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Abstract. Let (N, g) be a Riemannian manifold with the dis-
tance function d(x, y) and an open subset M ⊂ N . For x ∈ M we
denote by Dx the distance difference function Dx : F × F → R,
given by Dx(z1, z2) = d(x, z1)− d(x, z2), z1, z2 ∈ F = N \M . We
consider the inverse problem of determining the topological and
the differentiable structure of the manifold M and the metric g|M
on it when we are given the distance difference data, that is, the
set F , the metric g|F , and the collection D(M) = {Dx; x ∈ M}.
Moreover, we consider the embedded image D(M) of the manifold
M , in the vector space C(F × F ), as a representation of manifold
M . The inverse problem of determining (M, g) from D(M) arises
e.g. in the study of the wave equation on R×N when we observe in
F the waves produced by spontaneous point sources at unknown
points (t, x) ∈ R × M . Then Dx(z1, z2) is the difference of the
times when one observes at points z1 and z2 the wave produced by
a point source at x that goes off at an unknown time. The prob-
lem has applications in hybrid inverse problems and in geophysical
imaging.

Keywords: Inverse problems, distance functions, embeddings of man-
ifolds, wave equation.
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1. Introduction

1.1. Motivation of the problem. Let us consider a body in which
there spontaneously appear point sources that create propagating waves.
In various applications one encounters a geometric inverse problem
where we detect such waves either outside or at the boundary of the
body and aim to determine the unknown wave speed inside the body.
As an example of such situation, one can consider the micro-earthquakes
that appear very frequently near active faults. The related inverse prob-
lem is whether the surface observations of elastic waves produced by the
micro-earthquakes can be used in the geophysical imaging of Earth’s
subsurface [23, 56], that is, to determine the speed of the elastic waves
in the studied volume. In this paper we consider a highly idealized
version of the above inverse problem: We consider the problem on an n
dimensional manifold N with a Riemannian metric g that corresponds
to the travel time of a wave between two points. The Riemannian
distance of points x, y ∈ N is denoted by d(x, y). For simplicity we as-
sume that the manifold N is compact and has no boundary. Instead of
considering measurements on boundary, we assume that the manifold
contains an unknown part M ⊂ N and the metric is known outside
the set M . When a spontaneous point source produces a wave at some
unknown point x ∈ M at some unknown time t ∈ R, the produced
wave is observed at the point z ∈ N \M at time Tx,t(z) = d(z, x) + t.
These observation times at two points z1, z2 ∈ N \ M determine the
distance difference function

Dx(z1, z2) = Tx,t(z1)− Tx,t(z2) = d(z1, x)− d(z2, x).(1)

Physically, this function corresponds to the difference of times at z1
and z2 of the waves produced by the point source at (x, t), see Fig 1.
and Section 3. An assumption there is a large number point sources
and that we do measurements over a long time can be modeled by the
assumption that we are given the set N \M and the family of functions

{Dx ; x ∈ X} ⊂ C((N \M)× (N \M)),

where X ⊂ M is either the whole manifold M or its dense subset, see
Remark 2.5.

1.2. Definitions and the main result. Let (N1, g1) and (N2, g2) be
compact and connected Riemannian manifolds without boundary. Let
dj(x, y) denote the Riemannian distance of points x, y ∈ Nj , j = 1, 2.
Let Mj ⊂ Nj be open sets and define closed sets Fj = Nj \Mj . Suppose
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Figure 1. The distance difference functions are related
to observation on the closed manifold N that contains an
unknown open subset M and its known complement F =
N \ M . The distance difference function Dx associated
to a source point x ∈ M has, at the observation points
z1, z2 ∈ F , the value Dx(z1, z2) = d(x, z1)−d(x, z2). Con-
sider the wave equation and a wave that is produced by a
point source at x that goes off at an unknown time and
that is observed on F . Then the difference of the times
when the wave is observed at the points z1 and z2 is equal
to Dx(z1, z2). The time difference inverse problem is de-
termine the topogy and the isometry type of (N, g) from
such observations when x runs over a dense subset of M .

F int
j ̸= ∅. This is a crucial assumption and we provide a counterexample

for a case F int
j = ∅ in the Appendix 4.

Below, we assume that we know Fj as a differentiable manifold, that
is, we know the atlas of C∞-smooth coordinates on Fj , and the metric
tensor gj |Fj on Fj , but we do not know the manifold (Mj , gj|Mj). We
assume Fj to be a smooth manifold with smooth boundary ∂Fj = ∂Mj .

Definition 1.1. For j = 1, 2 and all points x ∈ Nj we define the
distance difference function

Dj
x : Fj × Fj → R, Dj

x(z1, z2) := dj(z1, x)− dj(z2, x)

where Fj = Nj \ Mj. Recall that here dj is the Riemannian distance
function of manifold Nj. We denote by

Dj : Nj → C(Fj × Fj), Dj(x) = Dj
x

the map from a point x to the corresponding distance difference function
Dj

x. The pair (Fj , gj|Fj) and the collection

Dj(Mj) = {Dj
x ; x ∈ Mj} ⊂ C(Fj × Fj)

of the distance difference functions of the points x ∈ Mj is called the
distance difference data for the set Mj.

We emphasize that the above collections {Dj
x(·, ·); x ∈ Mj} are given

as unindexed subsets of C(Fj ×Fj), that is, for a given element Dj
x(·, ·)

of this set we do not know what is the corresponding “index point” x.
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To prove the uniqueness of this inverse problem, we assume the fol-
lowing:

There is a diffeomorphism φ : F1 → F2 such that φ∗g2|F2 = g1|F1,(2)
{D1

x(·, ·) ; x ∈ M1} = {D2
y(φ(·),φ(·)) ; y ∈ M2}.(3)

The following proposition states that using the small data Dj(Mj)
we can construct the bigger data set Dj(Nj).

Proposition 1.2. Assume that (2)-(3) are valid. Then:
(i) The map φ : F1 → F2, is an isometry, that is, d1(z, w) =

d2(φ(z),φ(w)) for all z, w ∈ F1.
(ii) The collections Dj(Nj) = {Dj

x(·, ·); x ∈ Nj} ⊂ C(Fj × Fj) are
equivalent in the following sense

{D1
x(·, ·) ; x ∈ N1} = {D2

y(φ(·),φ(·)) ; y ∈ N2}.(4)

We postpone the proof of this proposition and the other results in
the introduction and give the proofs later in the paper.

The main theorem of the paper is the following:

Theorem 1.3. Let (N1, g1) and (N2, g2) be compact and connected
Riemannian manifolds, without boundary, of dimension n ≥ 2. Let
Mj ⊂ Nj be open sets and define closed sets Fj = Nj \ Mj. Suppose
F int
j ̸= ∅. We assume Fj to be a smooth manifold with smooth bound-

ary ∂Fj = ∂Mj . Suppose (2)-(3) are valid. Then the manifolds (N1, g1)
and (N2, g2) are isometric.

We prove Theorem 1.3 in Section 2. This proof is divided into 5
subsections. In the first we set notations and consider some basic
facts about geodesics. In the second we prove Proposition 1.2. In
the third we show that manifolds (Nj, gj) are homeomorphic. In the
fourth subsection we will construct smooth atlases with which we show
that manifolds (Nj , gj) are diffeomorphic. In fifth subsection we will
use techniques developed in papers [44] and [41] to prove that manifolds
(Nj, gj) are isometric.

Finally, in Section 3 we give an example how the main result can be
applied for an inverse source problem for a geometric wave equation.

1.3. Embeddings of a Riemannian manifold. A classical distance
function representation of a Riemannian manifold is the Kuratowski-
Wojdyslawski embedding,

K : x )→ distM(x, · ),

from M to the space of continuous functions C(M) on it. The map-
ping K : M → C(M) is an isometry so that K(M) is an isometric
representation of M in a vector space.
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An other important example is the Berard-Besson-Gallot represen-
tation [10]

G : M → C(M × R+), G(x) = ΦM(x, · , · )
where (x, y, t) )→ ΦM(x, y, t) is the heat kernel of the manifold (M, g).
The asymptotics of the heat kernel ΦM(x, y, t), as t → 0, determines
the distance d(x, y), and by endowing C(M × R+) with a suitable
topology, the image G(M) ⊂ C(M × R+) can be considered as an
embedded image of the manifold M .

Theorem 1.3 implies that the set D(M) = {Dx; x ∈ M} can be
considered as an embedded image (or a representation) of the manifold
(M, g) in the space C(F × F ) in the embedding x )→ Dx. Moreover,
in the proof of Theorem 1.3 we show that (F, g|F ) and the set D(M)
determine uniquely an atlas of differentiable coordinates and a metric
tensor on D(M). These structures make D(M) a Riemannian manifold
that is isometric to the original manifold M . Note that the metric is
different than the one inherited from the inclusion D(M) ⊂ C(F ×F ).
Hence, D(M) can be considered as a representation of the manifold M ,
given in terms of the distance difference functions, and we call it the
distance difference representation of the manifold of M in C(F × F ).

The embedding D is different to the above embeddings K and G in
the following way that makes it important for inverse problems: With
D one does not need to know a prori the set M to consider the function
space C(F ×F ) into which the manifold M is embedded. Similar type
of embedding have been also considered in context of the boundary
distance functions, see Subsection 1.4.1.

In addition to the above tensor g on N , let us consider a sequence
of metric tensors gk, k ∈ Z+ on the manifold N and assume that
gk|F = g|F on F ⊂ N . We denote the Riemannian manifolds (N \
F, gk|N\F ), having the boundary ∂F , by (Mk, gk). Also, we denote
by D(Mk) ⊂ C(F × F ) the distance difference representations of the
manifolds (Mk, gk) and let dH(X1, X2) denote the Hausdorff distance
of sets X1, X2 ⊂ C(F ×F ). When dH(D(Mk),D(M)) → 0, as k → ∞,
an interesting open question is, if the manifolds (Mk, gk) converge to
(M, g) in the Gromov-Hausdorff topology. This type of questions have
been studied for other representation e.g. in [2, 10], but this question
is outside the context of this paper.

1.4. Earlier results and the related inverse problems. The in-
verse problem for the distance difference function is closely related to
many other inverse problems. We review some results below:

1.4.1. Boundary distance functions and the inverse problem for a wave
equation. The reconstruction of a compact Riemannian manifold (M, g)
with boundary from distance information has been considered e.g. in
[25, 28]. There, one defines for x ∈ M the boundary distance function
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rx : ∂M → R given by rx(z) = d(x, z). Assume that one is given
the boundary ∂M and the collection of boundary distance functions
corresponding to all x ∈ M that is,

(5) ∂M and R(M) := {rx ∈ C(∂M); x ∈ M}.

It is shown in [25, 28] that only knowing the boundary distance data
(5) one can reconstruct the topology of M , the differentiable structure
of M (i.e., an atlas of C∞-smooth coordinates), and the Riemannian
metric tensor g. Thus R(M) ⊂ C(∂M) can be considered as an iso-
metric copy of M , and the pair (∂M,R(M)) is called the boundary dis-
tance representation of M , see [25, 28]. Similar results for non-compact
manifolds is considered in [16]. Constructive solutions to determine the
metric from the boundary distance functions have been developed in
[14] using a Riccati equation [54] for metric tensor in boundary normal
coordinates and in [53] using the properties of the conformal killing
tensor.

The results of this paper is closely related to data (5): Knowing the
distance difference functions D∂M

x : ∂M × ∂M → R

D∂M
x (z1, z2) = d(x, z1)− d(x, z2), (z1, z2) ∈ ∂M × ∂M

is equivalent to knowing the boundary distance functions with error
ε(x), depending on x ∈ M , that is, the functions z )→ rx(z) − ε(x).
Indeed, rx(z)− ε(x) = D∂M

x (z, z2) when ε(x) = d(x, z2).
Physically speaking, functions rx are determined by the wave fronts

of waves produced by the delta-sources δx,0 that take place at the point
x at time s = 0. The distance difference functions D∂M

x are determined
by the wave fronts of waves produced by the delta-sources δx,s that
take place at the point x at an unknown time s ∈ R.

Many hyperbolic inverse problems with time-independent metric re-
duce to the problem of reconstructing the isometry type of the manifold
from its boundary distance functions. Indeed, in [25, 24, 27, 29, 30,
33, 49, 50] it has been show that the boundary measurements for the
scalar wave equation, Dirac equation, and for Maxwell’s system (with
isotropic scalar impedance) determine the boundary distance functions
of the Riemannian metric associated to the wave velocity.

1.4.2. Hybrid inverse problems. Hybrid inverse problems are based on
coupling two physical models together. In a typical setting of these
problems, the first physical system is such that by controlling the
boundary values of its solution, one can produce high amplitude waves,
that create, e.g. due to energy absorption, a source for the second
physical system. Typically, the second physical system corresponds to
a hyperbolic equation with the metric

ds2 = c(x)−2((dx1)2 + · · ·+ (dxn)2)
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corresponding to the wave speed c(x). Examples of such hybrid inverse
problems are encountered in thermo-acoustic and photo-acoustic imag-
ing see e.g. [1, 5, 6, 7, 8, 57, 59, 58, 55] and quantitative elastography
[4, 20, 21]. In some cases one can use beam forming in the first phys-
ical system to make the source for the second physical system to be
strongly localized, that is, to be close to a point-source, see e.g. [4, 21].

To simplify the above hybrid inverse problem, one often do approxi-
mations by assuming that the wave speed in the second physical system
is either a constant or precisely known. Usually one also assumes that
the time moment when the source for the second physical system is
produced is exactly known. However, when these approximations are
not made, the wave speed c(x) needs to be determined, too. When the
source of the second physical system is produced at the given time in the
whole domain M , the problem is studied in [40, 60]. In the cases when
the source of the second physical system are close to a point sources,
one can try to determine c(x) from the wavefronts that are produced
by the point sources and are observed outside the domain M . This
problem can be uniquely solved by Theorem 1.3 and we consider it in
detail below in Section 3.

1.4.3. Inverse problems of micro-earthquakes. The earthquakes are pro-
duced by the accumulated elastic strain that at some time suddenly
produce an earthquake. As mentioned above, the small magnitude
earthquakes (e.g. the micro-earthquakes of magnitude 1 < M < 3) ap-
pear so frequently that the surface observations of the produced elastic
waves have been proposed to be used in the imaging of the Earth
near active faults [23, 56]. The so-called time-reversal techniques to
study the inverse source and medium problems arising from the micro-
seismology have been developed in [3, 15, 22].

In geophysical studies, one often approximates the elastic waves with
scalar waves satisfying a wave equation. Let us also assume that the
sources of such earthquakes are point-like and that one does measure-
ments over so long time that the source-points are sufficiently dense
in the studied volume. Then the inverse problem of determining the
the speed of the waves in the studied volume from the surface obser-
vations of the microearthquakes is close to the problem studied in this
paper. We note that the above assumptions are highly idealized: For
example, considering the system of elastic equations would lead to a
problem where travel times are determined by a Finsler metric instead
of a Riemannian one.

1.4.4. Broken scattering relation. If the sign in the definition of the
distance difference functions is changed in (1), we come to distance
sum functions

D+
x (z1, z2) = d(z1, x) + d(z2, x), x ∈ M, z1, z2 ∈ N \M.(6)
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This function gives the length of the broken geodesic that is the union
of the shortest geodesics connecting z1 to x and the shortest geodesics
connecting x to z2. Also, the gradients of D+

x (z1, z2) with respect to
z1 and z2 give the velocity vectors of these geodesics. The functions
(6) appear in the study of the radiative transfer equation on manifold
(N, g), see [13, 45, 46, 47, 52]. Also, the inverse problem of determining
the manifold (M, g) from the broken geodesic data, consisting of the
initial and the final points and directions, and the total length, of the
broken geodesics, has been considered in [31].

2. Proof of the main result

2.0.1. Notations and basic facts on pre geodesics. When we are con-
cerning only one manifold, we use the shorthand notations M,N, F,
and g instead of ones with sub-indexes.

Let (N, g) be a compact and connected Riemannian n-manifold with-
out boundary and n ≥ 2. We assume that M ⊂ N is an open set of N
and set F = N \M is a compact manifold with smooth boundary. Sup-
pose that set F contains an open set and the we know the Riemannian
structure of manifold (F, g|F ).

We denote the Riemannian connection of the metric g as ∇. An unit
speed geodesic of (N, g) emanating from a point (p, ξ) ∈ SN is denoted
by γp,ξ(t) = expp(tξ). Here, SN = {(p, ξ) ∈ TN ; ∥ξ∥g = 1}. We use
a short hand notation Dt := ∇γ̇p,ξ(t) for the covariant differentiation in
the direction γ̇p,ξ for vector fields along geodesic γp,ξ.

Let p ∈ N and choose some smooth coordinates (U,X) at point p.
Denote the Cristoffel symbols of connection ∇ by Γk

i,j.
We say that a curve α([t1, t2]) is distance minimizing if the length

of this curve is equal to the distance of its end points α(t1) and α(t1).
Also, a geodesic that is distance minimizing is called a minimizing
geodesic.

We say that a curve α([t1, t2]) is a pre-geodesic, if α(t) is a C1-
smooth curve such that α̇(t) ̸= 0 on t ∈ [t1, t2], and α([t1, t2]) can be
re-parametrized so that it becomes a geodesic.

Let us next recall some properties of the pre-geodesics. Let us con-
sider a geodesic curve γ : R → N , satisfying in local coordinates the
equation

(7) Dtγ̇(t) =
d2γk

dt2
(t) + Γk

i,j(γ(t))
dγi

dt
(t)

dγj

dt
= 0, k ∈ {1, . . . , n}.

We need the following result, often credited to Levi-Civita [36] :

Lemma 2.1. Let κ : R → R be continuous and γ̃ : R → N be a
C2-curve that satisfies a local equation

(8)
d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

ds
(s) = κ(s)

dγ̃k

ds
(s), k ∈ {1, . . . , n}.
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Then there exists a change of parameters t : R → R satisfying

(9)
dt

ds
(s) = exp

( s∫

0

κ(τ)dτ
)
.

such that curve γ(s) := γ̃(t(s)) solves the geodesic equation (7).

Proof. The proof is a direct computation. !

Let us now consider a family of curves. Let f : TU → R be a
continuous function that satisfies

(10) f(av) = af(v), for all a ∈ R and v ∈ TU,

i.e., it is homogeneous of degree 1. Let Γ be a family of all such C2-
curves γ̃ : R → N in U that satisfy the equation

(11)
d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

ds
(s) = f

(dγ̃
ds

(s)
)dγ̃k

ds
(s).

By Lemma 2.1 each γ̃ ∈ Γ is a pre-geodesic of connection ∇. Thus
equations (7) and (11) are equivalent in the sense that curves satisfying
the latter one, for appropriate f , are also geodesics of metric g, but
parametrized in a different way.

The distance function of N is denoted by d(x, y) = dN(x, y) for
x, y ∈ N . Denote by ν the interior normal vector field of ∂M . The
boundary cut locus function is τ∂M : ∂M → R+,

(12) τ∂M(z) = sup{t > 0; d(γz,ν(t), ∂M) = t}.

Also, we use the cut locus function of N that is τ : TN → R+

(13) τ(x, ξ) = sup{t > 0; d(expx(tξ), x) = t}.

Functions τ∂M (z) and τ(x, ξ) are continuous and satisfy the inequality
(see Lemma 2.13 of [25])

τ(z, ν(z)) > τ∂M (z), z ∈ ∂M.(14)

2.1. Extension of data. In this subsection we prove Proposition 1.2.
Let z1, z2 ∈ ∂F = ∂M . Then using the triangular inequality and

that d(z1, z2) = Dz2(z1, z2) we see easily that

(15) d(z1, z2) = sup
x∈M

Dx(z1, z2).

Thus D(M) determines the distances of the boundary points, that is,
the function d|∂M×∂M : ∂M × ∂M → R.

Lemma 2.2. Suppose that (2)-(3) are valid. Then it holds that d1(w, z) =
d2(φ(w),φ(z)).
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Proof. Let w, z ∈ F1. Let γ be a minimizing unit speed geodesic in
N1 from z to w and denote S = γ([0, d1(w, z)]) ∩ ∂M1. When S = ∅,
the facts that φ∗g2 = g1 and that the path φ(γ) connects φ(z) to φ(w)
imply that d1(w, z) ≥ d2(φ(w),φ(z)).

Suppose that S ̸= ∅. Let e1, e2 ∈ S be such that

d1(w, e1) = min{d1(w, x) : x ∈ S} and d1(z, e2) = min{d1(z, x) : x ∈ S}.

As (2)-(3) is valid, the formula (15) implies that

d1(e1, e2) = d2(φ(e1),φ(e2)).

Since φ : F1 → F2 satisfies φ∗g2 = g1, it holds that

d1(w, z) = d1(w, e1) + d1(e1, e2) + d2(e2, z)
≥ d2(φ(w),φ(e1)) + d2(φ(e1),φ(e2)) + d2(φ(e2),φ(z))
≥ d2(φ(w),φ(z))

The claim follows by changing the roles of N1 and N2. !

Let us consider the case when x ∈ F1. Then, Lemma 2.2 implies
that for z1, z2 ∈ F1 we have

D1
x(z1, z2) = d1(x, z1)− d1(x, z2)

= d2(φ(x),φ(z1))− d2(φ(x),φ(z2))

= D2
φ(x)(φ(x),φ(z2)).

Hence,

{D1
x(·, ·) ; x ∈ F1} ⊂ {D2

y(φ(·),φ(·)) ; y ∈ F2}.(16)

Changing roles of N1 and N2 and considering φ−1 : F2 → F1 instead of
the diffeomorphism φ : F1 → F2, we see that in formula (16) we have
the equality. This and formula (3), together with Lemma 2.2, imply
Proposition 1.2. !

2.2. Manifolds N1 and N2 are homeomorphic. To simplify the
notations, we will next in our considerations omit the sub-indexes of
sets M1, N1, and F1 and just consider the sets M,N , and F .

Let x ∈ N and define a function Dx : F × F → R by a formula

Dx(z1, z2) = d(x, z1)− d(x, z2).

Let D : N → C(F ×F ) be defined as D(x) = Dx. We give the function
space C(F × F ) the Banach space structure with the sup-norm.

Theorem 2.3. Image D(N) ⊂ C(F × F ) is a topological manifold
homeomorphic to manifold N and especially D(M) is homeomorphic
to M .
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Proof. The proof consists of four short steps.

Step 1 First, we want to show that D is continuous. Let x, y ∈ N .
Using the triangular inequality we see that

∥Dx −Dy∥L∞(F×F ) = sup
z1,z2∈F

|Dx(z1, z2)−Dy(z1, z2)|

≤ sup
z1,z2∈F

|d(x, z1)− d(y, z1)|+ |d(x, z2)− d(y, z2)|(17)

≤ 2d(x, y).

Thus D is 2-Lipschitz and therefore continuous. Next we consider in-
jectivity of D.

x y

q
p

q̂ p̂

β

∂M

Figure 2. The setting in Step 2 in the proof of Theorem
2.3. We consider points x, y ∈ N and points p and q such
that p is on a distance minimizing geodesic from q to x.
Then this geodesic can be extended to a distance mini-
mizing geodesic from q to y. Similarly, the point p̂ is on
a distance minimizing geodesic from q̂ to x and this geo-
desic can be extended to a distance minimizing geodesic
from q̂ to y. Then the union of the (blue) geodesic from
q to x and the (red) geodesic β is a lenght minimizing
curve from q to y that is not a geodesic.

Step 2. Suppose that x, y ∈ N are such that Dx = Dy and x ̸= y.
Let q ∈ F int and denote ℓx = d(q, x) and ℓy = d(q, y). Next, without
loss of generality, we assume that ℓx ≤ ℓy. Also, let η ∈ SqN be such
that γq,η([0, ℓx]) is a minimizing geodesic from q to x. Let s1 > 0 be
such that s1 < min(ℓx, ℓy) and γq,η([0, s1]) ⊂ F int. Consider a point
p = γq,η(s) with s ∈ [0, s1]. Then we see that

(d(q, p) + d(p, y))− d(q, y) = d(q, p) +Dy(p, q)

= d(q, p) +Dx(p, q)

= (d(q, p) + d(p, x))− d(q, x) = 0

and hence p is on a minimizing geodesic from q to y.
Let us consider a minimizing geodesic α from p to y with the length

ℓy − s. Then the union of the geodesics γq,η([0, s]) and α is a distance
minimizing curve from q to y and thus this union is a geodesic. This
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implies that α is a continuation of the geodesics γq,η([0, s]) and hence
y = γq,η(ℓy). Summarizing, γq,η([0, ℓx]) and γq,η([0, ℓy]) are distance
minimizing geodesics from q to x and y, respectively. Since x ̸= y, we
have ℓx ̸= ℓy. Then, as we have assumed that ℓx ≤ ℓy, we see that
ℓx < ℓy.

Let q̂ ∈ F int be a point such that q̂ is not on the curve γq,η(R).
Clearly, such a point exists due to measure theoretic arguments. Let
ℓ̂x = d(q̂, x) and ℓ̂y = d(q̂, y). Also, let η̂ ∈ Sq̂N be such that
γq̂,η̂([0, ℓ̂x]) is minimizing geodesic from q̂ to x. As above, we see that
then γq̂,η̂([0, ℓ̂x]) and γq̂,η̂([0, ℓ̂y]) are distance minimizing geodesics from
q̂ to x and y, respectively. However, the geodesics γq,η(R) and γq̂,η̂(R)
do not coincide as point sets and hence the vectors γ̇q,η(ℓx) ∈ TxN and
γ̇q̂,η̂(ℓ̂x) ∈ TxN , are not parallel. Recall that ℓx < ℓy. In the case when
ℓ̂x < ℓ̂y, let β be the geodesic segment γq̂,η̂([ℓ̂x, ℓ̂y]) conneting x to y.
In the case when ℓ̂x > ℓ̂y, let β be the geodesic segment γq̂,η̂([ℓ̂y, ℓ̂x])
connecting x to y.

Then we see that the union of the paths γq,η([0, ℓx]) and β is a dis-
tance minimizing path from q to y. As the vectors γ̇q,η(ℓx) and γ̇q̂,η̂(ℓ̂x)
are not parallel, we see that the union of these curves is not a geo-
desic. This is contradiction and hence there are no x, y ∈ N such that
Dx = Dy and x ̸= y. Thus, D : N → C(F × F ) is an injection.

Step 3. So far we have proved the continuity and injectivity of
mapping D. Since the domain N of the mapping D is compact and
(C(F × F ), ∥ · ∥∞) is a Hausdorff space as a metric space, it holds by
basic results of topology that mapping D : N → D(N) is a homeomor-
phism.

Step 4. By assumption M ⊂ N is open and therefore mapping D :
M → D(M) is open. This proves that the mapping D : M → D(M) is
a homeomorphism. !

Define a mapping
(18) Φ : C(F2 × F2) → C(F1 × F1), Φ(f) = f ◦ (φ× φ).

Here f×g : X×X → Y×Y is defined as (f×g)(x1, x2) = (f(x1), g(x2)) ∈
Y × Y for mappings f, g : X → Y . Sometimes, to simplify the nota-
tions, we denote Dj = Dj , j = 1, 2, see Def. 1.1.

Theorem 2.4. Suppose that Riemannian manifolds (N1, g1) and (N2, g2)
are as in section 1.2 and the assumptions of the Proposition 1.2 are
valid. Then mapping
(19) Ψ := D−1

1 ◦ Φ ◦D2 : N2 → N1

is a homeomorphism. In addition it holds that Ψ−1|F1 = φ.

Proof. Due the Theorem 2.3 we only have to prove that mapping Φ
is a homeomorphism. Note that mapping Φ has an inverse mapping
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g )→ g ◦ (φ−1 × φ−1). Let (x, y) ∈ F1 × F1 and f, g ∈ C(F2 × F2) then
it follows

|(Φ(f)− Φ(g))(x, y)| = |f(φ(x),φ(y))− g(φ(x),φ(y))| ≤ ∥f − g∥∞.

This proves the continuity of Φ. A similar argument where φ is replaced
by φ−1 proves that mapping Φ is a homeomorphism.

Let x ∈ F1 and denote y = φ(x). Then

Ψ−1(x) = (D−1
2 ◦ Φ−1 ◦D1)(x) = D−1

2 (D1
x(φ

−1(·)× φ−1(·)))
(4)
= D−1

2 (D2
y) = y.

!
Remark 2.5. As the map D : M → D(M), x )→ Dx, is a homeomor-
phism, we see that for a dense set X ⊂ M we have

D(M) = cl(D(X)) = cl{Dx ; x ∈ X} ⊂ C((N \M)× (N \M))},

where the closure cl is taken with respect to the topology of C((N \
M) × (N \ M)). This means that the distance difference functions
corresponding to x in a dense set X determine the distance difference
functions corresponding to the points in the whole set M .

2.3. Manifolds N1 and N2 are diffeomorphic. Our next goal is to
construct such smooth atlases for manifolds Ni that homeomorphism
Ψ : N2 → N1 of Theorem 2.4 is a diffeomorphism.

Lemma 2.6. Let (E, ⟨·, ·⟩) be an inner product space of dimension n
and v ∈ E, v ̸= 0. Then there exists a basis v1, . . . , vn of E be such
that ∥vj∥ = 1 for all j and v = b1v1 + b2v2, bi ̸= ∥v∥2

⟨vi,v⟩ and bi ̸= 0.
Moreover, for such vectors there exists ε > 0 such that the vectors

v + tv1
∥v + tv1∥

− v

∥v∥ , . . . ,
v + tvn

∥v + tvn∥
− v

∥v∥
are linearly independent for any t ∈ (0, ϵ).

Proof. Let v⊥ ∈ E be such that

(20) ⟨v, v⊥⟩ = 0 and ∥v∥ = ∥v⊥∥.

We define

vi =
v + (−1)iv⊥√

2∥v∥
, i ∈ {1, 2}.

Choose bi = ∥v∥√
2
, i ∈ {1, 2} and complete the set {v1, v2} to be a basis

of E. This basis satisfies the first claim of the lemma.
Let us denote bi = 0 for i ∈ {3, . . . , n} so that v =

∑n
i=1 b

ivi. Define
functions fi : R → R, i ∈ {1, . . . , n} by

fi(t) := t∥v∥+ bi(∥v∥ − ∥tvi + v∥).
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By the choice of numbers bi we have

dfi
dt

(0) = ∥v∥ − bi
⟨vi, v⟩
∥v∥

̸= 0, for all i ∈ {1, . . . , n}.

This implies that there exists ϵ > 0 such that for all t ∈ (0, ϵ) and
i = 1, 2, . . . , n we have fi(t) ̸= 0.

Let t ∈ (0, ϵ) and let ai ∈ R, i ∈ {1, . . . , n} be such that

0 =
n∑

i=1

ai
( v + tvi
∥v + tvi∥

− v

∥v∥

)
=

n∑

i=1

ai
( t + bi

∥v + tvi∥
− bi

∥v∥

)
vi.(21)

We are done, if we can show that equation (21) implies that ai = 0 for
every i ∈ {1, . . . , n}. Since (vi)ni=i is a basis it holds by (21) that each
product ai

(
t+bi

∥v+tvi∥ −
bi

∥v∥

)
= 0. For the latter term the following holds.

( t+ bi

∥v + tvi∥
− bi

∥v∥

)
= 0

if and only if

(22) fi(t) = 0.

By the choice of ϵ the equation (22) is not valid. Therefore ai = 0 for
every i ∈ {1, . . . , n}. The claim is proved. !

Lemma 2.7. Let (N, g) be a compact Riemannian manifold of dimen-
sion n, x ∈ N and ξ ∈ TxN , ∥ξ∥g = 1. Let γx,ξ : [0, ℓ] → N be
a distance minimizing geodesic. Let 0 < h < ℓ, z = γx,ξ(h), and
θ = γ̇x,ξ(h) ∈ TzN . Then there exists a basis {ηi : i = 1, 2, . . . ,n}
of TzN and ϵ > 0 such that for all s ∈ (0, ε) there is a neighborhood
W ⊂ N of x such that the function

H : W → Rn, H(y) = (d(y, zi)− d(y, z))ni=1, zi = γz,ηi(s)

is a smooth coordinate mapping.

x

W

M

z

z1

z2
γx,ξ

Figure 3. A schematic picture of the coordinate system H.
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Proof. Since the geodesic γx,ξ([0, ℓ]) is distance minimizing, the geo-
desic segment γx,ξ([0, h]) from x to z has no cut points. Moreover,
there exist neighborhoods Ux and Uz of x and z such that the mapping
(p, q) )→ d(p, q) is smooth on Ux × Uz. As the geodesic γx,ξ([0, h]) has
no cut points, the differential of expx at v := hξ ∈ TxN is invertible.
Choose vectors v1, v2 ∈ TxN as in Lemma 2.6 and let (vi)ni=1 be a basis
of TxN . By Lemma 2.6 there exists δ > 0 such that for all t ∈ (0, δ)
the vectors

v + tv1
∥v + tv1∥

− v

∥v∥ , . . . ,
v + tvn

∥v + tvn∥
− v

∥v∥
are linearly independent. We define vectors

ηi = D(expx)|vvi, i = 1, 2, . . . , n.

Notice that this is a basis of TzN . Consider curves ci(t) := exp−1
x (γz,ηi(t))

in tangent space TxN . These curves have the following properties
(23)

ci(0) = v and ċ(0) =
d

dt
(exp−1

x (γz,ηi(t)))|t=0 = D(exp−1
x )|zηi = vi.

Next we will show that there exists ϵ > 0 such that for each 0 < t < ϵ
the vectors { ci(t)

∥ci(t)∥ − v
∥v∥ : i = 1, . . . , n} are linearly independent. By

equation (23) it follows that for each i = 1, . . . , n the curves

t )→ ci(t)

∥ci(t)∥
− v

∥v∥ and t )→ v + tvi
∥v + tvi∥

− v

∥v∥
have the same initial point and velocity. Since vectors { v+tvi

∥v+tvi∥ −
v

∥v∥ :

i = 1, . . . , n} are linearly independent for each 0 < t < δ the sought
ϵ ∈ (0, δ) exists by the Taylor expansion of t )→ ci(t)

∥ci(t)∥ −
v

∥v∥ .
By the preparations made above, it holds for all s ∈ (0, ϵ) that

gradients

∇(d(·, zi)− d(·, z))|x =
ci(s)

∥ci(s)∥
− v

∥v∥
are linearly independent, where zi := expx(ci(s)) = γz,ηi(s) ∈ Uz. Then
due to the Inverse function theorem it follows that there exists such a
neighborhood W of x that function

H : W → Rn, H(y) = (d(y, zi)− d(y, z))ni=1

is a smooth coordinate mapping. !
Next we consider the homeomorphism Ψ : N2 → N1 of Theorem 2.4.

Theorem 2.8. Suppose that Riemannian manifolds (N1, g1) and (N2, g2)
are as in section 1.2 and Proposition 1.2 is valid. Then mapping
Ψ : N2 → N1 of formula (19), is a diffeomorphism.

Proof. Note that for any p ∈ N2 and all q, r ∈ F2 holds
D2

p(q, r) = D1
Ψ(p)(Ψ(q),Ψ(r)).
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Let x ∈ N2, y ∈ F int
2 and denote x̃ = Ψ(x) and ỹ = Ψ(y). Let

h ∈ (0, d2(x, y)) be such that z := γx,ξ2(h) ∈ F int
2 and γx,ξ2([0, h]) ⊂

F int
2 , where γx,ξ2 is a minimizing unit speed geodesic from x to y and

z̃(h) = Ψ(z(h)) ∈ F int
1 . Note that by the choice of z it holds that it is

not a cut point of x on curve γx,ξ2. Therefore mapping p )→ D2
p(r, q) is

smooth, if p is close to x and r, q are close to z. Since
D2

x(y, z) = D1
x̃(ỹ, z̃), d2(z, y) ≥ d1(z̃, ỹ) and d2(x, y) = d2(x, z)+d2(z, y),

we deduce using the triangle inequality that
d1(x̃, ỹ) = d1(x̃, z̃) + d1(z̃, ỹ).

Therefore there exists an unit speed distance minimizing geodesic γx̃,ξ1
from x̃ to ỹ that also goes trough z̃. Therefore mapping p̃ )→ D1

p̃(r̃, q̃)
is smooth, when p̃ is close to x̃ and r̃, q̃ are close to z̃

Let us denote h̃ = d1(x̃, z̃). Let v = hξ2 ∈ TxN2 and θ = γ̇x,ξ2(h) ∈
TzN2. Note that assumptions of Lemma 2.7 are valid for x, h and γx,ξ2.
By data (1.2) it holds that φ−1 : F int

2 → F int
1 is such a diffeomorphism

that g1 = (φ−1)∗g2. Therefore it holds that (φ−1)∗θ = γ̇x̃,ξ1(h̃) ∈ Tz̃N1

and it also holds that
(24) Aξ2 := D(exp−1

x̃ )|z̃ ◦ (φ−1)∗ ◦D(expx)|vξ2 = ξ1.

Let v⊥ ∈ TxN2 be as in formula (20). By [12], formula (II.7.2)
D(expx)|vv⊥ = D(expx)|hξ2v⊥ = h−1J(h).

where J is a Jacobi field along γx,ξ2 satisfying the following initial con-
ditions

J(0) = 0 and ∇tJ(0) = v⊥.

Since by [39], formula (10.6) it holds that J is orthogonal to γ̇x,ξ, we
conclude that ⟨Av⊥, ξ1⟩g1 = 0. We denote ṽ := h̃ξ1. Let vectors
vi :=

v+(−1)iv⊥√
2h

for i ∈ {1, 2}, c.f. the proof of 2.6. Then

ṽ =
h̃√
2
(Av1 + Av2) and

∥ṽ∥21
⟨ṽ, Avi⟩1

=
√
2 h̃.

Thus we can find bases (vi)n1=1 ⊂ TxN2 and (ṽi)ni=1 ⊂ Tx̃N1 as de-
scribed in Lemma 2.6.

Let ηi := D(expx)|vvi. Hence by Lemma 2.7 there exists ϵ > 0
such that for any s ∈ (0, ϵ) mapping H(p) := (D2

p(zi, z))
n
i=1, zi :=

γz,ηi(s) ∈ F int
2 is a smooth coordinate mapping in a neighbourhood

of x. Moreover, if ϵ is small enough, then points z̃i := φ(zi) ∈ F int
1

are close enough to z̃ that H̃(q̃) := (D1
q̃(z̃i, z̃))

n
i=1 is smooth near x̃.

Notice also that z̃i = γz̃,η̃i(s) = φ−1(γz,ηi(s)), where η̃i = (φ−1)∗ηi.
Thus Lemma 2.7 implies that when ε is small enough, then also H̃ is
a smooth coordinate mapping in some neighborhood W̃ of x̃. Thus we
have shown that

H̃ ◦Ψ ◦H−1 = Id,
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in some neighborhood of x. Since the point x ∈ N2 was an arbitrary
one and also H and H̃ are smooth coordinate mappings for x and x̃ we
have proved that Ψ is a diffeomorphism.

!
2.4. Riemannian metrics g1 and Ψ∗g2 coincide in N1. In this sec-
tion we will show that manifolds (N1, g1) and (N2, g2) that give the
data (2)-(3), are isometric.

Definition 2.9. Let z1 ∈ F and ξ ∈ Sz1N . Define a set
ω(z1, ξ) := {x ∈ N ; ∃z2 ∈ F such that Dx(·, z2) is C1-smooth,

near z1 and ∇Dx(·, z2)|z1 = ξ} ∪ {z1}.(25)

Lemma 2.10. Let z1 ∈ F and ξ ∈ Sz1N . Then it follows
ω(z1, ξ) = γz1,−ξ({s ; 0 ≤ s < τ(z1,−ξ)}),(26)

This means that using data (4) we can see the unparametrized geodesics
of N .

Proof. First we recall that for all x ∈ N the distance function d(·, x)
is not smooth near y ∈ N \ {x} if and only if point y is in a cut locus
of x. This holds due Lemma 2.1.11 and Theorem 2.1.14 of [26]. The
Lemma 2.1.11 of [26] states that every cut point is either a conjugate
point or an ordinary cut point. Being an ordinary cut point means
that there exist two different distance minimizing unit speed geodesics
from x to y. Therefore the gradient of distance function d(·, x) is not
continuous at ordinary cut points. The Theorem 2.1.14 of [26] states
that the complement of the cut locus of x is the maximal open set
with property that each y in this set can be joined to x with exactly
one unit speed distance minimizing geodesic. Therefore any conjugate
point that is not an ordinary cut point is a cluster point of ordinary
cut points.

If x ∈ ω(z1, ξ) \ {z1}, it follows that x is not in a cut locus of z1,
since by the definition of ω(z1, ξ) distance function d(·, x) is smooth
near z1. Therefore there exists an unique distance minimizing unit
speed geodesic from x to z1. Since this geodesic has a velocity

∇d(·, x)|z1 = ∇Dx(·, z2)|z1 = ξ

at z1, it follows that x ∈ γz1,−ξ({s ; 0 ≤ s < τ(z1,−ξ)}).
If x ∈ γz1,−ξ({s ; 0 ≤ s < τ(z1,−ξ)}) \ {z1} we know that Dx(·, z1)

is smooth near z1 and
∇Dx(·, z1)|z1 = ∇d(·, x)|z1 = γ̇(d(x, z1)) = −γ̇z1,−ξ(0) = ξ.

Here γ stands for an unique distance minimizing unit speed geodesic
from x to z1. !

The Lemma 2.10 will be the key element to prove that the mapping
Ψ is an isometry.
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Definition 2.11. Let N be a smooth manifold with metric tensors g
and g̃. We say that metrics g and g̃ are geodesically equivalent, if for
all geodesics γ : I1 → N of metric g and γ̃ : Ĩ1 → N of metric g̃ there
exist changes of parameters α : I2 → I1 and α̃ : Ĩ2 → Ĩ1 such that

γ ◦ α is a geodesic of metric g̃

and
γ̃ ◦ α̃ is a geodesic of metric g.

A trivial example of two geodesically equivalent Riemannian metrics
are g and cg, where c > 0. Couple more interesting examples are:

(1) Plane R2 and the Southern hemisphere of the Riemann sphere
that are mapped to each other in a gnomonic projection. I.e.
great circles are mapped to straight line.

(2) Unit disc in R2 and the Beltrami-Klein model of a hyperbolic
plane.

Our first goal is to show that from our data (2)-(3) we can deduce
that manifolds (N1, g1) and (Ψ(N2),Ψ∗g2) must be geodesically equiva-
lent. By Lemma 2.10 we know all the geodesics of N1 that exit unknown
region M1, as point sets. Next we will show that this information is
enough to deduce the geodesic equivalence of manifolds.

Since mapping Ψ is diffeomorphism, it holds that each geodesic of
(N2, g2) is mapped to some smooth curve of (N1, g1). By formula (4)
and Lemma 2.10, it holds that sets ω(z, ξ) with z ∈ F1 and ξ ∈ SzN1

are also images of geodesics of (N2, g2) in mapping Ψ. Note that the
segments of geodesics of N1 we know as non-parametrized curves are
not self-intersecting, since cut points occur before a geodesic stops to
be one-to-one.

Let z ∈ F2, ξ ∈ SzN2 and t2 = τ2(z, ξ). Then curve Ψ(γ2
z,ξ(t)) :

[0, t2) → N1 is smooth and not self-intersecting and by Proposition 1.2
and Theorem 2.4 we have

Ψ(γ2
z,ξ([0, t2)) = ω(Ψ(z),Ψ∗(ξ)) = ω(φ−1(z), (φ−1)∗ξ).

Set φ−1(z) = w and (φ−1)∗ξ = η. Then by Lemma 2.10 we have
ω(w, η) = γ1

w,−η({s; 0 ≤ s < t1}), t1 = τ1(w,−η). Furthermore, it is
easy to see that there is a re-parametrization

(27) s : [0, t1) → [0, t2) such that γ1
w,−η(t) = Ψ(γ2

z,ξ(s(t))), t ∈ [0, t1).

Let a < b and define a collection Ca,b of geodesics of (N1, g1) as

Ca,b = {c : [a, b) → N1 ; c is a geodesic, there exists z ∈ F int
1

and ξ ∈ TzN1 such that c([a, b)) = ω(z, ξ)}.
Observe that here c([a, b)) = ω(z, ξ) means that the sets c([a, b)) ⊂ N
and ω(z, ξ) ⊂ N are the same, or equivalently, that c([a, b)) and ω(z, ξ)
are the same as unparametrized curves.
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Let
C =

⋃

a<b

Ca,b.

For a moment we consider only metric g1. Assume that p is a point
in N1 and q is point of F int

1 such that q = γp,ξ(ℓ), ℓ > 0 and the geodesic
γp,ξ([0, ℓ]) has no cut points. Then there is a neighborhood U ⊂ F int

1

of q and a neighborhood V ⊂ TpN of ℓξ such that expp : V → U is a
diffeomorphism. Assuming that the neighborhood V is small enough,
we see that for any v ∈ V the geodesics γp,v([0, ℓ]) has no cut points.
Then, γ1

p,v([0, ℓ)) ∈ C. This proves that set

Ωp := {v ∈ TpN1 ; there are c ∈ C and tp ∈ dom(c) such that
c(tp) = p and ċ(tp) is proportional to v}

contains a non-empty open double cone Σp, that is, an open set that
satisfies rv ∈ Σp for all v ∈ Σp and r ∈ R \ {0}. Note that the
complement of Ωp in TpN1 is non-empty if in manifold M there are
closed geodesics, or geodesics that are trapping in both directions, that
go through the point p.

M1

Σp

Figure 4. For all p ∈ M1 there exists an open conic
set Σp ⊂ TpN1 such that for every ξ ∈ Σp the geodesic
γp,ξ of (N1, g1) can be extended to a distance minimizing
geodesic (blue curve in the figure) that enters the set F =
N \M . These geodesics are known to be pregeodesic also
with respect to the metric Ψ∗g2. Note that there may be
g1-geodesics emanating from p to directions ξ ̸∈ Σp that
does not intersect the set F . Such geodesics can be e.g.
closed loops in M1 (red curve).

Let point p ∈ N1 and (U,X) be coordinates near p, that is X : U →
Rn and denote X(q) = (xj(q))nj=1. Recall that a pre-geodesic γ̃ on
(N1, g1) satisfies the formula (11) that is,

[d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

ds
(s)

]∣∣∣
s=sp

= f
(dγ̃
ds

)dγ̃k

ds
(s)

∣∣∣
s=sp

,
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k ∈ {1, . . . , n}. Here γ(sp) = p and f is some function that is homo-
geneous of degree 1.

Next, we change the point of view and consider this equation as a
system of equations for the “unknown” (Γ, f) with the given coefficients
dγ̃
ds (s)|s=sp ∈ Ωp and d2γ̃

ds2 (s)|s=sp where γ̃ ∈ C. Here Γ stands for a
collection of Cristoffel symbols Γk

i,j and f : TU → R is a continuous
function that satisfies equation (10).

Suppose that we also have another Riemannian connection Γ̃k
i,j which

Critoffel symbols in the (U,X)-coordinates have the form

(28) Γ̃k
i,j = Γk

i,j + δki ϕj + δkjϕi,

for some smooth functions ϕi : U → R, i = 1, 2, . . . , n. Here, δki
is one when k = i and zero otherwise. Let ϕ(x) = ϕi(x)dxi be a
smooth 1-form that has functions (ϕi)ni=1 as the coefficients. We need
the following consequence of Lemma 2.1:

Lemma 2.12. If the Christoffel symbols Γ̃ and Γ satisfy the equation
(28) for some 1-form ϕ and pair (f,Γ), f is homogenous of degree 1,
is a solution of (11) for all γ̃ ∈ C, then pair (Γ̃, f̃) where

(29) f̃(v) = f(v) + 2ϕ(v).

is also a solution of (11) for all γ̃ ∈ C.

Proof. Let γ̃ ∈ C. A direct computation shows that

(30)
(δki ϕj + δkjϕi)

dγ̃i

ds (s)
dγ̃j

ds (s) = ϕj
dγ̃k

ds (s)
dγ̃j

ds (s) + ϕi
dγ̃i

ds (s)
dγ̃k

ds (s)

= 2dγ̃k

ds (s)
(
ϕi

dγ̃i

ds (s)
)
= 2dγ̃k

ds (s)ϕ
(

dγ̃
ds (s)

)

Use this and substitute equation (28) into equation (11) to obtain

d2γ̃k

ds2
(s)+Γ̃k

i,j(p)
dγ̃i

ds
(s)

dγ̃j

ds
(s)

∣∣∣∣
s=sp

=
dγ̃k

ds
(s)

[
f
(dγ̃
ds

(s)
)
+2ϕ

(dγ̃
ds

(s)
)]∣∣∣∣

s=sp

that proves the claim. !
The following lemma gives the converse result for Lemma 2.12. It is

obtained by using, in a quite straightforward way, results of V. Matveev
[44, Sec. 2] for general affine connections on pseudo-Riemannian man-
ifolds. However, for the convenience of the reader, we give a detailed
proof for the lemma and analyze at the same time the smoothness of
the 1-form x )→ ϕ(x) in a local coordinate neighbourhood U ⊂ M .

Lemma 2.13. Let functions f : TU → R and f̃ : TU → R be homoge-
neous of degree 1. Suppose that pairs (f,Γ) and (Γ̃, f̃) both solve at all
points p ∈ U the system (11) for all such coefficients dγ

ds (s)|s=sp ∈ Ωp

and d2γ
ds2 (s)|s=sp that γ ∈ C and γ(sp) = p. Then Cristoffel symbols Γ

and Γ̃ satisfy equation (28) in U with a C∞-smooth 1-form ϕ in U .
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Proof. Define a pair (f,Γ) as

f = f − f̃ and Γ
k
i,j = Γk

i,j − Γ̃k
i,j .

As a difference of two connection coefficients, Γ is a tensor. By substi-
tution of pairs (f,Γ) and (Γ̃, f̃) into equation (11) and by subtracting
the obtained equation from the other, we obtain at p ∈ U

(31) Γ
k
i,jv

ivj = f(v)vk, for every v ∈ Ωp.

Note that (31) defines a smooth extension of f |Ωp to TpN \ {0}, given
by

(32) f(v) =
f(v)vkgkℓvℓ

g(v, v)
=

Γ
k
i,j(p)v

ivjgkℓ(p)vℓ

gab(p)vavb
.

Here, the rightmost term is smooth in TpN \ {0}.
Recall that Ωp contains an open double cone Σp ⊂ Ωp. Our next

goal is to show that there exist a linear function ϕ : TpN → R such
that the restriction of function f , to Σp ⊂ Ωp, is equal to 2ϕ|Σp. Define
a family of symmetric bi-linear mappings

σk : TpN × TpN → R, σk(u, v) = Γ
k
i,jv

iuj, k ∈ {1, . . . , n}.

Since mappings σk are symmetric, the parallelogram equation

0 = σk(u+ v, u+ v) + σk(u− v, u− v)− 2σk(u, u)− 2σk(v, v)

holds.
Next, let u ∈ Σp, u ̸= 0. Then there is ε = ε(u) > 0 such that, if

v ∈ TpN satifies ∥v∥ < ε, then u− v ∈ Σp.
Let us next consider v ∈ Σp with ∥v∥ < ε. Then u− v, u+ v ∈ Σp ⊂

Ωp. By the parallelogram equality of mapping σk and (31) we have
(33)

0 = f(u+ v)(u+ v) + f(u− v)(u− v)− 2f(u)u− 2f(v)v
= (f(u+ v) + f(u− v)− 2f(u))u+ (f(u+ v)− f(u− v)− 2f(v))v.

If vectors u and v are linearly independent, we get a system

(34)
{

f(u+ v) + f(u− v)− 2f(u) = 0
f(u+ v)− f(u− v)− 2f(v) = 0.

Sum up these two equations to get

(35) f(u+ v) = f(u) + f(v).

If vector v = λu, λ ∈ R, we note that the system (34) is still valid. Re-
call that the mappings f and f̃ are solutions of (11) and therefore they
satisfy the equation (10), i.e., they commute with scalar multiplication
in Ωp.
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So far we have proved that f(u + ·) and f(u) + f(·) coincide in set
Bp(0, ϵ)∩Σp. Since f is homogeneous of degree 1 it holds by (35) that

(36) f(u+ av) = f(u) + af(v), v ∈ Bp(0, ϵ) ∩ Σp, −1 < a < 1.

We define a linear function

2ϕ : TpN → R, 2ϕ(v) = lim
r→0

f(u+ rv)− f(u)

r
= ∇uf(u) · v.(37)

If v ∈ Σp and r is small enough, then rv ∈ Bp(0, ε) ∩ Σp and therefore
by formula (36) it holds that

2ϕ(v) = f(v) for every v ∈ Σp.

As Σp is open, and ϕ and f are linear, this holds for all v ∈ TpN and
thus ϕ(v) given by the formula (37) is independent on the choice of
used u ∈ Σp. In local coordinates we have

ϕ(
∂

∂xℓ
) =

1

2

n∑

i,k,j=1

1

gℓℓ(x)
Γ
k
i,j(x)δ

i
ℓδ

j
ℓgkℓ(x).

This defines a C∞-smooth 1-form x )→ ϕ(x) in U .
Define a connection

Γ̂k
i,j := Γ̃k

i,j + δki ϕj + δkjϕi,

and choose v = d
dsγ(s)|s=sp ∈ Σp. Since pairs (f,Γ) and (Γ̃, f̃) are both

solutions of (11) the following holds due the reasoning done so far
[d2γk

ds2
(s) + Γ̃k

i,j(p)
dγi

ds
(s)

dγj

ds
(s)

]∣∣∣
s=sp

=
[
f
(dγ
ds

(s)
)dγk

ds
(s)

]∣∣∣
s=sp

=
dγk

ds
(s)

[
2ϕ

(dγ
ds

(s)
)
+ f̃

(dγ
ds

(s)
)]∣∣∣

s=sp

=
[d2γk

ds2
(s) + Γ̃k

i,j(p)
dγi

ds
(s)

dγj

ds
(s)

]∣∣∣
s=sp

+
dγk

ds
(s)

[
2ϕ

(dγ
ds

(s)
)]∣∣∣

s=sp

(30)
=

[d2γk

ds2
(s) + Γ̂k

i,j(p)
dγi

ds
(s)

dγj

ds
(s)

]∣∣∣
s=sp

.

Therefore we have

(38) Γk
i,j(p)

dγi

ds
(s)

dγj

ds
(s)

∣∣∣
s=sp

= Γ̂k
i,j(p)

dγi

ds
(s)

dγj

ds
(s)

∣∣∣
s=sp

.

Thus we have proved that for all v ∈ Σp the equation

(39) Γk
i,j(p)v

ivj = Γ̂k
i,j(p)v

ivj

is valid. Since set Σp is open, it holds that

Γk
ℓ,m(p) = ∂vℓvmΓ

k
i,j(p)v

ivj = ∂vℓvmΓ̂
k
i,j(p)v

ivj = Γ̂k
ℓ,m(p).

As above p ∈ U is arbitrary, this proves the claim. !
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Proposition 2.14. Suppose that Riemannian manifolds (N1, g1) and
(N2, g2) are as in Section 1.2 and (2)-(3) are valid. Let p ∈ N1 and
(U,X) be coordinates for p. Then it holds that the Cristoffel symbols Γ
and Γ̃ of metrics g1 and Ψ∗g2, respectively, satisfy equation (28) in U
with some 1-form ϕ, where Ψ is as in (19).

Proof. Let p ∈ N1 and (U,X) be coordinates for p. Let c1 ∈ C be a
curve that passes through p. By definition of C and equation (27) it
holds that there is a reparametrization s of c1 such that for curves c1
and c2 = c1 ◦ s holds

{
c̈1(t) + ċi1(t)ċ

j
1(t)Γ

k
i,j(c1(t)) = 0

c̈k2(t) + ċi2(t)ċ
j
2(t)Γ̃

k
i,j(c2(t)) = 0

Use the chain rule and write the latter equation as

c̈k1(t) + ċi1(t)ċ
j
1(t)Γ̃

k
i,j(c1(s(t))) = − s̈(t)

ṡ(t)2
ċk1(t).

Define a mapping f : TU → R by setting for (q, v) ∈ TU , with v ̸= 0,

f(q, v) = − s̈(0)

ṡ(0)2
,

where s(t) is a re-parametrization of the geodesic for which we have
γ1
q,v(t) = Ψ(γ2

φ−1(q),Ψ∗v(s(t))), so that s(0) = 0. Also, we define f(q, v)|v=0 =
0. Note that function f satisfies the equation (10), since geodesic equa-
tion (7) is preserved under affine re-parametrizations. Therefore it
holds that pairs (Γ, 0) and (Γ̃, f) both solve the system (11) for all such
coefficients dγ

ds (s)|s=sp ∈ Ωp and d2γ
ds2 (s)|s=sp that γ ∈ C and γ(sp) = p.

By the Lemma 2.13 the claim follows. !
Lemma 2.15. Suppose that Γ and Γ̃ are connections satisfying the
equation (28) with 1-form ϕ. If t )→ γ(t), γ ∈ C is a geodesic of con-
nection Γ, then there exists a change of parameters s )→ t(s) such that
s )→ γ(t(s)) is a geodesic of Γ̃, hence metrics g and g̃ are geodesically
equivalent.

Proof. Since γ is a geodesic of Γ it satisfies the geodesic equation (7).
Substitute Γ with Γ̃ into (7) to get the equation

d2γk

dt2
(t) + Γ̃k

i,j(γ(t))
dγi

dt
(t)

dγj

dt
(t) = 2

dγk

dt
(t)ϕ

(dγ
dt

(t)
)
.

Write κ(t) = 2ϕ(γ̇(t)) and use Lemma 2.1 to show that appropriate
s )→ t(s) exists. !

By the Lemma 2.15, we know that our data (2)-(3) proves the geo-
desic equivalence of metrics g and Ψ∗g2 on N1. In the following theorem
that shows that metrics g and Ψ∗g2 coincide also in N1, we will use the
implications of the Matveev-Topalov theorem [41]. Their result is also
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concerned in the appendix of the extended preprint version of this pa-
per [35] and its generalizations have been considered in [11, 61].

Lemma 2.16. Suppose that manifold N satisfies assumptions of Sec-
tion 1.2 and it has two metrics g and g̃. Suppose that these metrics
are geodesically equivalent on manifold N and coincide in set F int ̸= ∅.
Then g = g̃ in whole N .

Proof. Define a smooth mapping I0 : TN → R as

(40) I0((x, v)) =
(det(gx)

det(g̃x)

) 2
n+1

g̃x(v, v),

where g̃x(v, v) = g̃jk(x)vjvk. Note that the function x )→ det(gx)
det(g̃x) is

coordinate invariant.
Let γg be a geodesic of metric g. Define a smooth path β in TN as

β(t) = (γg(t), γ̇g(t)). Then β is an integral curve of the geodesic flow of
metric g. The Matveev-Topalov theorem [41] states that if g and g̃ are
geodesically equivalent, then there are several invariants related to the
tensor G = g−1g̃ik, given in local coordinates by Gj

k(x) = gji(x)g̃ik(x),
that are constants along integral curves β(t). In particular, the function
t )→ I0(β(t)) is a constant.

A corollary of this theorem, [41, Cor. 2] (see also [42, Cor. 2] and [11,
Thm. 3]), is that the number n(x) of the different eigenvalues of the
map G(x) : TxN → TxN is constant at almost every point x ∈ N . Since
G(x) = I for x ∈ F int, so that n(x) = 0 in the set F int having a positive
measure. This implies that n(x) = 0 for almost all x ∈ N . Hence for
almost all x ∈ N there is c(x) ∈ R+ such that we have G(x) = c(x)I, so
that g̃ik(x) = c(x)gik(x). As G is continuous, this holds for all x ∈ N .
Summarising, the first implication of the Matveev-Topalov theorem is
that g and g̃ are conformal on the whole manifold N .

Let x0 be a point of N . Since we assumed that metrics g and g̃
coincide in set F , we have for any point z ∈ F and vector v ∈ TzN
that formula (40) has form

(41) I0(z, v) = g̃z(v, v) = gz(v, v).

Let γ(t) := γg
z,ξ(t), ξ ∈ SzN, z ∈ F be a g-geodesic passing through x0,

that is x0 = γ(t0), for some t0. In particular we see that I0((z, ξ)) = 1.
By the Matveev-Topalov theorem, I0 is constant along the integral
curves of geodesic flow of g. Thus, we have

(42) I0(x0, γ̇(t0)) = I0(z, ξ) = 1.

Define Wx0 to be the set of all unit vectors of Tx0N with respect to
metric g, such that every vector in Wx0 is a velocity of some geodesic
starting from F and passing trough x0. Recall that set W int

x0
⊂ Sx0N

is not empty.
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Let X = (x1, . . . , xn) be any coordinate chart at x0. Formula (42)
shows that for every ξ ∈ Wx0 we have

(43) gij(x0)ξ
iξj = 1 = I0(x0, ξ) =

(det(gx0)

det(g̃x0)

) 2
n+1

g̃ij(x0)ξ
iξj.

Consider an open cone
W int

x0
· R+ := {tw ∈ Tx0N : t > 0, w ∈ W int

x0
}.

Since metrics are bilinear, we know that equation (43) holds for any
vector ξ ∈ W int

x0
· R+. Since set W int

x0
· R+ is open and both sides of

equation (43) are smooth in ξ, we obtain the equation

(44) gij(x0) =
(det(gx0)

det(g̃x0)

) 2
n+1

g̃ij(x0), for all i, j ∈ {1, . . . , n},

as a second order derivative with respect to ξ of equation (43).
Let f(p) := det(g(p))

det(g̃(p)) . With given notations we have shown that

(45) (f(x0))
2

n+1 g̃jk(x0) = gjk(x0), for all j, k ∈ {1, . . . , n}.
We see from equation (45) that

(f(x0))
2n
n+1 det(g̃) = det(g).

Therefore it holds
(46) (f(x0))

2n
n+1−1 = 1.

Since we assumed the dimension of manifold N to be at least 2 we see
from equation (46) that f(x0) = 1. By formula (45) this implies g = g̃
also on M . !

Theorem 1.3 follows now from Theorems 2.4 and 2.8 and Lemmas
2.15 and 2.16. !

3. Application for an inverse problem for a wave
equation

Here we consider the application of Theorem 1.3 for an inverse prob-
lem for a wave equation with spontaneous point sources.

3.0.1. Support sets of waves produced by point sources. Let (N, g) be a
closed Riemannian manifold. Denote the Laplace-Beltrami operator of
metric g by ∆g. We consider a wave equation

(47)
{

(∂2
t −∆g)G(·, ·, y, s) = κ(y, s)δy,s(·, ·), in N

G(x, t, y, s) = 0, for t < s, x ∈ N.

where N = N × R is the space-time. The solution G(x, t, y, s) is the
wave produced by a point source located at the point y ∈ M and
time s ∈ R having the magnitude κ(y, s) ∈ R \ {0}. Above, we have
δy,s(x, t) = δy(x)δs(t) corresponds to a point source at (y, s) ∈ N .
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3.0.2. Inverse coefficient problem with spontaneous point source data.
Assume that there are two manifolds (N1, g1) and (N2, g2) satisfying
the assumptions given in Section 1.2 and

There exists an isometry φ : F1 → F2(48)
W1 = W2(49)

where W1 and W2 are collections of supports of waves produced by
point sources taking place at unknown points at unknown time, that
is,
W1 = {supp (G1(·, ·, y1, s1)) ∩ (F1 × R); y1 ∈ M1, s1 ∈ R} ⊂ 2F1×R

and
W2 = {supp (G2(φ(·), ·, y2, s2)) ∩ (F1 × R); y2 ∈ M2, s2 ∈ R} ⊂ 2F1×R

where functions Gj, j = {1, 2} solve equation (47) on manifold Nj .
Here 2Fj×R = {F ′; F ′ ⊂ Fj × R} is the power set of Fj × R. Roughly
speaking, Wj corresponds to the data that one makes by observing, in
the set Fj , the waves that are produced by spontaneous point sources
that that go off, at an unknown time and at an unknown location, in
the set Mj .

Earlier, the inverse problem for the sources that are delta-distributions
in time and localized also in the space has been studied in [15] in the
case when the metric g is known. Theorem 1.3 yields the following
result telling that the metric g can be determined when a large number
of waves produced by the point sources is observed:

Proposition 3.1. Let (Nj , gj), j = 1, 2 be a closed compact Rie-
mannian n-manifolds, n ≥ 2 and Mj ⊂ Nj be an open set such
that Fj = Nj \Mj have non-empty interior. If the spontanuous point
source data of these manifolds coincide, that is, we have (48)-(49), then
(N1, g1) and (N2, g2) are isometric.

Proof. Let us again omit the sub-indexes of N,M , and F . For y ∈ M ,
s ∈ R, and z ∈ F we define a number

Ty,s(z) = sup{t ∈ R; the point (z, t) has a neighborhood
U ⊂ N such that G(·, ·, y, s)|U = 0}

which tells us, what is the first time when the wave G(·, ·, y, s) is ob-
served near the point z. Using the finite velocity of the wave prop-
agation for the wave equation, see [19], we see that the support of
G(·, ·, y, s) is contained in the future light cone of the point q = (y, s) ∈
N given by

J+(q) = {(y′, s′) ∈ N ; s′ ≥ d(y′, y) + s}.
Next, for ξ = ξj ∂

∂xj ∈ TyN we denote the corresponding co-vector by
ξ♭ = gjk(y)ξjdxj. Then the results of [17] and [18] on the propagation of
singularities for the real principal type operators, in particular for the
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wave operator, imply that in the set N\{q} Green’s function G(·, ·, y, s)
is a Lagrangian distribution associated to the Lagranian sub-manifold

Σ0 = {(γy,η(t), s+ t; γ̇y,η(t)
♭, dt) ∈ T ∗N ; η ∈ SyN, t > 0}

and its principal symbol on Σ0 is non-zero. In particular, [18, Prop.
2.1] implies that Σ = Σ0 ∪ (T ∗

q M \ {0} coincides with the wave front
set WF(u) of the solution u = G(·, ·, y, s). This means that a wave
emanating from a point source (y, s) propagates along the geodesics of
manifold (N, g). The image of WF(u) in the projection π : T ∗N → N
coincides the singular support of u. Hence, we see that

singsupp(G(·, ·, y, s)) = S(q), where(50)
S(q) = {(expy(tη), s+ t) ∈ N ; η ∈ SyN, t ≥ 0}.

Since the Riemannian manifold N is complete, the space-time N is a
globally hyperbolic Lorentzian manifold and we have ∂J+(q) = S(q),
see [48]. Summarizing, the above implies that the function G(·, ·, y, s)
vanishes outside J+(q) and is non-smooth, and thus non-zero, in a
neighbourhood of arbitrary point of ∂J+(q). Thus, for z ∈ F we have
Ty,s(z) = d(z, y) − s. Hence the distance difference functions satisfy
equation

(51) Dy(z1, z2) = Ty,s(z1)− Ty,s(z2).

Thus, when formulas (48)-(49) are valid, we see using equation (51).
that the distance difference data of the manifolds N1 and N2 coinside,
that is, we have (2)-(3). Hence, the claim follows from Theorem 1.3. !

Finally, we note that tets Wj are closely related to the light-observation
sets studied in [32] in the study of the inverse problems for non-linear
hyperbolic problems with a time-dependent metric. The light-observation
set PU(q) corresponding to a source point q = (y, s) and the observation
set U is the intersection of U and the future light cone emanating from
q. In fact, the formula (50) implies that in the space time N = N ×R
the sets Wj coincide with the light-observation sets PU(q) correspond-
ing to a source point q = (y, s) and the observation set U = F × R.
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4. Appendix A: Extensions of data

Assume that we are given the set F = N \ M and the metric g|F ,
but instead the function Dx : F × F → R we know only its restriction
on the boundary ∂F = ∂M , that is, the map
Dx|∂F×∂F : ∂F × ∂F → R, Dx|∂F×∂F (z1, z2) := dN(z1, x)− dN(z2, x).

Lemma 4.1. The manifold F = N \ M , the metric g|F , and the re-
striction Dx|∂F×∂F of the distance difference function corresponding to
x ∈ M determine the distance difference function Dx : F × F → R.

Proof. We can determine the map Dx : F × F → R by the formula

Dx(z1, z2) = inf
α
sup
β

(
L(α) +Dx|∂F×∂F (α(1), β(1))− L(β)

)
,

where the infimum is taken over the smooth curves α : [0, 1] → F from
z1 to α(1) ∈ ∂F and the supremum is taken over the smooth curves
β : [0, 1] → F from z2 to β(1) ∈ ∂F . !

This raises the question, if the manifold (N, g) can be reconstructed
when we are given a submanifold of codimension 1, e.g. the boundary of
the open set M considered above, and the distance difference functions
on this submanifold. To consider this, assume that we are given a
submanifold F̃ ⊂ N of dimension (n−1), the metric g|F̃ on F̃ , and the
collection

{Dx
F̃ ,N

; x ∈ N} ⊂ C(F̃ × F̃ ),

where Dx
F̃ ,N

(z1, z2) = dN(x, z1)−dN(x, z2) for z1, z2 ∈ F̃ . The following
counterexample shows that such data do not uniquely determine the
isometry type of (N, g).
Example A1. Let Cr(y) = {(x1, x2) ∈ R2; |x1−y1|2+ |x2−y2|2 = r2}
be a circle of radius r centered at y = (y1, y2). Let p1 = (2, 0), p2 =
(−2, 0), L > 3, and

S0 = C1(0)× [−1, 1],

S1 = C1(p1)× [2, L],

S2 = C1(p2)× [2, L],

and K ⊂ R2 × [1, 2] be a 2-dimensional surface which boundary has
three components, C1(0) × {1}, C1(p1) × {2}, and C1(p2) × {2}, such
that the union S0∪K∪S1∪S2 is a smooth surface in R3. Moreover, let
R : (x1, x2, x3) )→ (x1, x2,−x3) denote the reflection in the x3-variable.
Observe that then R(S0) = S0. We define a smooth surface

Σ0 = S0 ∪K ∪ S1 ∪ S2 ∪R(K) ∪R(S1) ∪R(S2).

The boundary of Σ0 consists of 4 circles, namely Γ1 = C1(p1) × {L},
Γ2 = C1(p1)×{−L}, Γ3 = C1(p2)×{L}, and Γ4 = C1(p2)×{−L}. Let
us consider four embedded Riemannian surfaces Σj ⊂ R3, j = 1, 2, 3, 4,
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N1

N2

F̃2

F̃1

Σ2

Σ3

Σ1

Σ4

Σ2

R(Σ4) R(Σ3)

Σ1

Figure 5. An illustration of manifolds N1 and N2 in
Example A1. When (n − 1)-dimensional submanifolds
F̃1 = F̃2 = F̃ are identified, the distance difference func-
tions {Dx

F̃ ,N1
; x ∈ N1} and {Dx

F̃ ,N2
; x ∈ N2} coincide.

with boundaries ∂Σj are equal to Γj. Assume that near ∂Σj the surfaces
Σj are isometric to the Cartesian product of Γj and an interval [0, ε]
with ε > 0, and that the genus of Σj is equal to (j − 1). Also, assume
that Σj ∩ Σk = ∅ for j, k = 1, 2, 3, 4 and Σ0 ∩ Σj = Γj for j = 1, 2, 3, 4.

First, let us construct a manifold N1 by gluing surfaces Σ0 with
Σ1,Σ2,Σ3, and Σ4 such that the boundaries Γj are glued with ∂Σj ,
j ∈ {1, 2, 3, 4}.

Second, we construct a manifold N2 by gluing surfaces Σ0 with
Σ1,Σ2,R(Σ3), and R(Σ4) such that the boundaries Γj are glued with
∂Σj with j ∈ {1, 2} but Γ3 is glued with R(∂Σ4) and Γ4 is glued with
R(∂Σ3), see Fig. 5. For both manifolds N1 and N2 we give the induced
Riemannian metric from R3. Let F̃ = F̃1 = F̃2 = S0 ∩ (R2 × {0}).

Let us assume that L above is larger than diam (K) + 10. Then on
Nℓ, ℓ = 1, 2 a minimizing geodesic from x ∈ Σj , j ≥ 1 to z ∈ F̃ does
not intersect the other sets Σk with k ∈ {1, 2, 3, 4} \ {j}. Using this
we see that the sets {Dx

F̃ ,Nℓ
; x ∈ Nℓ} ⊂ C(F̃ × F̃ ) are the same for

ℓ = 1, 2. As the manifolds N1 and N2 are not isometric, this implies
that the data (F̃ , g|F̃ ) and {Dx

F̃ ,N
; x ∈ N} do not determine uniquely

the manifold (N, g).

5. Appendix B: Integrals of the geodesic flow

In this appendix we consider Matveev-Topalov theorem [41] in detail.
The motivation to write this rather long appendix is that we thought
that the methods used in [41], [42] and [43] are not familiar to the gen-
eral audience in the field of geometric inverse problems. The appendix
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is self contained in many ways, but the reader is assumed to be famil-
iar with the basics of Riemannian geometry. The notations and theory
used here are mostly from [38].

5.1. Part I, Matrix representations. Let M be a smooth n-manifold
with Riemannian metric tensors g = gij and g̃ = g̃ij.

Denote by G : TM → TM a fiberwise linear mapping given by 1-
covariant 1-contravariant tensor Gi

j = giαg̃αj. For any x ∈ M and
v ∈ TxM this is defined as

Gx(v) = giαg̃αjvj .

Let χG := det(G − tIdTM) be a characteristic polynomial of G. Since
M is n-dimensional, we can write χG in form

(52) χG(t) = c0t
n + c1t

n−1 + . . .+ cn,

where coefficients c1, . . . , cn are smooth functions on M and c0 ≡ (−1)n.
Define mappings Sk : TM → TM, k ∈ {0, . . . , n− 1} by formula

(53) Sk((x, v)) :=
(detgx

detg̃x

) k+2
n+1

k∑

i=0

ciG
k−i+1(v).

For every k ∈ {0, . . . , n − 1} we finally define functions Ik : TM → R
with formula

Ik((x, v)) = gx(Sk((x, v)), v).

After these preparations we can state the main result of [41].

Theorem 5.1 (Matveev-Topalov). Let M,n ≥ 2 be a smooth manifold
with geodesically equivalent Riemannian metrics g and g̃. Let θ be the
geodesic flow of Riemannian manifold (M, g). Then functions Ik are
integrals of flow θ. This means that each function Ik is constant on
each orbit of geodesic flow θ.

We will provide the proof given by the Matveev and Topalov in detail,
reviewing techniques used in [41], [42], and [43], but we first have to do
some preparations. We start with finding a formula for mapping Sk.
Let x ∈ M .

We first show that there exists such a basis (wi)
j
i=1 of TxM such that

in this basis

g = diag(1, . . . , 1) and g̃ = diag(ρ1, . . . , ρn)

for some ρ1 ≥ ρ2 ≥ · · · ≥ ρn > 0. Let (U,ϕ) be the Riemannian
normal coordinates at x with respect to g. Then it holds that gij(x) =
⟨∂ϕk, ∂ϕj⟩g = δjk. Let vk = ∂ϕk(x). Write

ajk := g̃x(vj , vk) = g̃x(vk, vj) and A = [ajk]
n
j,k=1.
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Since metric tensor g̃ is positive definite, it holds that there exists a
set of vectors r1, . . . , rn ∈ Rn and set of strictly positive real numbers
ρ1, . . . , ρn such that

Arj = ρjrj , and rj · rk = δjk.

Note that vector rj = (r1j , . . . , r
n
j ) ∈ Rn. Define vectors

wj := rljvl ∈ TxM.

Then it holds that

g(wj, wk) = g(rljvl, r
l
kvl) = rljr

ℓ
kg(vl, vℓ) =

n∑

l=1

rljr
l
k = rj · rk = δjk

and

g̃(wj, wk) = rljr
ℓ
kg̃(vl, vℓ) = alℓr

l
jr

ℓ
k = rk · (Arj) = rk · ρjrj = ρjδjk.

These calculations prove that (wj)nj=1 is a basis of TxM and in this
basis we have

g = diag(1, . . . , 1) and g̃ = diag(ρ1, . . . , ρn).

We say that σp is the unique elementary symmetric polynomial of
degree p of n variables, if p ≤ n and

σp(X1, . . . , Xn) =
∑

1≤j1<j2<...<jp

p∏

k=1

Xjk .

Let

φi :=
1

ρi
(

n∏

k=1

ρk)
1/(n+1).

Then
n∏

k=1

ρk = det(Gx) = det(g−1(x)g̃(x)) > 0,

and the numbers φi ∈ R satisfyφ1 ≤ φ2 ≤ . . . ≤ φn.
Let σp be the elementary symmetric polynomial of degree p of vari-

ables φ1, . . . ,φn and σp(φ̂i) the elementary symmetric polynomial of
degree p− 1 of variables φ1, . . . ,φi−1,φi+1, . . . ,φn.

Lemma 5.2. The matrices of mappings Sk are given by

Sk = (−1)n−kdiag(σn−k−1(φ̂1), σn−k−1(φ̂2), . . . , σn−k−1(φ̂n)).

Proof. Recall that the coefficients ck of (53) are the same as the ones in
(52). We will start by showing that the coefficients ck can be calculated
as

ck = (−1)n−k σn−k

(φ1φ2 · · ·φn)k+1
.
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Let k ∈ {0, . . . , n}. First we calculate

(φ1φ2 · · ·φn)
k+1 = (

n∏

j=1

ρj)
−(k+1)(

n∏

j=1

ρj)
(k+1)n
n+1 = (

n∏

j=1

ρj)
(k+1)n
n+1 −(k+1).

If k = n the calculation above and (52) prove that

cn = detG =
n∏

j=1

ρj = (φ1φ2 . . .φn)
−(n+1).

Next we consider the case k ∈ {0, . . . , n− 1}. By definition

σn−k =
∑

1≤j1<j2<···<jn−k

n−k∏

k=1

φjk = (
n∏

j=1

ρj)
n−k
n+1

∑

1≤j1<j2<···<jn−k

n−k∏

k=1

1

ρjk
.

Now it holds

σn−k

(φ1φ2 · · ·φn)k+1
= (

n∏

j=1

ρj)
n−k
n+1−

(k+1)n
n+1 −(k+1)

∑

1≤j1<j2<···<jn−k

n−k∏

k=1

1

ρjk

= (
n∏

j=1

ρj)
∑

1≤j1<j2<···<jn−k

n−k∏

k=1

1

ρjk
=

∑

1≤j1<j2<···<jn−k

ρ1ρ2 · · · ρn∏n−k
k=1 ρjk

= (−1)n−kck.

To verify the claim of this Lemma, we use induction on k. For k = 0
we see that

S0 =
( 1

detG

) 2
n+1

c0G = (−1)n(φ1φ2 . . .φn)
2diag(ρ1, ρ2, . . . ρn)

= (−1)n(φ1φ2 . . .φn)
2diag

( 1

φ1(φ1φ2 . . .φn)
,

1

φ2(φ1φ2 . . .φn)
, . . . ,

1

φn(φ1φ2 . . .φn)

)

= (−1)ndiag(φ2φ3 . . .φn,φ1φ3 . . .φn, . . . ,φ1φ2 . . .φn−1)

= (−1)ndiag(σn−1(φ̂1), σn−1(φ̂2), . . . , σn−1(φ̂n)).

Next we assume that matrix Sk−1 has form

Sk−1 = (−1)n−(k−1)diag(σn−(k−1)−1(φ̂1), σn−(k−1)−1(φ̂2), . . . , σn−(k−1)−1(φ̂n)).

Now it holds that

Sk =
( 1

detG

) 1
n+1

G
(
Sk−1 +

( 1

detG

) k+1
n+1

ck Id
)

= (φ1φ2 . . .φn)diag (ρ1, . . . , ρn)((−1)n−(k−1)diag(σn−k(φ̂1), σn−k(φ̂2), . . . , σn−k(φ̂n))

+(φ1φ2 . . .φn)
k+1(−1)n−k σn−k

(φ1φ2 . . .φn)k+1
Id)

= diag (φ−1
1 ,φ−1

2 , . . . ,φ−1
n )(−1)n−k

∗diag (σn−k − σn−k(φ̂1), σn−k − σn−k(φ̂2), . . . , σn−k − σn−k(φ̂n))

= (−1)n−kdiag
(σn−k − σn−k(φ̂1)

φ1
, . . . ,

σn−k − σn−k(φ̂n)

φn

)
.
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The claims follows, since for every l polynomial σl − σl(φ̂i) is precisely
sum of those l-products of φj’s which all contain φi. Clearly same
argument holds for polynomial φiσl−1(φ̂i). !

Next we define a function F : R× TM → R by formula

Ft(x, ξ) = tn−1In−1(x, ξ) + . . .+ I0(x, ξ).

For a fixed point (x, ξ) in tangent bundle of M , function Ft(x, ξ) is a
polynomial of t of degree n − 1. Let the complex roots of polynomial
Ft(x, ξ) be t1(x, ξ), . . . , tn−1(x, ξ).

Lemma 5.3. Let x ∈ M . Then for every i ∈ {1, 2, . . . , n− 1} the fol-
lowing statements are true: For any ξ ∈ TxM the roots t1(x, ξ), . . . , tn−1(x, ξ)
are real and

φi(x) ≤ ti(x, ξ) ≤ φi+1(x).

Proof. Fix a point (x, ξ) ∈ TM . For simplicity we write ti := ti(x, ξ)
and φi := φi(x). Choose such a basis in TxM that

g = diag (1, . . . , 1) and G = diag (ρ1, . . . , ρn).

Let Pi be the polynomial

Pi(t) :=
n∏

k=1, k ̸=i

(t− φk) =
n−1∑

α=0

(−1)n−α−1 tα σn−α−1(φ̂i).

Recall that we have defined the mapping Ik(ξ) := gx(Skξ, ξ). By the
Lemma 5.2 we have that

Ik(ξ) = (−1)n−k
n∑

i=1

σn−k−1(φ̂i)ξ
2
i .

Thus we can write polynomial Ft(x, ξ) in form

Ft(x, ξ) =
n−1∑

k=0

(−1)n−k tk
n∑

i=1

σn−k−1(φ̂i)ξ
2
i

= −
n∑

i=1

ξ2i

n−1∑

k=0

(−1)n−k−1tkσn−k−1(φ̂i)

= −(P1(t)ξ
2
1 + P2(t)ξ

2
2 + . . .+ Pn(t)ξ

2
n).

Recall that φi ≤ φi+1. We will split the rest of the proof to three
different cases.

Suppose first that φi < φi+1 and ξi ̸= 0 for every i ∈ {1, . . . , n− 1}.
By the definition of polynomial Pj we see immediately that Pj(φi) = 0
if i ̸= j. Therefore it holds that

Fφi = −Pi(φi)ξ
2
i .
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According to the definition of polynomials Pi and Pi+1 it holds that

Pi(φi) = (φi − φ1)(φi − φ2) . . . (φi − φi−1)︸ ︷︷ ︸
>0

(φi−φi+1)(φi−φi+2) . . . (φi−φn)

and

Pi+1(φi+1) = (φi+1 − φ1)(φi+1 − φ2) . . . (φi+1 − φi−1)(φi+1 − φi)︸ ︷︷ ︸
>0

·(φi+1 − φi+2) . . . (φi+1 − φn).

Therefore numbers Fφi and Fφi+1 have different signs. Since F is real
valued and continuous, it has atleast one root in interval ]φi,φi+1[.
Since degree of F is n − 1 and intervals ]φi,φi+1[ are disjoint we see
that F has exactly one root ti in interval ]φi,φi+1[.

If φi ≤ φi+1 and ξk = 0 for some k ∈ 1, . . . , n − 1, we have that
Fφk

= 0 and φk = tk.
If φk = φk+1 for some k ∈ 1, . . . , n−1, then Pk(φk) = 0 and therefore

Fφk
= 0.

Therefore for all the cases we have proved the claim of this Lemma.
!

5.2. Part II, Hamiltonian systems on regular level sets. Let
(M2n,ω, H) and (M̃2n, ω̃, H̃) be Hamiltonian systems with Hamilton-
ian vector fields V and, Ṽ respectively (For concepts, not explained
here, see [38] chapter 18.). Suppose that h and h̃ are regular values of
H and, H̃ respectively. We define regular level sets

Q = {x ∈ M2n : H(x) = h}

and
Q̃ = {x ∈ M̃2n : H̃(x) = h̃}.

Lemma 5.4. Let x ∈ Q. Then TxQ = {X ∈ TxM : XH = 0}.

Proof. Let i : Q ↪→ M be the inclusion mapping. We first prove that

TxQ = KerH∗, H∗ : TxM
2n → ThR.

Since Q is a smooth submanifold of M2n we will identify TxQ with
i∗(TxQ) ⊂ TxM2n. Since Q is a level set of H we have that H ◦ i is
constant. Therefore

(H ◦ i)∗X = X(H ◦ i) = 0, for every X ∈ TxQ.

But this means that mapping (H ◦ i)∗ : TxQ → ThR is a zero mapping.
Since (H ◦ i)∗ = H∗ ◦ i∗, we deduce Im i∗ ⊂ KerH∗. Since h is a regular
value, we know that H∗ is surjective. By rank-nullity law and since
dimQ = dimM2n − dimR we have

dim KerH∗ = dimTxM
2n − dimR = dimTxQ = dim Im i∗.
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This proves the claim TxQ = KerH∗. Let f ∈ C∞(R) and X ∈ TxM2n.
Then we have

(H∗X)f = X(f ◦H) = (ḟ ◦H)XH.

According to what we proved earlier, we know X ∈ TxQ if and only if
H∗X = 0. By preceding formula this is true if and only if XH = 0. !

Let U ⊂ M2n and Ũ ⊂ M̃2n be neighborhoods of Q and Q̃, respec-
tively.

Definition 5.5. Diffeomorphism Φ : U → Ũ is orbital on Q if Φ(Q) =
Q̃ and Φ|Q maps orbits of V to the orbits of Ṽ and vice versa. In other
words this means that for every orbit γ : [a, b] → Q of V there exists a
diffeomorphisim α : [c, d] → [a, b] such that

d

dt
(Φ ◦ γ ◦ α)|t=t0 = Ṽ(Φ◦γ◦α)(t0).

Since Q is a regular level set of smooth mapping H : M2n → R on
manifold M2n it has dimension 2n− 1. Let φ be the restriction Φ|Q.

Lemma 5.6. There exists functions a1 : Q → R and a2 : Q̃ → R such
that for every p ∈ Q holds:

Φ∗(Vp) = a1(p)ṼΦ(p) and a2(Φ(p))Φ∗(dH)p = (dH̃)Φ(p).

Proof. Since V is a Hamiltonian vector field on M2n and Q is a regular
level set of H , we know that V |Q is also a smooth vector field on Q
([38] 18.22). Let p ∈ Q. Since V is the Hamiltonian vector field on Q,
there exists an orbit γ of V on Q such that γ0 = p and γ̇0 = Vp. Since
Φ is orbital we have

Φ∗Vp = Φ∗γ̇0

= Φ∗(
d

dt
(γ ◦ α)|t=α−1(0)

d

dt
α−1|t=0)

=
d

dt
α−1|t=0Φ∗(

d

dt
(γ ◦ α)|t=α−1(0))

=
d

dt
α−1|t=0

d

dt
(Φ ◦ γ ◦ α)|t=α−1(0)

=
d

dt
α−1|t=0ṼΦ(p).

Now we define that a1(p) = d
dtα

−1|t=0. Since vector fields Φ∗V and
Ṽ are smooth and the smoothness of vector fields is equivalent to the
smoothness of its coefficient functions we deduce that a1 is smooth.

Let p ∈ M2n and X ∈ TpQ. To show that a2Φ∗dH = dH̃, for some
smooth function a2, it suffices by Lemma 5.4 to prove that Φ∗dH̃(X) =
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0. Since Φ maps Q onto Q̃ we have

0 = X(H̃ ◦ Φ) = Φ∗X(H̃) = Φ∗dH̃(X).

!
Let σ : TQ → T ∗Q be the restriction ω|Q and σ̃ = ω̃|Q̃, respectively.

Since φ takes Q onto Q̃, we can consider φ∗σ̃ as a 2-form on Q.
Lemma 5.7. Let θ be the flow of V . Then θ preserves the form φ∗σ̃.
Proof. According to Theorem 18.16 of [38], it suffices to show that the
Lie derivative LV (φ∗σ̃) = 0. Let us verify this using Cartan’s formula
(54) LV (φ

∗σ̃) = d(ιV (φ
∗σ̃)) + ιV (d(φ

∗σ̃)).

Let X ∈ TQ. By the Lemma 5.6 we have that

ιV (φ
∗σ̃)(X) = σ̃(φ∗V,φ∗X) = σ̃(a1Ṽ ,φ∗X)

= a1dH̃(φ∗X) = aφ∗X(H) = aX(H ◦ φ) = 0.

Hence the first term of (54) vanishes. We defined that σ̃ = ω̃|Q̃. Since
Q̃ is a submanifold of M̃2n, the inclusion mapping i : Q̃ ↪→ M̃2n is a
smooth embedding. Therefore for all X, Y ∈ T (Q̃) it holds that

i∗ω̃(X, Y ) = ω̃(i∗X, i∗Y ) = ω̃(X, Y ) = σ̃(X, Y ),

i.e., σ̃ = i∗ω̃. Since form ω̃ is closed on M̃2n, we know that σ̃ is closed
on Q̃ by Lemma 12.16 of [38]. Now we also have that the second term
of (54) vanishes, since d(φ∗σ̃) = φ∗(dσ̃) = 0 by equation (12.18) of
[38]. !

We can consider 2-form ω on M2n as a mapping
ω : TM2n → T ∗M2n,ω(v)(w) = ω(v, w) for all x ∈ M2n, v, w ∈ TxM

2n.

Since form ω is non-degenerate, we know that mapping ω is a linear
isomorphism on fibers TxM2n. Let σ := ω|Q : TQ → T ∗Q. We want to
show that

Ker σ|TxQ = span(V (x)).

We start with observing that V (x) ∈ TxQ if x ∈ Q. This holds since
V (H) = ω(V, V ) = 0 and therefore V satisfies the conditions of Lemma
5.4.

Next we show that ω(V,X) = 0 for any X ∈ TxQ. Let γ be such a
smooth path on Q that at point x it has a velocity X. Since Q is a
level set, we have

0 =
d

dt
(H ◦ γ) = V H = ω(V,X).

We denote by Aω the sympletic complement of set A with respect to
sympletic form ω. Suppose that for X ∈ TxQ it holds σ(X, ·) ≡ 0.
Therefore dim span(X, V )ω = 2n−1, since for every W ∈ TxQ we have

ω(aV + bX,W ) = aω(V,W ) + bω(X,W ) = 0.
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On the other hand it holds that

dim span(V,X)ω + dim span(V,X) = 2n

⇒ dim span(X, V ) = 1.

But this means precisely that X ∈ span(V ). Denote span(V ) = ⟨V ⟩.
By considerations made above we know that ⟨V ⟩ = Ker σ. The

kernel of form φ∗σ̃ is also ⟨V ⟩, since by Lemma 5.6 we have for every
X ∈ TxQ that

φ∗σ̃(V, X̃) = σ̃(φ∗V,φ∗X) = σ̃(a1Ṽ ,φ∗X) = a1φ∗X(H̃) = a1X(H̃◦φ) = 0,

since φ(Q) = Q̃.
Let TQ/ ⟨V ⟩ be the quotient bundle of TQ i.e. the fiber of TQ/ ⟨V ⟩ is

the vector space TxQ/ ⟨Vx⟩. Next we consider two induced tensor fields
σ and φ∗σ̃ on quotient bundle TQ/ ⟨V ⟩, i.e., we define for [X ], [Y ] ∈
TQ/ ⟨V ⟩

σ([X], [Y ]) = σ(X, Y ) and φ∗σ̃([X ], [Y ]) = φ∗σ̃(X, Y ).

These forms are well defined, since both forms σ and φ∗σ̃ have the same
kernel ⟨V ⟩. These induced forms are both nondegenerate since

σ([X ], ·) ≡ 0 if and only if X ∈ ⟨V ⟩ .

Therefore we can define an operator σ−1(φ∗σ̃) on the quotient bundle
TQ/ ⟨V ⟩, if we again consider forms as a fiber vice linear mappings
from TQ/ ⟨V ⟩ to (TQ/ ⟨V ⟩)∗.

Let p ∈ Q. Since p is a regular point for H , we can choose the
Darboux coordinates x1, y1, . . . , xn, yn for p such that y1 = H and V =
∂x1 :=

∂
∂x1

. By Lemma 5.4 it holds that vector fields ∂x1, ∂x2, ∂y2, . . . ,
∂xn, ∂yn are tangential to Q at p since by Darboux criterion
(55)
0 = {y1, yk}ω = {H, yk}ω = ∂xkH and − δ1k = {y1, xk}ω = −∂ykH.

According to Lemma 5.6 there exists functions a1 and a2 such that

Φ∗(Vp) = a1(p)ṼΦ(p) and a2(Φ(p))Φ∗(dH)p = (dH̃)Φ(p).

We denote a := a1a2. Therefore

Φ∗ω̃(∂x1, ∂y1) = ω̃(Φ∗∂x1,Φ∗∂y1) = ω̃(Φ∗∂x1,Φ∗∂y1) = a1ω̃(Ṽ ,Φ∗∂y1)

= a1dH̃(Φ∗∂y1) = a1a2(Φ∗dH)(Φ∗∂y1)) = adH(∂y1) = a
∂y1
∂y1

= a.

With similar computations one gets

Φ∗ω̃(∂x1, ∂xk) = 0 and also Φ∗ω̃(∂x1, ∂yj) = 0, j ̸= 1.
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This means that the matrices of ω−1 and Φ∗ω̃ are of the form

(56) ω−1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1
−1 0

0 0 . . . 0
0 0 . . . 0

0 0
0 0
...

...
0 0

A−1

⎞

⎟⎟⎟⎟⎟⎟⎠

and

(57) Φ∗ω̃ =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 a
−a 0

0 0 . . . 0
c1 c2 . . . c2n−2

0 −c1
0 −c2
...

...
0 −c2n−2

B

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Therefore we get that

(58) ω−1Φ∗ω̃ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−a 0
0 −a

c1 c2 . . . c2n−2

0 0 . . . 0
0 d1
0 d2
...

...
0 d2n−2

A−1B

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This proves that

(59) det(ω−1Φ∗ω̃) = a2det(A−1B).

Matrix A−1B is now the matrix of mapping σ−1φ∗σ̃, since by formula
(55) we get σ−1φ∗σ̃ by removing the first and second rows and columns
of matrix (58).

Lemma 5.8. For every t ∈ R the characteristic polynomial χσ−1(φ∗σ̃)(t)
is preserved by the flow θ of V in Q.

Proof. Note first that by Lemma 5.6 it holds

LV (Φ
∗ω̃) = aL 1

aV
(Φ∗ω̃) = aLΦ∗Ṽ (Φ

∗ω̃) = 0,

since Hamiltonian vector fields are sympletic. For all invertible tensors
fields T and vector fields X the following are equivalent

LX(T ) = 0 and LX(T
−1) = 0.

We will also use two following facts

0 = LV (ω
−1Φ∗ω̃) = LV (ω

−1)Φ∗ω̃ + ω−1LV (Φ
∗ω̃)

and
if LV (ω

−1Φ∗ω̃) = 0 then LV (det(ω−1Φ∗ω̃)) = 0.
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The first one is the product rule of Lie derivatives and the latter one
is the Jacobi formula for the Lie derivative of a determinant.

Take the Lie derivative from both sides of equation (59) to conclude

(60) det(σ−1φ∗σ̃)LV (a
2) + a2LV (det(σ−1φ∗σ̃)) = 0.

By formula (58) we can write

(61) Φ∗ω̃ = adx1 ∧ dy1 + φ∗σ̃.

Take the Lie derivatives from both sides of equation (61) and recall
Lemma 5.7. Then we get

0 = (LV a)dx
1 ∧ dy1 + aLV (dx

1 ∧ dy1).

By Corollary 18.11 of [38], it holds

LV (dx
1) = d(V x1) = d(

∂x1

∂x1
) = d(1) = 0 and LV (dy

1) = d(
∂y1

∂x1
) = 0.

Thus we must have that LV a = 0. By formula (60) and the Leibnitz
rule we must have that

LV (det(σ−1φ∗σ̃)) = 0.

!

Next we will point out few important properties of skew symmet-
ric matrices. Recall that a square matrix A with real entries is skew
symmetric, if AT = −A.

Lemma 5.9. For a real skew symmetric matrix A the following state-
ments are true:

(1) If A has an odd number of columns and rows, then detA = 0.
(2) If A is invertible, then A−1 is skew symmetric.
(3) If A and B are skew symmetric n-matrices and n is even, then

for every t ∈ R, det(A−1B − tId) = p2(t) for some polynomial
p.

(4) Kernel of A has an even dimension, if number of rows is even.
Kernel of A has an odd dimension, if number of rows is odd.

Proof. (1) If A has an odd number of rows and columns, then it
holds that

det(A) = det(AT ) = det(−A) = (−1)2n+1det(A) = −det(A).

Therefore detA = 0.
(2) If A is an invertible skew symmetric matrix, it follows that

(A−1A)T = AT (A−1)T = −A(A−1)T = Id.

Thus (A−1)T = −A−1.
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(3) According to [37], detA = q2, where q is a polynimial of degree
n with variables of entries of A. Since the sum of skew symmet-
ric matrices is skew skymmetric, we have for skew symmetric
matrices A and B

det(A−1B − t Id) = det(A−1)det(B − tA) = s2q2(t),

for some polynomial q of degree n and real number s. Espe-
cially this means that the characteristic polynomial χA−1B(t) is
a square of a polynomial p(t) := sq(t).

(4) By Spectral theory every symmetric matrix B ∈ M(2n,C) has
2n real eigenvalues. It holds that iA is a symmetric matrix since

(iA)∗ = −iA∗ = −iAT = iA.

Suppose that λ is an eigenvalue of A with eigenvector v. Then
it holds that

iAv = iλv,

i.e., iλ is an eigenvaluea of iA. Since all the eigenvalues of iA
are real, it must be that iλ is real. But then we must have that
λ is purely imaginary. Since the characteristic polynomial of
A has only real coefficients and since conjugation of complex
numbers commutates with sum and product, we see that also
λ is an eigenvalue of A.

By Fundamental theorem of Algebra we have that the char-
acteristic polynomial of A has as many roots as A has rows.
Now it must be that 0 is a root of even/odd multiplicity for χA,
if A has even/odd number of rows, since every non-zero root
comes in pairs λ and λ. This proves the claim, thus eigenspace
of 0 is precisely the kernel of A.

!
We define a Pfaffian of skew symmetric matrix A as

Pf(A) = δ, if detA = δ2.

Let us return back to the our Hamiltionian setting. Let p(t) =
χσ−1(φ∗σ̃)(t). Since given in the basis x1, H, x2, y2, . . . , xn, yn the both
forms σ and φ∗σ̃ are skew symmetric, we see by the considerations
made above of skew symmetric matrices that p(t) = (δ(t))2 where
deg(δ) = n− 1. By Lemma 5.8 polynomial p is preserved by flow of V ,
therefore also δ is preserved.

Since we have that

p(t) = det(σ−1(φ∗σ̃)− tId) =
det(φ∗σ̃ − tσ)

detσ
,

it follows that

δ(t) =
Pf(φ∗σ̃ − tσ)

Pf(σ)
.
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Theorem 5.10. Let diffeomorphism Φ : U(Q) → U(Q̃) be orbital on
Q. Then for each t ∈ R the polynomial

Pn−1(t) :=
Pf(Φ∗ω̃ − tω)

Pf(ω)(a− t)

is an integral of Hamiltonian flow of V . In particular all the coefficients
of P are integrals of V . Here a = a(x) = a1(x)a2(x), where a1 and a2
are as in Lemma 5.6.

Proof. Choose a point x ∈ Q and let a1 = a1(x), a2 = a2(Φ(x)). First
we note that Vx ̸= 0 since ω is non-degenerate and ω(Vx, X) = XH = 0
if and only if X ∈ TxQ by Lemma 5.4. We consider a two form Φ∗ω̃−aω
on TxM2n. Let u ∈ TxM2n. By Lemma 5.6 we have that

ιV (Φ
∗ω̃ − aω)(u) = Φ∗ω̃(V, u)− aω(V, u) = a1ω̃(Ṽ ,Φ∗u)− adH(u)

= a1dH̃(Φ∗u)− adH(u) = a1Φ
∗(dH̃)(u)− adH(u)

and

a1Φ
∗(a2Φ∗dH)(u)− adH(u) = a1(a2 ◦ Φ)dH − adH = 0.

Therefore we have proved that ⟨Vx⟩ ⊂ Ker(Φ∗ω̃ − aω), if we consider
again Φ∗ω̃ − aω as a linear mapping from TxM2n to T ∗

xM
2n.

By Lemma 5.9 we know that the kernel of Φ∗ω̃ − aω has an even
dimension since dimM2n = 2n. By Lemma 5.9 we also know that the
kernel restriction of Φ∗ω̃ − aω into TxQ has dimension of odd mul-
tiplicity. Therefore the set (TxM2n \ TxQ) ∩ Ker (Φ∗ω̃ − aω) is not
empty. Let A ∈ (TxM2n \TxQ)∩Ker (Φ∗ω̃−aω). Now it must be that
A ∈ Ker (Φ∗ω̃ − aω) and

ω(V,A) = dH(A) = AH ̸= 0,

by Lemma 5.4. Since ω is bilinear, one can choose vector A such that
ω(V,A) = 1. Since V ∈ TxQ we can choose vectors {e1, . . . , e2n−2} ⊂
TxQ such that (V, e1, . . . , e2n−2) is a basis of TxQ. Now it holds that
(A, V, e1, . . . , e2n−2) is a basis of TxM2n.

Let (A∗, V ∗, e∗1, . . . , e
∗
2n−2) be a basis in T ∗

xM that is a dual basis for
(A, V, e1, . . . , e2n−2). Since ω(V, ·) ∈ T ∗

xM , we can write it as

ω(V, ·) = b1A
∗ + b2V

∗ +
2n−2∑

i=1

bi+2e
∗
i .

Since we assumed that ω(V,A) = 1, it follows that b1 = 1. Since ω is
a 2-from it holds that 0 = ω(V, V ) = b2. For the other base vectors we
have that

bi+2 = ω(V, ei) = eiH = 0.

Now we have proved that (tω(V, ·))i = tδi1. Since we know that V ∈
ker(Φ∗ω̃ − aω) it follows that (Φ∗ω̃ − tω)(V, ·)i = (a− t)δi1.
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Since Φ∗ω̃ − tω is a skew symmetric matrix, we can easily calculate
its determinant as we have obtained a nice representations for matrix
(Φ∗ω̃ − tω),

det(Φ∗ω̃ − tω) =
0 a− t (∗)

−(a− t) 0 0 . . . 0
−(∗) 0 (Φ∗ω̃ − tω)|TxQ

= (a− t)2det((Φ∗ω̃ − tω)|TxQ) = (a− t)2det(φ∗σ̃ − tσ).

From this equation we see that

Pf(Φ∗ω̃ − tω)

a− t
= Pf(φ∗σ̃ − tσ).

We also see that

det(ω) =
0 1 (∗)
−1 0 0 . . . 0
−(∗) 0 ω|TxQ

= det(ω|TxQ) = det(σ).

Finally we have proved that

Pn−1(t) =
Pf(Φ∗ω̃ − tω)

Pf(ω)(a− t)
=

Pf(φ∗σ̃ − tσ)

Pf(σ)
= δ(t).

Now our claim follows from reasoning made after Lemma 5.9. !

5.3. Part III, Proof of main theorem of [41]. Let M,n > 1 be
a smooth manifold with geodesically equivalent metric tensor fields g
and g̃. In this part we will provide a proof to the main theorem of [41].
We will use tools introduced in [41]. The main idea is to use Theorem
5.10. Let r > 0. Define sets

U r
gM := {(p, ξ) ∈ TM : ∥ξ∥g(p) = r}

and
U r
g̃M := {(p, ξ) ∈ TM : ∥ξ∥g̃(p) = r}

respectively.
Choose p ∈ M and let (U, x) be any smooth coordinates near p. Let

(TU, (x, v)) be coordinates in TM related to (U, x) as

TU = π−1U, and (x, v)(p, ξ) = (x(p), v(ξ)) = (x(p), (ξi)ni=1),

where π : TM → M is the projection to the base point and ξ = ξi∂xi|p.
Let (TM,ωg, Hg) be the Hamiltonian system with ωg = d[gijvjdxi]

and Hg(ξ) =
1
2gijξ

iξj in local coordinates. Then the Hamiltonian vector
field of this system is same as the geodesic vectorfield

XH := vk
∂

∂xk
− Γk

ijv
ivj

∂

∂vk
.
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Let Z be the zero section of M . We define a mapping Φ : TM → TM
by formula {

Φ(q, ξ) =
(
q, ξ ∥ξ∥g

∥ξ∥g̃

)
, ξ /∈ Z

Φ(q, ξ) = (q, 0), ξ ∈ Z
.

By this formula Φ is continuous, since at each q norms ∥ · ∥g(q) and
∥ · ∥g̃(q) are equivalent. Therefore there exists 0 < c(q) ≤ C(q) such
that

∥ξ∥g̃ c(q) ≤ ∥ξ∥g ≤ ∥ξ∥g̃ C(q) for all ξ ∈ TqM.

By continuity of norms it holds that Φ(q, ξ) −→ 0 as ξ −→ 0q. By this
definition mapping Φ is clearly smooth in TM \ Z and has a smooth
inverse Ψ : TM \ Z → TM \ Z

Ψ(q, ξ) =
(
q, ξ

∥ξ∥g̃
∥ξ∥g

)

since

(Φ ◦Ψ)(q, ξ) =
(
q, ξ

∥ξ∥g
∥ξ∥g̃

∥ξ ∥ξ∥g
∥ξ∥g̃

∥g̃
∥ξ ∥ξ∥g

∥ξ∥g̃
∥g

)
= (x, ξ).

Lemma 5.11. Let θg be the geodesic flow of g and θg̃ the geodesic flow
of g̃ respectively. Let r > 0. Function Φ maps U r

gM onto U r
g̃M , takes

orbits of θg to the orbits of θg̃ and is orbital on U r
gM .

Proof. Let (q, ξ) ∈ U r
gM . Then it holds that

Φ(q, ξ) =
(
q, ξ

r

∥ξ∥g̃

)

and therefore
∥ξ r

∥ξ∥g̃
∥g̃ = r.

Thus by symmetry of Ψ we have shown that Φ(U r
gM) = U r

g̃M .
Since metrics g and g̃ are geodesically equivalent, it follows that

the geodesics of both metrics have same images on manifold M . Let
γ : (−ϵ, ϵ) → M be a geodesic of metric g parameterized with arclength.
Then it holds that t )→ (γt, γ̇t) is an orbit of θg and

Φ(γt, γ̇t) =
(
γt,

1

∥γ̇t∥g̃
γ̇t
)
, where

∥∥∥
1

∥γ̇t∥g̃
γ̇t
∥∥∥
g̃
= 1.

Here we use notation γ(t) = γt. Give an unit speed parametrization
for γ with respect to metric g̃ and it follows that Φ(γt, γ̇t) is an orbit
of θg̃.

Since TM\Z is open, U r
gM,U r

g̃M ⊂ TM\Z and Φ : TM\Z →
TM\Z is a diffeomorphisim, we have proven that Φ is orbital on U r

gM .
!
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By definition of sets U r
gM and U r

g̃M it is obvious that

U r
gM = H−1

{r

2

}
and U r

g̃M = H̃−1
{r

2

}
.

Recall that a standard way to embed TqM in T(q,ξ)TM, ξ ∈ TqM is the
mapping w )→ wi ∂

∂xi . Let (q, ξ) ∈ TM\Z and embed TqM ↪→ T(q,ξ)TM .
Define c(t) = ξt ∈ TqM . Calculate

H∗ξ =
d

dt
(H ◦ c)(t)|t=1 =

d

dt

1

2
∥ξt∥g|t=1 =

1

2
∥ξ∥g ̸= 0.

Since R is one dimensional, we have shown that, for any (q, ξ) ∈ TM\Z
push forward mapping H∗ is onto. Thus sets U r

gM and U r
g̃M are regular

level sets and therefore sets U r
gM and U r

g̃M are smooth sub manifolds
of M with codimension 1.

Clearly it holds that Hg = Hg̃ ◦ Φ and Hg̃ = Hg ◦ Ψ. By [38], 6.12.
it also holds that Φ∗dHg = d(Hg̃ ◦ Φ). Therefore it holds that

dHg = d(Hg̃ ◦ Φ) = Φ∗(dHg̃) = Ψ∗(dHg̃) = d(Hg̃ ◦Ψ) = dHg̃.

Let γ be a geodesic of g with respect to initial conditions γ(0) = p and
γ̇(0) = ξ. Let α be an unit speed parametrization of γ with respect to
metric g̃ such that α(0) = 0. Consider now a curve γ̃ : R → M defined
by

γ̃(t) = γ(∥ξ∥gα(t)).
Since γ is a geodesic of g, it follows that γ̃ is a geodesic of g̃ with
condition

d

dt
γ̃(t)

∣∣∣
t=0

= γ̇(α(t))∥ξ∥gα̇(t)
∣∣∣
t=0

=
∥ξ∥g
∥ξ∥g̃

ξ.

Then the geodesic vector fields XHg and XHg̃
satisfy

XHg(p, ξ) = (γ̇(0), γ̈(0))

and
XHg̃

(Φ(p, ξ)) = XHg̃
(p,

∥ξ∥g
∥ξ∥g̃

ξ) = ( ˙̃γ(t), ¨̃γ(t))|t=0,

since γ̃ is an geodesic of g̃ with initial values (p, ∥ξ∥g∥ξ∥g̃
ξ). Let β(t) =

∥ξ∥gα(t). According to the proof of Lemma 5.6 it holds that

XHg(p, ξ) =
d

dt
β−1(t)

∣∣∣
t=0

XHg̃
(p,

∥ξ∥g
∥ξ∥g̃

ξ) =
∥ξ∥g̃
∥ξ∥g

XHg̃
(p,

∥ξ∥g
∥ξ∥g̃

ξ).

In coordinates (x, v) of TU we have at p that

ωg = d[gijv
idxj ] and ωg̃ = d[g̃ijv

idxj ].

Then it holds that

ωg = d[gijv
idxj ] = d(gijv

i)∧dxj = ∂xk
(gijv

i)dxk∧dxj−∂vk(gijv
i)dxj∧dvk

= ∂xk
(gijv

i)dxk ∧ dxj − gkjδkjdx
j ∧ dvk
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and
Φ∗ωg̃ = Φ∗(d[g̃ijv

idxj ]) = Φ∗(d[g̃ijv
j] ∧ dxi) = Φ∗(d[g̃ijv

j]) ∧ Φ∗(dxi)

= d[((g̃ijv
i)◦Φ]∧d[xi◦Φ] = d

[∥v(·)∥g
∥v(·)∥g̃

g̃ijv
j
]
∧dxi = d

[∥v(·)∥g
∥v(·)∥g̃

g̃ijv
jdxi

]
.

Therefore it holds that

Φ∗ωg̃ = d
[∥v(·)∥g
∥v(·)∥g̃

g̃ijv
j
]
∧ dxi

=
∂

∂xk

[∥v(·)∥g
∥v(·)∥g̃

g̃ijv
j
]
dxk ∧ dxi − ∂

∂vk

[∥v(·)∥g
∥v(·)∥g̃

g̃ijv
j
]
dxi ∧ dvk.(62)

For each ξ ∈ TpM \ {0} we define

Aik = − ∂

∂vk

[∥v(·)∥g
∥v(·)∥g̃

g̃ijv
j
]∣∣∣

ξ
.

From now on we identify vector ξ with mapping v. With this small
abuse of notation we have

Aik = − ∂

∂vk

[∥v∥g
∥v∥g̃

g̃ijv
j
]
.

As in the first section of this appendix, we can choose such a basis for
TpM that matrices g and g̃ are

g = diag(1, . . . , 1) and g̃ = diag(ρ1, . . . , ρn),
here ρ1 ≥ · · · ≥ ρn > 0. In this basis it holds that

Aik := −ρi
∂

∂vk

(
vi

√∑n
j=1 v

2
j

√∑n
j=1 ρjv

2
j

)
= −ρiδik

∥v∥g
∥v∥g̃

−ρivi
( ∥v∥g̃

∥v∥g − ρk
∥v∥g
∥v∥g̃

∥v∥2g̃
vk
)
.

Let us define

µi := −ρi
∥v∥g
∥v∥g̃

, Ai = −ρivi and Bi :=

∥v∥g̃
∥v∥g − ρi

∥v∥g
∥v∥g̃

∥v∥2g̃
vi.

Also set A = (A1, . . . , An) and B = (B1, . . . , Bn). Then we can write
(63) [Aij ] = diag(µ1, . . . , µn)− A⊗ B.

Since in TpM we have g = δij , it holds that

ωg(p) = ∂xk
(gijv

i)dxk ∧ dxj − δjkdx
j ∧ dvk.

Due this, formula (62) and the considerations made above a 2n× 2n-
square matrix Φ∗ωg̃ − tωg at (p, v) looks like

(
∗ [Aij] + tδij

−([Aij ] + tδij) 0

)
.

Calculate

det(Φ∗ωg̃ − tωg) =

∣∣∣∣
∗ [Aij] + tδij

−([Aij ] + tδij) 0

∣∣∣∣ = det([Aij ] + tδij)
2
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and

det(ωg) =

∣∣∣∣
∗ δij

−δij 0

∣∣∣∣ = 1.

We define

∆n(t) := det([Aij] + tδij) = det(diag (t + µ1, . . . , t+ µn)− A⊗ B).

Note that the last equality holds due equation (63). By the consider-
ations we made about the Paffians of the skew symmetric matrices, it
holds that

∆n(t) =
Pf(Φ∗ω̃ − tω)

Pf(ω)
.

Lemma 5.12. It holds that

(64)
∆n(t) = (t + µ1)(t+ µ2) · · · (t+ µn)

−(A1B1)(t+ µ2)(t + µ3) · · · (t+ µn)
. . .− (t+ µ1)(t+ µ2)(t+ µ3) · · · (t + µn−1)(AnBn).

Proof. We prove the claim by induction. We start with step n = 2.

∆2(t) =

∣∣∣∣
t+ µ1 −A1B1 −A2B1

−A1B2 t + µ2 − A2B2

∣∣∣∣

= (t+µ1)(t+µ2)−A1B1(t+µ2)−(t+µ1)A2B2+A1A2B1B2−A1A2B1B2

= (t+ µ1)(t + µ2)−A1B1(t+ µ2)− (t+ µ2)A2B2.

Assume that ∆n−1(t) and ∆n−2(t) satisfy equation (64). Let us prove
the claim in the case of ∆n(t). By induction assumption we have

n∆n(t) =
n∑

i=1

(t + µi −AiBi)detMii +
n∑

i,j=1 j ̸=i

(−1)i+j+1AiBjdetMij

=
n∑

i=1

(t+ µi − AiBi)detMii +
n∑

i,j=1 j ̸=i

(−1)i+j+1AiAjBiBjdetM̃ij

= n

⎛

⎝
(t+ µ1)(t+ µ2) · · · (t+ µn)
−(A1B1)(t+ µ2)(t + µ3) · · · (t+ µn)
. . .− (t+ µ1)(t+ µ2)(t+ µ3) · · · (t + µn−1)(AnBn)

⎞

⎠

(65)

+
n∑

i,j=1 i ̸=j

(
AiAjBiBj

n∏

k=1, k ̸=i,j

(t+µk)
)
+

n∑

i,j=1, j ̸=i

(−1)i+j+1AiAjBiBjdetM̃ij .

Here Mij is the n − 1-square matrix where we have deleted the ith

column and jth row. Matrix M̃ij is like Mij , but Bi and Aj are removed
from jth row and ith column. For instance

M̃12 = M̃21
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=

⎛

⎜⎜⎜⎜⎝

−1 −A3 −A4 · · · −An

−B3 t+ µ3 − A3B3 −A4B3 · · · −AnB3

−B4 −A3B4 t+ µ4 −A4B4 · · · −AnB4
...

...
... . . . ...

−Bn −A3Bn −A4Bn · · · t + µn −AnBn

⎞

⎟⎟⎟⎟⎠
.

If we can prove that (65) is zero, then we are done with the induction
claim for ∆n(t). To verify that (65) is zero, it suffices to prove that

detM̃ij = (−1)i+j
n∏

k=1,k ̸=i,j

(t+ µk).

This follows by an induction in a following way. Calculate detM̃ij with
respect to the ith row. Then one of the sub determinants of M̃ij is
(−1)i+j∆n−2(t) and all the others have a similar looking form as M̃ij .
Therefore

detM̃ij =

(−1)i+j
( n∏

k=1, k ̸=i,j

(t+ µ1)−
n∑

k=1, k ̸=i,j

(
AkBk

n∏

ℓ=1, ℓ ̸=i,j,k

(t+ µℓ)
))

+
n∑

k=1, k ̸=j

(
(−1)i+kAkBk(−1)j+k

n∏

ℓ=1, ℓ ̸=i,j,k

(t + µℓ)
)

= (−1)i+j
n∏

k=1,k ̸=i,j

(t + µk).

!
Let δn−1(t) be such a polynomial of degree n− 1 that

∆n(t) = (a− t)δn−1(t),

where a = a(p, v) =
∥v∥g̃
∥v∥g . The polynomial δn−1 exists since

(a+ µi) =
∥v∥g̃
∥v∥g

− ρi
∥v∥g
∥v∥g̃

= AiBi

∥v∥2g̃
ρiv2i

and by equation (64) it holds that

∆n(a) =
n∏

i=1

(a+ µi)
(
1−

∑n
j=1 ρjv

2
j

∥v∥2g̃

)
= 0.

Write
∆n(t) = tn+an−1t

n−1+ · · ·+a0 and δn−1(t) = tn−1+bn−2t
n−2+ · · ·+b0

for some (ai)
n−1
i=0 and (bi)

b−2
i=0 . Calculate

(t− a)δn−1(t) = (t− a)(tn−1 + bn−2t
n−2 + · · ·+ b0)

= tn+(bn−2−a)tn−1+ . . .+(bn−k−1−abn−k)t
n−k+ . . .+(b0−ab1)t−ab0.
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Then it holds that

(66)

an = bn = 1
an−1 = bn−2 − a
...
an−k = bn−k−1 − abn−k
...
a0 = −ab0

Note that the coefficient a0 can be calculated from formula (64) in the
following way

a0 = ∆n(0) = µ1 · · ·µn −A1B1µ2µ3 · · ·µn − . . .− µ1µ2µ3 · · ·µn−1AnBn

= (−1)n(ρ1 · · · ρn)
(∥v∥g
∥v∥g̃

)n
+(−1)nρ1 · · ·ρn

(∥v∥g
∥v∥g̃

)n−1
n∑

i=1

v2i

( ∥v∥g̃
∥v∥g − ρi

∥v∥g
∥v∥g̃

∥v∥2g̃

)

= (−1)n(ρ1 · · ·ρn)
((∥v∥g

∥v∥g̃

)n

+
(∥v∥g
∥v∥g̃

)n−1( ∥v∥g̃
∥v∥g ∥v∥

2
g −

∥v∥g
∥v∥g̃

∥v∥2g̃
∥v∥2g̃

))

= (−1)n(ρ1 · · ·ρn)
(∥v∥g
∥v∥g̃

)n
.

By formula (66) it holds that

(67) b0 = −a0
a

= (−1)n+1(ρ1 · · · ρn)
(∥v∥g
∥v∥g̃

)n+1

.

In the first section of this appendix we defined that

Sk((p, v)) :=
(detgp

detg̃p

) k+2
n+1

k∑

i=0

ciG
k−i+1(v)

and

Ik((p, v)) = gp(Sk((p, v)), v).

Thus it holds that

S0((p, v)) =
(detgp

detg̃p

) 2
n+1

G(v)



DISTANCE DIFFERENCE FUNCTIONS 49

and therefore we have that

I0(x, v) =
(detgp

detg̃p

) 2
n+1

gx(G(v), v)

=
(detgp

detg̃p

) 2
n+1

vT (gg−1g̃)v

=
(detgp

detg̃p

) 2
n+1

g̃ijv
ivj

= (ρ1 · · · ρn)−
2

n+1 g̃(v, v)

= (ρ1 · · · ρn)−
2

n+1∥v∥2g
(∥v∥g̃
∥v∥g

)2

= 2Hg(v)((−1)n+1b0)
− 2

n+1 .

Note that

δn−1(t) =
Pf(Φ∗ω̃ − tω)

Pf(ω)(a− t)

and by Theorem 5.10 each coefficient of polynomial δn−1 is an integral
of geodesic flow of g. Since Hg is an integral of geodesic flow of g, also
I0 is an integral of geodesic flow of g by calculations made above.

Since we do not need other functions Ik, k ≥ 1 in our results, we
skip the proofs to show that each Ik has a similar kind of connection
to coefficient bk as I0 and b0 have. This is done in [41]. Thus we have
proved Theorem 5.1 that is by Matveev and Topalov and is the main
result of [41].
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