
γ((a, b)) and σ(z, ξ) are the same as unparameterized curves.

Then it holds that for each (γ, t0) ∈ C(p) we have γ̇(t0) ∈ Σp. In [1]
it is shown how one can use these observations and the fact that Σp is
an open conic set to prove that equation (13) is valid for some 1-form
ϕ.

The second step is to prove that equation (13) implies the geodesic
equivalence of g and g̃ on M . See [1] for details.

Finally we will introduce a function I0 : TU → R that is defined as

(14) I0((x, v)) :=
(det(gx)
det(g̃x)

) 2
n+1

g̃x(v, v).

By the above, the metric tensors g and g̃ are geodesically equivalent
on open smooth manifold U . By [32] the geodesic equivalence of g and
g̃ implies that function I0 is constant on every curve t 7→ (γ(t), γ̇(t)),
where γ is a geodesic of metric g|U . By (2) it holds g̃|F int = g|F int . Thus
we see that and I0(x, ξ) = 1 for all (x, ξ) ∈ TU such that x ∈ F int.
Denote byWx the set of those (x, ξ) ∈ TU having the property that the
geodesic γx,ξ intersects F int. The invariance of I0(x, ξ) along geodesics
implies that I0(x, ξ) = 1 for all (x, ξ) ∈ Wx. As Wx ⊂ T0U \ {0} is
an open set for all x ∈ U , can use the definition (14) of I0 to see first
that g̃ and g are conformal on M and further that g̃ = g on M (see
[1, Lemma 2.16] for proof of this analysis). Since (2) and (11), hold we
have proved Theorem 1.2.

4. Application for an inverse problem for a wave
equation

Here we consider the application of Theorem 1.2 for an inverse prob-
lem for a wave equation with spontaneous point sources.

4.0.6. Support sets of waves produced by point sources. Let (N, g) be a
complete Riemannian manifold. Denote the Laplace-Beltrami operator
of metric g by ∆g. (For definitions see [30, 10]). We consider a wave
equation

(15)
{

(∂2t −∆g)G(·, ·, y, s) = κ(y, s)δy,s(·, ·), in N
G(x, t, y, s) = 0, for t < s, x ∈ N.
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where N = N × R is the space-time. The solution G(x, t, y, s) is the
wave produced by a point source located at the point y ∈ M and
time s ∈ R having the magnitude κ(y, s) ∈ R \ {0}. Above, we have
δy,s(x, t) = δy(x)δs(t) corresponds to a point source at (y, s) ∈ N .

4.0.7. Inverse coefficient problem with spontaneous point source data.
Assume that there are two manifolds (N1, g1) and (N2, g2) satisfying
the assumptions given in Section 1.2 for sets Ui,Mi and Fi, i = 1, 2.
In addition we assume that there exists a diffeomorphism φ : F1 → F2

such that (2) is valid and
W1 = W2(16)

where W1 and W2 are collections of supports of waves produced by
point sources taking place at unknown points at unknown time, that
is,
W1 = {supp (G1(·, ·, y1, s1)) ∩ (F1 × R); y1 ∈M1, s1 ∈ R} ⊂ 2F1×R

and
W2 = {supp (G2(φ(·), ·, y2, s2)) ∩ (F1 × R); y2 ∈M2, s2 ∈ R} ⊂ 2F1×R

where functions Gj, j = {1, 2} solve equation (15) on manifold Nj.
Here 2Fj×R = {F ′; F ′ ⊂ Fj × R} is the power set of Fj × R. Roughly
speaking, Wj corresponds to the data that one makes by observing, in
the set Fj, the waves that are produced by spontaneous point sources
that that go off, at an unknown time and at an unknown location, in
the set Mj.

y

M1

F1

∂M1

Figure 6. Illustration of suppG1(·, ·, y, s) ⊂ N1.

Earlier, the inverse problem for the sources that are delta-distributions
in time and localized also in the space has been studied in [13] in the
case when the metric g is known. Theorem 1.2 yields the following
result telling that the metric g can be determined when a large number
of waves produced by the point sources is observed:

Proposition 4.1. Let (Nj, gj), j = 1, 2 be a complete compact Rie-
mannian n-manifold, n ≥ 2. Let Mj ⊂ Nj be an open set whose closure
is contained in open set Uj . Suppose also that ∂Mj is smooth, Uj is
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relatively compact, ∂Uj is smooth and U is convex. If the spontanuous
point source data of U1 and U2 coincide, that is, we have (2) and (16),
then (U1, g1|U1

) and (U2, g2|U2
) are isometric Riemannian manifolds

with boundary.

Proof. We provide here a sketch of the proof (see [1] for the detailed
proof). The main idea is to relate the numbers

Ty,s(z) := sup{t ∈ R; the point (z, t) has a neighborhood
A ⊂ N such that G(·, ·, y, s)|A = 0}

y ∈ M , s ∈ R, and z ∈ F , to the distance difference functions. The
number Ty,s(z) tells us, what is the first time when the wave G(·, ·, y, s)
is observed near the point z. Using the finite velocity of the wave
propagation for the wave equation, see [17], we see that the support of
G(·, ·, y, s) is contained in the future light cone of the point q = (y, s) ∈
N given by

J+(q) = {(y′, s′) ∈ N ; s′ ≥ d(y′, y) + s}.
Next, step is to show that a wave emanating from a point source (y, s)

propagates along the geodesics of manifold (N, g) and the boundary

∂J+(q) = {(expy(tη), s+ t) ∈ N ; η ∈ SyN, t ≥ 0}.

See [15] and [16]. Therefore it can be shown that the functionG(·, ·, y, s)
vanishes outside J+(q) and is non-smooth, and thus non-zero, in a
neighbourhood of arbitrary point of ∂J+(q). Thus, for z ∈ F we have
Ty,s(z) = d(z, y) − s. Hence the distance difference functions satisfy
equation

(17) Dy(z1, z2) = Ty,s(z1)− Ty,s(z2).
Therefore we see using equation (17) that we have (2)-(3). Hence,

the claim follows from Theorem 1.2. �
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