DETERMINATION OF A RIEMANNIAN MANIFOLD
FROM THE DISTANCE DIFFERENCE FUNCTIONS

MATTI LASSAS AND TEEMU SAKSALA

ABSTRACT. Let (N, g) be a Riemannian manifold with the dis-
tance function d(z,y) and an open subset M C N. For z € M we
denote by D, the distance difference function D, : F x F — R,
given by D, (z1,22) = d(x,2z1) — d(z,22), 21,20 € F' = N\ M. We
consider the inverse problem of determining the topological and
the differentiable structure of the manifold M and the metric gy
on it when we are given the distance difference data, that is, the
set F', the metric g|r, and the collection D(M) = {D,; « € M}.
Moreover, we consider the embedded image D(M) of the manifold
M, in the vector space C(F x F'), as a representation of manifold
M. The inverse problem of determining (M, g) from D(M) arises
e.g. in the study of the wave equation on R x N when we observe in
F' the waves produced by spontaneous point sources at unknown
points (¢,x) € R x M. Then D,(z,z22) is the difference of the
times when one observes at points z; and 2o the wave produced by
a point source at x that goes off at an unknown time. The prob-
lem has applications in hybrid inverse problems and in geophysical
imaging.
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ifolds, wave equation.
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1. INTRODUCTION

1.1. Motivation of the problem. Let us consider a body in which
there spontaneously appear point sources that create propagating waves.
In various applications one encounters a geometric inverse problem
where we detect such waves either outside or at the boundary of the
body and aim to determine the unknown wave speed inside the body.
As an example of such situation, one can consider the micro-earthquakes
that appear very frequently near active faults. The related inverse prob-
lem is whether the surface observations of elastic waves produced by the
micro-earthquakes can be used in the geophysical imaging of Earth’s
subsurface |23, 56|, that is, to determine the speed of the elastic waves
in the studied volume. In this paper we consider a highly idealized
version of the above inverse problem: We consider the problem on an n
dimensional manifold N with a Riemannian metric g that corresponds
to the travel time of a wave between two points. The Riemannian
distance of points z,y € N is denoted by d(x,y). For simplicity we as-
sume that the manifold N is compact and has no boundary. Instead of
considering measurements on boundary, we assume that the manifold
contains an unknown part M C N and the metric is known outside
the set M. When a spontaneous point source produces a wave at some
unknown point x € M at some unknown time ¢ € R, the produced
wave is observed at the point z € N \ M at time T, ,(z) = d(z,z) + t.
These observation times at two points z1,2, € N \ M determine the
distance difference function

(1) D, (z1,20) = Ty (1) — Typ(22) = d(21,x) — d(22, ).

Physically, this function corresponds to the difference of times at z;
and zo of the waves produced by the point source at (x,t), see Fig 1.
and Section 3. An assumption there is a large number point sources
and that we do measurements over a long time can be modeled by the
assumption that we are given the set N\ M and the family of functions

{Dy; € X} CC((N\M)x(N\M)),

where X C M is either the whole manifold M or its dense subset, see
Remark 2.5.

1.2. Definitions and the main result. Let (N, g;) and (Ny, g2) be
compact and connected Riemannian manifolds without boundary. Let
dj(x,y) denote the Riemannian distance of points z,y € N;, j = 1,2.
Let M; C N, be open sets and define closed sets F; = N;\ M;. Suppose
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FIGURE 1. The distance difference functions are related
to observation on the closed manifold N that contains an
unknown open subset M and its known complement F' =
N\ M. The distance difference function D, associated
to a source point x € M has, at the observation points
21,29 € F, the value D, (21, z2) = d(x, z1)—d(x, z2). Con-
sider the wave equation and a wave that is produced by a
point source at x that goes off at an unknown time and
that is observed on F. Then the difference of the times
when the wave 1s observed at the points z; and zy s equal
to D,(z1,22). The time difference inverse problem is de-
termine the topogy and the isometry type of (N, g) from
such observations when x runs over a dense subset of M.

Fji"t # (). This is a crucial assumption and we provide a counterexample
for a case Fj™ = () in the Appendix 4.

Below, we assume that we know F} as a differentiable manifold, that
is, we know the atlas of C'"°-smooth coordinates on F}, and the metric
tensor g;|r, on Fj, but we do not know the manifold (Mj, g;[as,). We

j
assume F}; to be a smooth manifold with smooth boundary 0F; = dM,;.

Definition 1.1. For j = 1,2 and all points x € N; we define the
distance difference function
D! Fy x Fj = R, Di(z, 29) := dj(21, ) — d;(22, )

where F; = N; \ M;. Recall that here d; is the Riemannian distance
function of manifold N;. We denote by

Di:N; - C(F; x Fj), Di(x) =D

the map from a point x to the corresponding distance difference function
Dj. The pair (F}, gj|r;) and the collection

DI(M;) ={D!; v € M;} C C(F; x Fj)

x )

of the distance difference functions of the points x € M; is called the
distance difference data for the set M;.

We emphasize that the above collections {DI(-,); = € M;} are given
as unindexed subsets of C'(F; x F}), that is, for a given element DI (-, -)
of this set we do not know what is the corresponding “index point” x.
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To prove the uniqueness of this inverse problem, we assume the fol-
lowing:

(2) There is a diffeomorphism ¢ : Fy — Fy such that ¢*gs|r, = 91|m,
(3) {D:(,7) s @€ My} ={Dy(6(-),6(-)) 5 y € Ma}.

The following proposition states that using the small data D;(M;)
we can construct the bigger data set D;(1V;).

Proposition 1.2. Assume that (2)-(3) are valid. Then:

(i) The map ¢ : Fy — F,, is an isometry, that is, di(z,w) =
d2(¢(2), p(w)) for all z,w € Fy.

(ii) The collections D;j(N;) = {Di(-,-); © € N;} C C(F; x F}) are
equivalent in the following sense

(4) {Da() 5 w € i} ={Dy(6(). 6(-) ; y € No}.

We postpone the proof of this proposition and the other results in
the introduction and give the proofs later in the paper.
The main theorem of the paper is the following:

Theorem 1.3. Let (Ny,g1) and (Ns, go) be compact and connected
Riemannian manifolds, without boundary, of dimension n > 2. Let
M; C N; be open sets and define closed sets F; = N; \ M,;. Suppose
ijt # 0. We assume Fj to be a smooth manifold with smooth bound-
ary OF; = OM;. Suppose (2)-(3) are valid. Then the manifolds (Ny, g1)
and (No, g2) are isometric.

We prove Theorem 1.3 in Section 2. This proof is divided into 5
subsections. In the first we set notations and consider some basic
facts about geodesics. In the second we prove Proposition 1.2. In
the third we show that manifolds (/N;, g;) are homeomorphic. In the
fourth subsection we will construct smooth atlases with which we show
that manifolds (N, g;) are diffeomorphic. In fifth subsection we will
use techniques developed in papers [44] and [41] to prove that manifolds
(Nj, g;) are isometric.

Finally, in Section 3 we give an example how the main result can be
applied for an inverse source problem for a geometric wave equation.

1.3. Embeddings of a Riemannian manifold. A classical distance
function representation of a Riemannian manifold is the Kuratowski-
Wojdyslawski embedding,

K :xw— disty(z,-),

from M to the space of continuous functions C'(M) on it. The map-
ping K : M — C(M) is an isometry so that (M) is an isometric
representation of M in a vector space.
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An other important example is the Berard-Besson-Gallot represen-
tation [10]

G:M—C(MxR,), Gx)=dy(x,-,-)

where (z,y,t) — @y (x,y,t) is the heat kernel of the manifold (M, g).
The asymptotics of the heat kernel &y, (z,y,t), as ¢ — 0, determines
the distance d(z,y), and by endowing C(M x R,) with a suitable
topology, the image G(M) C C(M x Ry) can be considered as an
embedded image of the manifold M.

Theorem 1.3 implies that the set D(M) = {D,; x € M} can be
considered as an embedded image (or a representation) of the manifold
(M, g) in the space C(F x F') in the embedding = — D,. Moreover,
in the proof of Theorem 1.3 we show that (F,g|r) and the set D(M)
determine uniquely an atlas of differentiable coordinates and a metric
tensor on D(M). These structures make D(M) a Riemannian manifold
that is isometric to the original manifold M. Note that the metric is
different than the one inherited from the inclusion D(M) C C(F x F).
Hence, D(M) can be considered as a representation of the manifold M,
given in terms of the distance difference functions, and we call it the
distance difference representation of the manifold of M in C'(F x F).

The embedding D is different to the above embeddings I and G in
the following way that makes it important for inverse problems: With
D one does not need to know a prori the set M to consider the function
space C'(F' x F') into which the manifold M is embedded. Similar type
of embedding have been also considered in context of the boundary
distance functions, see Subsection 1.4.1.

In addition to the above tensor g on NV, let us consider a sequence
of metric tensors gx, k € Z, on the manifold N and assume that
gklr = glp on F C N. We denote the Riemannian manifolds (N \
F, gc|nmr), having the boundary OF, by (Mg, gr). Also, we denote
by D(My) C C(F x F) the distance difference representations of the
manifolds (M, gx) and let dy (X7, X5) denote the Hausdorff distance
of sets X1, Xo C C(F x F'). When dy(D(My),D(M)) — 0, as k — oo,
an interesting open question is, if the manifolds (My, gx) converge to
(M, g) in the Gromov-Hausdorff topology. This type of questions have
been studied for other representation e.g. in |2, 10|, but this question
is outside the context of this paper.

1.4. Earlier results and the related inverse problems. The in-
verse problem for the distance difference function is closely related to
many other inverse problems. We review some results below:

1.4.1. Boundary distance functions and the inverse problem for a wave
equation. The reconstruction of a compact Riemannian manifold (M, g)
with boundary from distance information has been considered e.g. in
[25, 28|. There, one defines for z € M the boundary distance function



6 MATTI LASSAS AND TEEMU SAKSALA

ry : OM — R given by 7,(2) = d(x,z). Assume that one is given
the boundary M and the collection of boundary distance functions
corresponding to all x € M that is,

(5) OM and R(M):={r, € C(OM); z € M}.

It is shown in [25, 28] that only knowing the boundary distance data
(5) one can reconstruct the topology of M, the differentiable structure
of M (i.e., an atlas of C'"*°-smooth coordinates), and the Riemannian
metric tensor g. Thus R(M) C C(OM) can be considered as an iso-
metric copy of M, and the pair (OM, R(M)) is called the boundary dis-
tance representation of M, see |25, 28|. Similar results for non-compact
manifolds is considered in [16]. Constructive solutions to determine the
metric from the boundary distance functions have been developed in
[14] using a Riccati equation [54] for metric tensor in boundary normal
coordinates and in [53] using the properties of the conformal killing
tensor.

The results of this paper is closely related to data (5): Knowing the
distance difference functions DI : OM x OM — R

DM (21, 2) = d(z,2) — d(z, 2), (21, 2) € OM x OM

is equivalent to knowing the boundary distance functions with error
e(z), depending on € M, that is, the functions z — r,(z) — (z).
Indeed, r,(z) — e(z) = DM (2, z) when &(z) = d(z, 22).

Physically speaking, functions r, are determined by the wave fronts
of waves produced by the delta-sources ¢, o that take place at the point
z at time s = 0. The distance difference functions D are determined
by the wave fronts of waves produced by the delta-sources 9, , that
take place at the point x at an unknown time s € R.

Many hyperbolic inverse problems with time-independent metric re-
duce to the problem of reconstructing the isometry type of the manifold
from its boundary distance functions. Indeed, in [25, 24, 27, 29, 30,
33, 49, 50] it has been show that the boundary measurements for the
scalar wave equation, Dirac equation, and for Maxwell’s system (with
isotropic scalar impedance) determine the boundary distance functions
of the Riemannian metric associated to the wave velocity.

1.4.2. Hybrid inverse problems. Hybrid inverse problems are based on
coupling two physical models together. In a typical setting of these
problems, the first physical system is such that by controlling the
boundary values of its solution, one can produce high amplitude waves,
that create, e.g. due to energy absorption, a source for the second
physical system. Typically, the second physical system corresponds to
a hyperbolic equation with the metric

ds? = c(x)2((dz")? + - - - + (da")?)
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corresponding to the wave speed ¢(x). Examples of such hybrid inverse
problems are encountered in thermo-acoustic and photo-acoustic imag-
ing see e.g. |1, 5, 6, 7, 8, 57, 59, 58, 55| and quantitative elastography
[4, 20, 21]. In some cases one can use beam forming in the first phys-
ical system to make the source for the second physical system to be
strongly localized, that is, to be close to a point-source, see e.g. [4, 21].

To simplify the above hybrid inverse problem, one often do approxi-
mations by assuming that the wave speed in the second physical system
is either a constant or precisely known. Usually one also assumes that
the time moment when the source for the second physical system is
produced is exactly known. However, when these approximations are
not made, the wave speed c(z) needs to be determined, too. When the
source of the second physical system is produced at the given time in the
whole domain M, the problem is studied in [40, 60]. In the cases when
the source of the second physical system are close to a point sources,
one can try to determine ¢(x) from the wavefronts that are produced
by the point sources and are observed outside the domain M. This
problem can be uniquely solved by Theorem 1.3 and we consider it in
detail below in Section 3.

1.4.3. Inverse problems of micro-earthquakes. The earthquakes are pro-
duced by the accumulated elastic strain that at some time suddenly
produce an earthquake. As mentioned above, the small magnitude
earthquakes (e.g. the micro-earthquakes of magnitude 1 < M < 3) ap-
pear so frequently that the surface observations of the produced elastic
waves have been proposed to be used in the imaging of the Earth
near active faults |23, 56]. The so-called time-reversal techniques to
study the inverse source and medium problems arising from the micro-
seismology have been developed in [3, 15, 22].

In geophysical studies, one often approximates the elastic waves with
scalar waves satisfying a wave equation. Let us also assume that the
sources of such earthquakes are point-like and that one does measure-
ments over so long time that the source-points are sufficiently dense
in the studied volume. Then the inverse problem of determining the
the speed of the waves in the studied volume from the surface obser-
vations of the microearthquakes is close to the problem studied in this
paper. We note that the above assumptions are highly idealized: For
example, considering the system of elastic equations would lead to a
problem where travel times are determined by a Finsler metric instead
of a Riemannian one.

1.4.4. Broken scattering relation. If the sign in the definition of the
distance difference functions is changed in (1), we come to distance
sum functions

(6) D;—(Zl)ZQ) = d(Zl,fL') +d(22,l‘)7 U M) 21,72 € N\M
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This function gives the length of the broken geodesic that is the union
of the shortest geodesics connecting z; to  and the shortest geodesics
connecting x to zp. Also, the gradients of D) (21, 22) with respect to
z1 and 2o give the velocity vectors of these geodesics. The functions
(6) appear in the study of the radiative transfer equation on manifold
(N, g), see [13, 45, 46, 47, 52|. Also, the inverse problem of determining
the manifold (M, g) from the broken geodesic data, consisting of the
initial and the final points and directions, and the total length, of the
broken geodesics, has been considered in [31].

2. PROOF OF THE MAIN RESULT

2.0.1. Notations and basic facts on pre geodesics. When we are con-
cerning only one manifold, we use the shorthand notations M, N, F
and ¢ instead of ones with sub-indexes.

Let (N, g) be a compact and connected Riemannian n-manifold with-
out boundary and n > 2. We assume that M C N is an open set of N
and set F' = N\ M is a compact manifold with smooth boundary. Sup-
pose that set F' contains an open set and the we know the Riemannian
structure of manifold (F, g|r).

We denote the Riemannian connection of the metric g as V. An unit
speed geodesic of (N, g) emanating from a point (p, &) € SN is denoted
by Ype(t) = exp, (). Here, SN — {(p,€) € TN; [il, = 1}. We use
a short hand notation Dy := V5 4 for the covariant differentiation in
the direction *, ¢ for vector fields along geodesic v, .

Let p € N and choose some smooth coordinates (U, X) at point p.
Denote the Cristoffel symbols of connection V by Fﬁ i

We say that a curve a([ty,1s]) is distance minimizing if the length
of this curve is equal to the distance of its end points a(t;) and «(ty).
Also, a geodesic that is distance minimizing is called a minimizing
geodesic.

We say that a curve a([ti,ts]) is a pre-geodesic, if a(t) is a C'-
smooth curve such that &(t) # 0 on t € [ty,t5], and «([t1,t2]) can be
re-parametrized so that it becomes a geodesic.

Let us next recall some properties of the pre-geodesics. Let us con-
sider a geodesic curve v : R — N, satisfying in local coordinates the
equation

d*~* dyt, dy?
(1) D(t) = — () + TH(O) T 7 =0, k€ {L...,n}.

We need the following result, often credited to Levi-Civita [36] :

Lemma 2.1. Let k : R — R be continuous and 7 : R — N be a
C?-curve that satisfies a local equation

®) ddZ? (s) +Fiﬁ(3)>i@(8>%(8) = H(s)%(s), ke{l,... n}
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Then there exists a change of parameters t : R — R satisfying

() %(3) = exp ( / (r)dr).

such that curve v(s) := 7(t(s)) solves the geodesic equation (7).
Proof. The proof is a direct computation. O

Let us now consider a family of curves. Let f : TU — R be a
continuous function that satisfies

(10) flav) = af(v), for all a € R and v € TU,

i.e., it is homogeneous of degree 1. Let I' be a family of all such O*-
curves 7 : R — N in U that satisfy the equation

d*~k Ayt dy? dvy dy*
11 NG Y (5) = <_ >_ .
1) S+ THEE (9 (5) = £(S ) D (s)
By Lemma 2.1 each ¥ € I is a pre-geodesic of connection V. Thus
equations (7) and (11) are equivalent in the sense that curves satisfying

the latter one, for appropriate f, are also geodesics of metric g, but
parametrized in a different way.

The distance function of N is denoted by d(x,y) = dy(z,y) for
x,y € N. Denote by v the interior normal vector field of M. The
boundary cut locus function is 79y, : OM — R,

(12) Ton (2) = sup{t > 0; d(v:,,(t), OM) = t}.
Also, we use the cut locus function of N that is 7: TN — R,
(13) 7(,&) = sup{t > 0; d(exp,(t£),x) = t}.

Functions 755/(2) and 7(z, &) are continuous and satisfy the inequality
(see Lemma 2.13 of [25])

(14) T(z,v(2)) > Tom(2), 2z € OM.
2.1. Extension of data. In this subsection we prove Proposition 1.2.

Let 21,29 € OF = OM. Then using the triangular inequality and
that d(z1, 22) = D.,(z1, 22) we see easily that

(15) d(z1,22) = sup Dy (21, 22).

xeM
Thus D(M) determines the distances of the boundary points, that is,
the function d|gyrxon : OM x OM — R.

Lemma 2.2. Suppose that (2)-(3) are valid. Then it holds that dy(w, z) =
dy(p(w), (2)).
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Proof. Let w,z € F;. Let 7 be a minimizing unit speed geodesic in
N from z to w and denote S = ([0, dy(w, z)]) N OM;. When S = (),
the facts that ¢*go = g1 and that the path ¢(v) connects ¢(2) to ¢(w)
imply that d;(w, z) > da(p(w), ¢(2)).

Suppose that S # (). Let ey, e; € S be such that

di(w,e;) = min{dy(w,z) : x € S} and d;y(z, e2) = min{d;(z,z) : © € S}.
As (2)-(3) is valid, the formula (15) implies that

di(e1,e2) = da(d(er), Pplea)).
Since ¢ : F} — F; satisfies ¢*gy = ¢, it holds that
di(w, z) = di(w, e1) + dy(eq, e2) + da(es, 2)

> dy(p(w), p(e1)) + da(d(e1), d(e2)) + da(d(e2), 9(2))
> dy(p(w), ¢(2))

The claim follows by changing the roles of N; and Ns. U

Let us consider the case when x € F;. Then, Lemma 2.2 implies
that for z1, zo € F} we have

Di(zl,Zg) = dl(l',zl)—dl(l',ZQ)

= da(d(x), d(21)) — do((x), P(22))
= D2, (0(). 6(=2)).

Hence,
(16) {D:(,) 5 we B} C{DY(6(),6()) 5 y € Fa}.

Changing roles of N; and N, and considering ¢! : F, — F) instead of
the diffeomorphism ¢ : F} — F,, we see that in formula (16) we have
the equality. This and formula (3), together with Lemma 2.2, imply
Proposition 1.2. U

2.2. Manifolds N; and N, are homeomorphic. To simplify the
notations, we will next in our considerations omit the sub-indexes of
sets My, Ny, and F} and just consider the sets M, N, and F'.

Let x € N and define a function D, : F x F' — R by a formula

Dy(z1,20) = d(z, z1) — d(z, z3).

Let D: N — C(F x F') be defined as D(z) = D,. We give the function
space C'(F' x F') the Banach space structure with the sup-norm.

Theorem 2.3. Image D(N) C C(F x F) is a topological manifold
homeomorphic to manifold N and especially D(M) is homeomorphic
to M.
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Proof. The proof consists of four short steps.

Step 1 First, we want to show that D is continuous. Let x,y € N.
Using the triangular inequality we see that

||Da: - Dy||L°°(F><F) = sup |Dz(21, 22) - Dy(21722)|
21,22€F
(17) < sup |d(z,z1) = d(y, z1)| + |d(z, 22) — d(y, 22)]
z1,22€F
< 2d(z,y).

Thus D is 2-Lipschitz and therefore continuous. Next we consider in-
jectivity of D.

FIGURE 2. The setting in Step 2 in the proof of Theorem
2.3. We consider points x,y € N and points p and q such
that p is on a distance minimizing geodesic from q to x.
Then this geodesic can be extended to a distance mini-
mizing geodesic from q to y. Similarly, the point p is on
a distance minimizing geodesic from q to x and this geo-
desic can be extended to a distance minimizing geodesic
from @ to y. Then the union of the (blue) geodesic from
q to x and the (red) geodesic B is a lenght minimizing
curve from q to y that is not a geodesic.

Step 2. Suppose that x,y € N are such that D, = D, and = # y.
Let ¢ € F™ and denote ¢, = d(q,z) and ¢, = d(q,y). Next, without
loss of generality, we assume that ¢, < ¢,. Also, let n € S;N be such
that v,,([0,¢;]) is a minimizing geodesic from ¢ to z. Let s; > 0 be
such that s; < min(¢,,¢,) and ~,,([0,s1]) € F™. Consider a point
P = Yqn(s) with s € [0, s;]. Then we see that

(d(q,p) +d(p,y)) —d(a,y) = d(g.p)+ Dy(p,q)
= d(g,p) + Dx(p,q)
= (d(g,p) +d(p,z)) — d(q,x) =0
and hence p is on a minimizing geodesic from ¢ to y.
Let us consider a minimizing geodesic a from p to y with the length

¢, — s. Then the union of the geodesics v,,([0, s]) and « is a distance
minimizing curve from ¢ to y and thus this union is a geodesic. This



12 MATTI LASSAS AND TEEMU SAKSALA

implies that « is a continuation of the geodesics v,,([0, s]) and hence
Y = Ygu(ly). Summarizing, 7,,([0,%,]) and 7,,([0,¢,]) are distance
minimizing geodesics from ¢ to x and y, respectively. Since x # y, we
have ¢, # (,. Then, as we have assumed that ¢, < /,, we see that
by <ty

Let ¢ € F™ be a point such that g is not on the curve 7,,(R).
Clearly, such a point exists due to measure theoretic arguments. Let
0, = d(q,z) and f = d(q,y). Also, let 7 € SzN be such that
va.4((0, ZE]) is minimizing geodesic from ¢ to z. As above, we see that
then ~v;5([0, Zx]) and 757([0, Zy]) are distance minimizing geodesics from
q to x and y, respectively. However, the geodesics 7, ,(R) and 755(R)
do not coincide as point sets and hence the vectors 5,,(¢,) € T, N and
’yqn(f ) € T, N, are not parallel. Recall that ¢, < ¢,. In the case when
l, < Ey, let 5 be the geodesic segment ”yqn([ﬁx,f ]) conneting x to y.
In the case when 0, > ﬁy, let 8 be the geodesic segment ”y;]jﬁ([lz,@])
connecting = to y.

Then we see that the union of the paths ~,,([0, ¢,]) and 3 is a dis-
tance minimizing path from ¢ to y. As the vectors 7, ,(¢,) and %Aﬁ(@;)
are not parallel, we see that the union of these curves is not a geo-

desic. This is contradiction and hence there are no x,y € N such that
D, =D, and z #y. Thus, D: N — C(F x F') is an injection.

Step 3. So far we have proved the continuity and injectivity of
mapping D. Since the domain N of the mapping D is compact and
(C(F x F),| - |loo) is a Hausdorff space as a metric space, it holds by
basic results of topology that mapping D : N — D(N) is a homeomor-
phism.

Step 4. By assumption M C N is open and therefore mapping D :
M — D(M) is open. This proves that the mapping D : M — D(M) is
a homeomorphism. O

Define a mapping
(18) O:C(Fy x Fy) = C(Fy x F), ®(f) = fo(px o).

Here fxg: XxX — Y xY isdefined as (fxg)(x1,22) = (f(z1), g(x2)) €
Y x Y for mappings f,g : X — Y. Sometimes, to simplify the nota-
tions, we denote D! = D;, j = 1,2, see Def. 1.1.

Theorem 2.4. Suppose that Riemannian manifolds (N1, g1) and (N2, go)
are as in section 1.2 and the assumptions of the Proposition 1.2 are
valid. Then mapping

(19) \I/:D O(I)ODQ N2—>N1
is a homeomorphism. In addition it holds that U= g, = ¢.

Proof. Due the Theorem 2.3 we only have to prove that mapping ®
is a homeomorphism. Note that mapping ® has an inverse mapping
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grrgo (¢t x ¢ h). Let (z,y) € Fy X Fy and f,g € C(Fy x F) then
it follows

[(@(f) = @(9)(z, )| = |f(¢(x), &(y)) — 9(d(), ¢(y)] < [If = glloe-

This proves the continuity of . A similar argument where ¢ is replaced
by ¢! proves that mapping ® is a homeomorphism.
Let = € F; and denote y = ¢(x). Then

Vi z) = (D 0@ oDy)(x) =D, (Dy(é (1) x 6 (1))
= D, N(Dy) =y

—
Nl

g

Remark 2.5. As the map D : M — D(M), x — D,, is a homeomor-
phism, we see that for a dense set X C M we have

DM)=c(D(X))=c{D,; € X} CC(N\M)x (N\M))}

where the closure cl is taken with respect to the topology of C((N \
M) x (N \ M)). This means that the distance difference functions
corresponding to x in a dense set X determine the distance difference
functions corresponding to the points in the whole set M.

2.3. Manifolds N; and N, are diffeomorphic. Our next goal is to
construct such smooth atlases for manifolds /N; that homeomorphism
U : Ny — N; of Theorem 2.4 is a diffeomorphism.

Lemma 2.6. Let (E,(-,-)) be an inner product space of dimension n

and v € E,v # 0. Then there exists a basis vy,...,v, of E be such
. 2 .

that |lv;]| = 1 for all j and v = b'vy + b*vg, b # % and b" # 0.

Moreover, for such vectors there exists € > 0 such that the vectors

v+ tug v v+ tu, v
lo+todl ol v+ toall o]l

are linearly independent for any t € (0,¢€).
Proof. Let v+ € E be such that
(20) (v,07) =0 and [[o]| = [[o*]].
We define
_ vk (D
R

Choose b' = ”%, i € {1,2} and complete the set {vy, v} to be a basis
of E/. This basis satisfies the first claim of the lemma.
Let us denote b = 0 for i € {3,...,n} so that v =3 | b'v;. Define

functions f; : R - R, i € {1,...,n} by
filt) = tlloll + 0 (o]l = [ltvs + v])).

Lie{1,2}.
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By the choice of numbers b; we have

df;
dt

<Uiav>
o]

0) = |Jv]| =¥ #0, foralli e {1,...,n}.

This implies that there exists € > 0 such that for all ¢ € (0,¢) and
i=1,2,...,n we have f;(t) # 0.
Let t € (0,¢) and let o' € R, ¢ € {1,...,n} be such that

"L vty v Lt b
(21) 0= a’( - ) = az( - )vi.
2 [o+tvil| ]l 2 lo+tvill ol

i=1 i=1

We are done, if we can show that equation (21) implies that a’ = 0 for
every i € {1,...,n}. Since (v;); is a basis it holds by (21) that each

=1

product a’ <i o ) = (. For the latter term the following holds.

lottvil] ol
< t+b ) 0
lo+tuill o]
if and only if
(2) fit) 0.
By the choice of € the equation (22) is not valid. Therefore a' = 0 for
every i € {1,...,n}. The claim is proved. O

Lemma 2.7. Let (N, g) be a compact Riemannian manifold of dimen-
sionn, v € N and € € TN, gy = 1. Let pue ¢ [0,6) & N be
a distance minimizing geodesic. Let 0 < h < (, z = v,¢(h), and
0 = d,e(h) € T.N. Then there exists a basis {n; : 1 = 1,2,....,n}
of T,N and € > 0 such that for all s € (0,¢) there is a neighborhood
W C N of x© such that the function

H:W = R" H(y) = (d(y, z) — d(y, 2))ie1, 2 = V2, (5)

1$ a smooth coordinate mapping.

FIGURE 3. A schematic picture of the coordinate system H.
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Proof. Since the geodesic 7, ([0, /]) is distance minimizing, the geo-
desic segment 7, ([0, h]) from x to z has no cut points. Moreover,
there exist neighborhoods U, and U, of z and z such that the mapping
(p,q) — d(p,q) is smooth on U, x U,. As the geodesic 7, ([0, h]) has
no cut points, the differential of exp, at v := h € T, N is invertible.
Choose vectors vy, ve € TN as in Lemma 2.6 and let (v;)!; be a basis
of T,N. By Lemma 2.6 there exists 6 > 0 such that for all ¢t € (0, )

the vectors
v+ tug v v+ tu, v

lo+toil Al lo+ toall (0]
are linearly independent. We define vectors

n; = D(exp,)|vvi, 1 =1,2,...,n.

Notice that this is a basis of T, N. Consider curves ¢;(t) := exp, (7., (t))
in tangent space T,,N. These curves have the following properties

(23)

6:(0) = v and (0) = o (exp; ! (Yo (D))o = Dlexps ) = vs.

dt
Next we will show that there exists € > 0 such that for each 0 <t < ¢
the vectors {”Z’ 3H it =1 ,n} are linearly independent. By
equation (23) it follows that for each i = 1,... n the curves
ci(t) v v+ ty; v
le: @l vl [ +tvil| o]l

vttv; v .
lottvill vl
i =1,...,n} are linearly independent for each 0 < t < ¢ the sought

e € (0, 5) exists by the Taylor expansion of ¢ — Toit E ;H ”z”.

have the same initial point and velocity. Since vectors {

By the preparations made above, it holds for all s € (0,¢) that
gradients
ci(s) v
N COI ]
are linearly independent, where z; := exp,(¢i(s)) = V.. (5) € U.. Then
due to the Inverse function theorem it follows that there exists such a
neighborhood W of = that function

H:W — Rna H(y) = (d(y7 Zi) - d(y7 Z))?:l

is a smooth coordinate mapping. O

Next we consider the homeomorphism W : Ny — N; of Theorem 2.4.

Theorem 2.8. Suppose that Riemannian manifolds (N1, g1) and (N2, go)
are as in section 1.2 and Proposition 1.2 is wvalid. Then mapping
U : Ny — Ny of formula (19), is a diffeomorphism.

Proof. Note that for any p € N, and all ¢,r € F5 holds
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Let © € Ny, y € Fi" and denote 7 = ¥(z) and § = ¥(y). Let
h € (0,dy(z,y)) be such that z := v, ¢ (h) € F;™ and 7v,¢([0,h]) C
Fimt | where 7, ¢, is a minimizing unit speed geodesic from z to y and
Z(h) = U(z(h)) € Fj"*. Note that by the choice of z it holds that it is
not a cut point of x on curve v, ¢,. Therefore mapping p — Df)(r, q) is
smooth, if p is close to x and 7, ¢ are close to z. Since

Dg(y’ 2) - D%(g7z)>d2(zay) Z dl(ga@) and dg(l’,y) = dg(!L‘,Z)—f-dg(Z,y),

we deduce using the triangle inequality that

dl(.%/, g) - dl(.%/, g) + dl(g, N)
Therefore there exists an unit speed distance minimizing geodesic 1z ¢,
from 7 to y that also goes trough z. Therefore mapping p — D})(?, q)
is smooth, when p is close to = and 7, q are close to z
Let us denote h = dy(z,%). Let v = h&; € T, Ny and 6§ = J,¢,(h) €
T.N,. Note that assumptions of Lemma 2.7 are valid for o, h and 7, ¢,.
By data (1.2) it holds that ¢—1 : Fi" — Fi" is such a diffeomorphism

that g1 = (¢~')*ga. Therefore it holds that (¢~1).0 = 4z¢,(h) € Tz Ny
and it also holds that

(24) Aéz := D(exp; ')z 0 (¢7). 0 D(exp, )62 = &1
Let v+ € T, N, be as in formula (20). By [12], formula (I1.7.2)

D(exp,)[sv* = D(exp,)ne,v™ = h~"J(h).
where J is a Jacobi field along v, ¢, satisfying the following initial con-
ditions

J(0) =0 and V,J(0) = v*.

Since by [39], formula (10.6) it holds that .J is orthogonal to 4, ¢, we
conclude that (Avt &), = 0. We denote v := h&;. Let vectors

v; = Wr(\}# for i € {1,2}, c.f. the proof of 2.6. Then

~12
v %(A’Ul + Awvy) and % =V2h.

Thus we can find bases (v;)}_; C TNy and (v;)!, C TN, as de-
scribed in Lemma 2.6.

Let n; := D(exp,)|,vi- Hence by Lemma 2.7 there exists ¢ > 0
such that for any s € (0,¢) mapping H(p) = (D3(z,2))y, 2z =
Yomi(8) € F3™ is a smooth coordinate mapping in a neighbourhood
of #. Moreover, if € is small enough, then points z; := ¢(z;) € Fi"™
are close enough to Z that H(q) = (Dz(Z:,7))i=, is smooth near 7.
Notice also that z; = 7z7,(s) = ¢ (72.,(5)), where 7; = (¢ 1)

Thus Lemma 2.7 implies that when ¢ is small enough, then also H is
a smooth coordinate mapping in some neighborhood W of z. Thus we

have shown that _
HoVoH =14,
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in some neighborhood of x. Since the point x € N, was an arbitrary
one and also H and H are smooth coordinate mappings for x and = we

have proved that ¥ is a diffeomorphism.
O

2.4. Riemannian metrics ¢g; and V¥,gs coincide in N;. In this sec-
tion we will show that manifolds (N, g;) and (N, g2) that give the
data (2)-(3), are isometric.

Definition 2.9. Let z; € F and £ € S, N. Define a set
w(z, &) ={x € N ; 3z € F such that D,(-, z) is C'-smooth,

(25) near zy and VD, (-, z5)|,, = £} U{z}.
Lemma 2.10. Let zy € F and £ € S,,N. Then it follows
(26) w(z1,8) = 71—¢({s 5 0 < s <7(21,=6)}),

This means that using data (4) we can see the unparametrized geodesics

of N.

Proof. First we recall that for all x € N the distance function d(-, x)
is not smooth near y € N \ {z} if and only if point y is in a cut locus
of . This holds due Lemma 2.1.11 and Theorem 2.1.14 of [26]. The
Lemma 2.1.11 of [26] states that every cut point is either a conjugate
point or an ordinary cut point. Being an ordinary cut point means
that there exist two different distance minimizing unit speed geodesics
from x to y. Therefore the gradient of distance function d(-,z) is not
continuous at ordinary cut points. The Theorem 2.1.14 of [26] states
that the complement of the cut locus of x is the maximal open set
with property that each y in this set can be joined to x with exactly
one unit speed distance minimizing geodesic. Therefore any conjugate
point that is not an ordinary cut point is a cluster point of ordinary
cut points.

If 2 € w(z,§) \ {z}, it follows that x is not in a cut locus of zy,
since by the definition of w(zy,&) distance function d(-,z) is smooth
near z;. Therefore there exists an unique distance minimizing unit
speed geodesic from x to z;. Since this geodesic has a velocity

Vd(-, 2)]z = VDa( 2|2 = €

at 21, it follows that x € v,, _¢({s; 0 < s < 7(21,—=)}).
Ifo ey, _«{s; 0<s<7(z,-£}) \{z1} we know that D,(-, 1)
is smooth near z; and

VDa(, 21)]z = V(- 2) sy = Y(d(2, 21)) = —721,-¢(0) =&
Here ~ stands for an unique distance minimizing unit speed geodesic
from z to 2. O

The Lemma 2.10 will be the key element to prove that the mapping
¥ is an isometry.
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Definition 2.11. Let N be a smooth manifold with metric tensors g
and g. We say that metrics g and g are geodesically equivalent, if for
all geodesics v : Iy — N of metric g and 7 : I, = N of metric g there
exist changes of parameters o : Iy — I and « : fg — fl such that

vy o« is a geodesic of metric g

and
yoa is a geodesic of metric g.

A trivial example of two geodesically equivalent Riemannian metrics
are g and cg, where ¢ > 0. Couple more interesting examples are:

(1) Plane R? and the Southern hemisphere of the Riemann sphere
that are mapped to each other in a gnomonic projection. IL.e.
great circles are mapped to straight line.

(2) Unit disc in R? and the Beltrami-Klein model of a hyperbolic
plane.

Our first goal is to show that from our data (2)-(3) we can deduce
that manifolds (Ny, ¢g1) and (V(N,), ¥.g2) must be geodesically equiva-
lent. By Lemma 2.10 we know all the geodesics of N; that exit unknown
region My, as point sets. Next we will show that this information is
enough to deduce the geodesic equivalence of manifolds.

Since mapping WV is diffeomorphism, it holds that each geodesic of
(N3, go) is mapped to some smooth curve of (N7, ¢;). By formula (4)
and Lemma 2.10, it holds that sets w(z,£) with z € F} and £ € S,N;
are also images of geodesics of (Ny, ¢g2) in mapping W. Note that the
segments of geodesics of N; we know as non-parametrized curves are
not self-intersecting, since cut points occur before a geodesic stops to
be one-to-one.

Let 2 € Fy, £ € S.N; and ty = 75(2,€). Then curve U(y2.(t)) :
[0,t5) — Ny is smooth and not self-intersecting and by Proposition 1.2
and Theorem 2.4 we have

T(12e([0,82)) = w(P(2), T*(€)) = w(d™'(2), (71)"6).
Set ¢71(2) = w and (¢~')*¢ = 5. Then by Lemma 2.10 we have
w(w,n) =4 _,({s; 0 <s <t1}), 1 = 7i(w, —n). Furthermore, it is
easy to see that there is a re-parametrization
(27) s:[0,¢1) — [0, t2) such that v, _,(t) = U(¥2(s(t))), t € [0,t1).
Let a < b and define a collection C,;, of geodesics of (Ny,¢1) as

Cop={c:]a,b) = Ny ; cis a geodesic, there exists z € Fj™

and & € T.N; such that ¢([a, b)) = w(z,£)}.
Observe that here ¢([a,b)) = w(z, ) means that the sets ¢([a,b)) C N

and w(z, &) C N are the same, or equivalently, that ¢([a, b)) and w(z, &)
are the same as unparametrized curves.
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C - U Ca,b'

a<b

For a moment we consider only metric g;. Assume that p is a point
in V7 and ¢ is point of F{™ such that ¢ = y,¢(¢), ¢ > 0 and the geodesic
Yp.£([0,¢]) has no cut points. Then there is a neighborhood U C F}™
of ¢ and a neighborhood V' C T, N of ¢ such that exp, : V' — U is a
diffeomorphism. Assuming that the neighborhood V' is small enough,
we see that for any v € V the geodesics v, ,([0, ¢]) has no cut points.
Then, v, ,([0,£)) € C. This proves that set

Q, :={veT,N; ; thereareceC andt, € dom(c) such that
c(t,) = p and ¢(t,) is proportional to v}

Let

contains a non-empty open double cone X, that is, an open set that
satisfies rv € X, for all v € ¥, and r € R\ {0}. Note that the
complement of 2, in 7, N; is non-empty if in manifold M there are
closed geodesics, or geodesics that are trapping in both directions, that
go through the point p.

FIGURE 4. For all p € M, there exists an open conic
set ¥, C T,Ny such that for every & € ¥, the geodesic
Ve of (N1, 1) can be extended to a distance minimizing
geodesic (blue curve in the figure) that enters the set F' =
N\ M. These geodesics are known to be pregeodesic also
with respect to the metric ¥*gy. Note that there may be
g1-geodesics emanating from p to directions § € X, that
does not intersect the set F'. Such geodesics can be e.g.
closed loops in My (red curve).

Let point p € Ny and (U, X) be coordinates near p, that is X : U —
R"™ and denote X(q) = (27(q))7—,. Recall that a pre-geodesic 7 on
(N1, g1) satisfies the formula (11) that is,

PF e AR A
—(5) + T (3(5) = () 2 (s)|

)
5=5p

5=5p
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ke {l,...,n}. Here v(s,) = p and f is some function that is homo-
geneous of degree 1.

Next, we change the point of view and consider this equation as a
system of equations for the “unknown” (I, f) with the given coefficients
%(sﬂs:sp € Q, and %(3)\32% where 7 € C. Here I' stands for a
collection of Cristoffel symbols Fﬁ ;and f: TU — R is a continuous
function that satisfies equation (10).

Suppose that we also have another Riemannian connection ff ; which
Critoffel symbols in the (U, X)-coordinates have the form

Tk _ 1k k k
(28) Iij = TLij + 07+ 05i,
for some smooth functions ¢; : U — R, ¢ = 1,2,...,n. Here, ok
is one when k = ¢ and zero otherwise. Let p(z) = ¢;(z)dz" be a

smooth 1-form that has functions (¢;); as the coefficients. We need
the following consequence of Lemma 2.1:

Lemma 2.12. If the Christoffel symbols T and T satisfy the equation
(28) for some 1-form ¢ and pair (f,1'), f is homogenous of degree 1,
is a solution of (11) for ally € C, then pair (I', f) where

(29) f(v) = f(v) + 2(v).
is also a solution of (11) for all 5 € C.
Proof. Let v € C. A direct computation shows that
~i ~j ~k ~j ~i ~k
(6 s+ 8Fi) G ()5 (5) = 30 (5) % (5) + i ()35 ()
~k ~i ~k =
=27 () (T (s)) = 22 (s)p (41(s))

Use this and substitute equation (28) into equation (11) to obtain

(30)

P | &
SR L (@g(s)'sz;%(s) [F(Z o) +20(Ds)] '
that proves the claim. O

The following lemma gives the converse result for Lemma 2.12. It is
obtained by using, in a quite straightforward way, results of V. Matveev
[44, Sec. 2| for general affine connections on pseudo-Riemannian man-
ifolds. However, for the convenience of the reader, we give a detailed
proof for the lemma and analyze at the same time the smoothness of
the 1-form = — ¢(x) in a local coordinate neighbourhood U C M.

Lemma 2.13. Let functions f : TU — R and ]7~Tq — R be homoge-
neous of degree 1. Suppose that pairs (f,I') and (T, f) both solve at all
points p € U the system (11) for all such coefficients 2 (s)|s—s, €
and %(S”SZSP that v € C and ~v(s,) = p. Then Cristoffel symbols T

and T satisfy equation (28) in U with a C*°-smooth 1-form ¢ in U.
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Proof. Define a pair (f,T) as
g 7 Tk k _ Tk

As a difference of two connection coefficients, T is a tensor. By substi-
tution of pairs (f,I") and (I, f) into equation (11) and by subtracting
the obtained equation from the other, we obtain at p € U

(31) I, v'v) = f(o)o®, for every v € Q.

Note that (31) defines a smooth extension of f|o, to T,N \ {0}, given
by
_ —k o
— F)rgun®  Ti(p)v'v! gre(p)v®
(32) Flo) = L oy o
g(U7 U) gab(p>v v

Here, the rightmost term is smooth in 7, N \ {0}.

Recall that €2, contains an open double cone ¥, C €2,. Our next
goal is to show that there exist a linear function ¢ : T,N — R such
that the restriction of function f, to 3, C €, is equal to 2¢ls,. Define
a family of symmetric bi-linear mappings

o . T,N x T,N = R, o"(u,v) = Ff’jviuj, ke{l,....,n}.

k

Since mappings ¢” are symmetric, the parallelogram equation

0=0c"u+uv,u+v)+o"(u—v,u—v)—20"uu) - 20"v,v)

holds.

Next, let u € 3, u # 0. Then there is ¢ = e(u) > 0 such that, if
v € T,N satifies ||v|| < ¢, then u —v € .

Let us next consider v € ¥, with |[v|| <e. Then u —v,u+v €%, C
Q,. By the parallelogram equality of mapping o* and (31) we have
(33) _ _ _ _

0= flutv)(ut+v)+ flu—v)(u—v)=2f(u)u—2f(v)v
= (flutv)+ flu—v) =2f(w)u+ (flu+v) = flu—v)=2f(v)).
If vectors u and v are linearly independent, we get a system
(34) { z(u—l—v)—l—_f(u—v)—Qz(u) =0
Fu+v) — F(u—v) — 2f(0) = 0.

Sum up these two equations to get

(35) flutv) = flu) + f(v).

If vector v = Au, A € R, we note that the system (34) is still valid. Re-
call that the mappings f and f are solutions of (11) and therefore they
satisfy the equation (10), i.e., they commute with scalar multiplication
in €2,.
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So far we have proved that f(u+-) and f(u) + f(-) coincide in set
B,(0,e)NX,. Since f is homogeneous of degree 1 it holds by (35) that

(36)  flu+av) = f(u)+af(v), vE€ B,(0,)NY,, -1 <a<1.

We define a linear function

B7) 201 TN - R, 2p(0) = liyg L0 ED =T

r—0

If v € 3, and r is small enough, then rv € B,(0,¢) N Y, and therefore
by formula (36) it holds that

2p0(v) = f(v) for every v € 3,

As ¥, is open, and ¢ and f are linear, this holds for all v € T,N and
thus (v) given by the formula (37) is independent on the choice of
used u € X,. In local coordinates we have

0 1 — 1 — o
90(@) D) Z —gm(x)Fi,j(x)éﬁézgkﬁ(x)'
ik,j=1

This defines a C*°-smooth 1-form = — ¢(z) in U.
Define a connection

ffj = ff] + 8705 + 5?%‘,

and choose v = Lv(s)|,—,, € ¥,. Since pairs (f,T) and (T, f) are both
solutions of (11) the following holds due the reasoning done so far

[+ oG], = () o)

— P 2e(Z9) + F(Ze)]

- [T+ 0L @260+ D [2o(Ze)]

s=5p

30) [d*~* ~ dvt dy

- [ ds? (s)+ Ff’j(p) ds (S)E(S)} s=sp
Therefore we have

dv', dy’ dv', dy’
k _
69 THO LT e T e[
Thus we have proved that for all v € X, the equation
k i,,J _ Tk i,,j

(39) L' =15 (p)v'e?

is valid. Since set X, is open, it holds that
F]Zm(p) = @,zvaij (p)v'v! = 8Uevmfﬁj (p)v'v? = F]Zm(p).
As above p € U is arbitrary, this proves the claim. O
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Proposition 2.14. Suppose that Riemannian manifolds (N1, g1) and
(Na, g2) are as in Section 1.2 and (2)-(3) are valid. Let p € Ny and
(U, X) be coordinates for p. Then it holds that the Cristoffel symbols T

and I' of metrics g1 and V.go, respectively, satisfy equation (28) in U
with some 1-form p, where V is as in (19).

Proof. Let p € Ny and (U, X) be coordinates for p. Let ¢; € C be a
curve that passes through p. By definition of C and equation (27) it
holds that there is a reparametrization s of ¢; such that for curves ¢;
and ¢y = ¢; o s holds

{ (1) + (D (T (e1 (1) = 0
& (1) + & (OG0T (eat)) = 0

Use the chain rule and write the latter equation as

A0+ AOANT (0 (50)) =~ k).

Define a mapping f : TU — R by setting for (¢,v) € TU, with v # 0,

5(0)
fla,v) = ~3 07
where s(t) is a re-parametrization of the geodesic for which we have
Vao(t) = \I/(yi,l(q)’wv(s(t))), so that s(0) = 0. Also, we define f(q,v)|,—0 =
0. Note that function f satisfies the equation (10), since geodesic equa-
tion (7) is preserved under affine re-parametrizations. Therefore it
holds that pairs (I',0) and (T, f) both solve the system (11) for all such

coefficients Z—Z(s)|5:5p € ), and %(sﬂszsp that v € C and v(s,) = p.

By the Lemma 2.13 the claim follows. U

Lemma 2.15. Suppose that I' and T are connections satisfying the
equation (28) with 1-form . If t — ~(t), v € C is a geodesic of con-
nection I', then there exists a change of parameters s +— t(s) such that
s+ (t(s)) is a geodesic of T, hence metrics g and § are geodesically
equivalent.

Proof. Since 7 is a geodesic of I' it satisfies the geodesic equation (7).
Substitute I" with I into (7) to get the equation
d*~* ~ dyt  dryl d* dry
t)+ TF (y(t t)——(t) = 2—(t (—t).
0+ L) T 0D 1) = 22 (D)
Write k(t) = 2¢(§(t)) and use Lemma 2.1 to show that appropriate
s+ t(s) exists. O

By the Lemma 2.15, we know that our data (2)-(3) proves the geo-
desic equivalence of metrics g and W, g, on Nj. In the following theorem
that shows that metrics ¢ and W, gy coincide also in Ny, we will use the
implications of the Matveev-Topalov theorem [41]. Their result is also
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concerned in the appendix of the extended preprint version of this pa-
per [35] and its generalizations have been considered in |11, 61].

Lemma 2.16. Suppose that manifold N satisfies assumptions of Sec-
tion 1.2 and it has two metrics g and g. Suppose that these metrics
are geodesically equivalent on manifold N and coincide in set F'™ # ().
Then g = g in whole N.

Proof. Define a smooth mapping Iy : TN — R as

det(g,)\ wit~
40 ] ; - < ~ ) x ) )
(40) ol(z,v)) det(@)/ 7 (v,0)
where §,(v,v) = ’gjk(x)vjvk. Note that the function z — 73228,%; is

coordinate invariant.

Let v, be a geodesic of metric g. Define a smooth path 8 in T'N as
B(t) = (74(t),¥4(t)). Then § is an integral curve of the geodesic flow of
metric g. The Matveev-Topalov theorem [41] states that if g and g are
geodesically equivalent, then there are several invariants related to the
tensor G = ¢~ 'gix, given in local coordinates by Gi(x) = ¢7*(z)gir(x),
that are constants along integral curves 5(t). In particular, the function
t — Io(B(t)) is a constant.

A corollary of this theorem, |41, Cor. 2] (see also [42, Cor. 2| and [11,
Thm. 3|), is that the number n(x) of the different eigenvalues of the
map G(z) : T, N — T, N is constant at almost every point x € N. Since
G(x) = I for x € F™ so that n(z) = 0 in the set F"" having a positive
measure. This implies that n(z) = 0 for almost all z € N. Hence for
almost all x € N there is ¢(z) € R, such that we have G(x) = ¢(z)1, so
that gi(z) = c(x)gix(x). As G is continuous, this holds for all x € N.
Summarising, the first implication of the Matveev-Topalov theorem is
that ¢ and ¢ are conformal on the whole manifold N.

Let xg be a point of N. Since we assumed that metrics g and g
coincide in set F', we have for any point z € F and vector v € T,N
that formula (40) has form

(41> [O(Za U) = gz(va U) = gz(/Ua U)‘

Let v(t) :== (1), § € S.N, z € F be a g-geodesic passing through o,
that is xg = (o), for some ty. In particular we see that Iy((z,£)) = 1.
By the Matveev-Topalov theorem, I, is constant along the integral
curves of geodesic flow of g. Thus, we have

(42) Io(l'o,’ﬁ/(to)) = ]0(275) =1

Define W,, to be the set of all unit vectors of 7, /N with respect to
metric g, such that every vector in W, is a velocity of some geodesic
starting from F* and passing trough zo. Recall that set W' C S, N
is not empty.
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Let X = (z%,...,2") be any coordinate chart at zy. Formula (42)
shows that for every £ € W, we have

det(gay) \ 71~ i o
det('g}o)> gij(%)f ¢

(43)  gy(w0)€'e = 1= Iolwo, &) = (
Consider an open cone
Wit Ry = {tw € TyyN : t > 0,w € W}
Since metrics are bilinear, we know that equation (43) holds for any
vector & € W . R,. Since set W/ - R, is open and both sides of
equation (43) are smooth in £, we obtain the equation

det(ga, )\ 71 ~ o
(44) gyl = <det§’§og> "Gy (o), forall i, j € {1,....n},
)

as a second order derivative with respect to £ of equation (43).

Let f(p):= %. With given notations we have shown that

2 :
(45)  (f(20))™ Gjk(wo) = gjr(wo), forall j,k € {1,....n}.
We see from equation (45) that

on ~
(f(z0)) +det(g) = det(g).
Therefore it holds
2

(46) (f(zo))™1 ' =1.

Since we assumed the dimension of manifold NV to be at least 2 we see
from equation (46) that f(zo) = 1. By formula (45) this implies g = ¢
also on M. 0

Theorem 1.3 follows now from Theorems 2.4 and 2.8 and Lemmas
2.15 and 2.16. U

3. APPLICATION FOR AN INVERSE PROBLEM FOR A WAVE
EQUATION

Here we consider the application of Theorem 1.3 for an inverse prob-
lem for a wave equation with spontaneous point sources.

3.0.1. Support sets of waves produced by point sources. Let (N, g) be a
closed Riemannian manifold. Denote the Laplace-Beltrami operator of
metric g by A,. We consider a wave equation

(47) { (02 = A)G(yy,8) = K(y, 8)0y5(-,-), In N

G(z,t,y,s) =0, fort<s, x €& N.
where N/ = N x R is the space-time. The solution G(z,t,y, s) is the
wave produced by a point source located at the point y € M and
time s € R having the magnitude x(y,s) € R\ {0}. Above, we have
dy.s(x,t) = d,(x)ds(t) corresponds to a point source at (y,s) € N.
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3.0.2. Inverse coefficient problem with spontaneous point source data.
Assume that there are two manifolds (N, g1) and (Na, g2) satisfying
the assumptions given in Section 1.2 and

(48) There exists an isometry ¢ : Fy — Fj
(49) W1 = WQ

where W7 and W, are collections of supports of waves produced by
point sources taking place at unknown points at unknown time, that
is,

Wy = {supp (G'(-,,y1,51)) N (Fy x R); y1 € My, s; € R} C 2%
and
Wy = {supp (G2(¢(')a Y2,52)) N (F1 X R); yp € My, s € R} C gfixk

where functions G7, j = {1,2} solve equation (47) on manifold N;.
Here 257°® = {F'; F' C F; x R} is the power set of F; x R. Roughly
speaking, W; corresponds to the data that one makes by observing, in
the set [, the waves that are produced by spontaneous point sources
that that go off, at an unknown time and at an unknown location, in
the set M;.

Earlier, the inverse problem for the sources that are delta-distributions
in time and localized also in the space has been studied in [15] in the
case when the metric g is known. Theorem 1.3 yields the following
result telling that the metric g can be determined when a large number
of waves produced by the point sources is observed:

Proposition 3.1. Let (Nj,g9;), j = 1,2 be a closed compact Rie-
mannian n-manifolds, n > 2 and M; C N; be an open set such
that F; = N; \ M, have non-empty interior. If the spontanuous point
source data of these manifolds coincide, that is, we have (48)-(49), then
(N1, 91) and (Na, g2) are isometric.

Proof. Let us again omit the sub-indexes of N, M, and F'. For y € M,
s € R, and z € F we define a number

Tys(2) = sup{t € R; the point (z,t) has a neighborhood
U C N such that G(-,-,y,s)|; = 0}

which tells us, what is the first time when the wave G(-,-,y, s) is ob-
served near the point z. Using the finite velocity of the wave prop-
agation for the wave equation, see [19]|, we see that the support of
G(-,+,y, s) is contained in the future light cone of the point ¢ = (y, s) €
N given by

JHq) ={(,s) e N; & >dy,y) + s}.

Next, for £ = §j% € T,N we denote the corresponding co-vector by

& = gix(y)&7da’. Then the results of [17] and [18] on the propagation of
singularities for the real principal type operators, in particular for the
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wave operator, imply that in the set A"\ {¢} Green’s function G(, -, v, s)
is a Lagrangian distribution associated to the Lagranian sub-manifold

Yo = {(’Yy,n(t)a s+t ;Yy,n(t)badt) € T*NS ne SyNa t> 0}

and its principal symbol on Y is non-zero. In particular, [18, Prop.
2.1] implies that ¥ = o U (T, M \ {0} coincides with the wave front
set WF(u) of the solution u = G(-,-,y,s). This means that a wave
emanating from a point source (y, s) propagates along the geodesics of
manifold (N, g). The image of WF(u) in the projection 7 : T*N — N
coincides the singular support of u. Hence, we see that

(50) singsupp(G (-, -,v,s)) = S(q), where
S(q) = {(exp,(tn), s +t) € N;n € S,N, t > 0}.

Since the Riemannian manifold N is complete, the space-time N is a
globally hyperbolic Lorentzian manifold and we have 0J%(q) = S(q),
see [48]|. Summarizing, the above implies that the function G(-,-,y, s)
vanishes outside J*(¢) and is non-smooth, and thus non-zero, in a
neighbourhood of arbitrary point of 9J%(¢q). Thus, for z € F we have
Tys(2) = d(z,y) — s. Hence the distance difference functions satisfy
equation

(51) Dy(21,22) = Ty s(21) — Ty,s(22)-

Thus, when formulas (48)-(49) are valid, we see using equation (51).
that the distance difference data of the manifolds N; and N, coinside,
that is, we have (2)-(3). Hence, the claim follows from Theorem 1.3. [

Finally, we note that tets IW; are closely related to the light-observation
sets studied in [32] in the study of the inverse problems for non-linear
hyperbolic problems with a time-dependent metric. The light-observation
set Py (q) corresponding to a source point ¢ = (y, s) and the observation
set U is the intersection of U and the future light cone emanating from
q. In fact, the formula (50) implies that in the space time N'= N x R
the sets WW; coincide with the light-observation sets Py (g) correspond-
ing to a source point ¢ = (y, s) and the observation set U = F' x R.
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4. APPENDIX A: EXTENSIONS OF DATA

Assume that we are given the set F' = N \ M and the metric g|r,
but instead the function D, : F' x F' — R we know only its restriction
on the boundary 0F = OM, that is, the map

D.lopxor : OF x OF — R, D.|opxor(z1, 22) := dn(21,2) — dy (22, ).

Lemma 4.1. The manifold F = N\ M, the metric g|r, and the re-
striction D,|gpxar of the distance difference function corresponding to
xr € M determine the distance difference function D, : F x F' — R.

Proof. We can determine the map D, : F' x ' — R by the formula
Dy (21, %) = inf sup <£(oz) + Dalorxor(a(1), 8(1)) — ﬁ(ﬁ)),

where the infimum is taken over the smooth curves « : [0, 1] — F from

21 to a(l) € OF and the supremum is taken over the smooth curves
$:10,1] = F from 2, to 5(1) € OF. O

This raises the question, if the manifold (N, g) can be reconstructed
when we are given a submanifold of codimension 1, e.g. the boundary of
the open set M considered above, and the distance difference functions
on this submanifold. To consider this, assume that we are given a
submanifold ' C N of dimension (n — 1), the metric g|z on F', and the
collection L

{D%N; re N} CCOF x F),
where D% N(zl, 29) = dn(x,21) —dn(x, 29) for 21, 25 € F. The following
counterex’ample shows that such data do not uniquely determine the
isometry type of (N, g).
Example A1l. Let C,.(y) = {(71,22) € R%; |21 —y1|* + w0 —1o]? = r?}
be a circle of radius r centered at y = (y1,92). Let p1 = (2,0), po =
(—=2,0), L > 3, and

SO 01(0) X [—1, 1],

S = 01(]91) X [Q,L],

52 = Cl(pg) X [Q,L],
and K C R? x [1,2] be a 2-dimensional surface which boundary has
three components, C1(0) x {1}, C1(p1) x {2}, and Ci(p2) x {2}, such
that the union Sy UK US; US; is a smooth surface in R®. Moreover, let

R : (x1, 29, x3) — (21,29, —x3) denote the reflection in the zs-variable.
Observe that then R(Sp) = Sp. We define a smooth surface

ZO - SO U K U Sl U SQ UR(K) UR(51> U R(SQ)

The boundary of ¥y consists of 4 circles, namely I'y = Cy(p1) x {L},
FQ = Cl(pl) X {—L}, Fg = Cl(p2) X {L}, and F4 = Cl(pQ) X {—L} Let

us consider four embedded Riemannian surfaces 3; C R?, j = 1,2, 3,4,
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FIGURE 5. An illustration of manifolds N; and N, in
Example Al. When (n — 1)-dimensional submanifolds
F} = F, = F are identified, the distance difference func-

tions {D%Nl; xr € Ni} and {D%NQ; x € Ny} coincide.

with boundaries 0%; are equal to I';. Assume that near 0X; the surfaces
¥; are isometric to the Cartesian product of I'; and an interval [0, €]
with € > 0, and that the genus of 3, is equal to (j — 1). Also, assume
that ¥, N X, =0 for j,k=1,2,3,4and XoNY; =T, for j =1,2,3,4.

First, let us construct a manifold N; by gluing surfaces ¥y with
Y1, 29,23, and X4 such that the boundaries I'; are glued with 0%;,
je{1,2,3,4}.

Second, we construct a manifold Ny by gluing surfaces ¥, with
1,29, R(X3), and R(X,) such that the boundaries I'; are glued with
0%; with j € {1,2} but I'; is glued with R(0%X4) and Iy is glued with
R(0%3), see Fig. 5. For both manifolds N; and N, we give the induced
Riemannian metric from R3. Let F = F} = Fy = Sy N (R% x {0}).

Let us assume that L above is larger than diam (K) + 10. Then on
Ny, ¢ = 1,2 a minimizing geodesic from x € ¥;, 7 > 1 to z € F does
not intersect the other sets ¥; with £ € {1,2,3,4}\ {j}. Using this
we see that the sets {D% N L€ N} € C(F x F) are the same for
¢ =1,2. As the manifolds N; and N, are not isometric, this implies
that the data (F, g|z) and {D%N; x € N} do not determine uniquely

the manifold (NN, g).

5. APPENDIX B: INTEGRALS OF THE GEODESIC FLOW

In this appendix we consider Matveev-Topalov theorem [41] in detail.
The motivation to write this rather long appendix is that we thought
that the methods used in [41], [42] and [43] are not familiar to the gen-
eral audience in the field of geometric inverse problems. The appendix
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is self contained in many ways, but the reader is assumed to be famil-
iar with the basics of Riemannian geometry. The notations and theory
used here are mostly from [38].

5.1. Part I, Matrix representations. Let M be a smooth n-manifold
with Riemannian metric tensors g = g;; and g = g;;.

Denote by G : TM — TM a fiberwise linear mapping given by 1-
covariant 1l-contravariant tensor G; = gio‘:c]aj. For any x € M and
v € T, M this is defined as

G.(v) = gia:c]ajvj.

Let x¢ := det(G — tIdrys) be a characteristic polynomial of G. Since
M is n-dimensional, we can write y¢g in form

(52) Xa(t) = cot" +ert" "+ .+ e,

where coefficients ¢y, . . ., ¢, are smooth functions on M and ¢y = (—1)".
Define mappings Sy, : TM — TM, k € {0,...,n — 1} by formula

(53) Si((z,0)) = (detgﬂﬁ)ﬁ_ﬁ Ek: GGRH (),

detg,

For every k € {0,...,n — 1} we finally define functions I, : TM — R
with formula

[k((xa U)) = gz(Sk((xa U))v U)'

After these preparations we can state the main result of [41].

Theorem 5.1 (Matveev-Topalov). Let M,n > 2 be a smooth manifold
with geodesically equivalent Riemannian metrics g and g. Let 6 be the
geodesic flow of Riemannian manifold (M,g). Then functions Ij, are
integrals of flow 6. This means that each function I, is constant on
each orbit of geodesic flow 6.

We will provide the proof given by the Matveev and Topalov in detail,
reviewing techniques used in [41], [42], and [43], but we first have to do
some preparations. We start with finding a formula for mapping Sk.
Let x € M. }

We first show that there exists such a basis (w;)]_; of T, M such that
in this basis

g = diag(1,...,1) and g = diag(p1, ..., pn)

for some p; > po > -+ > p, > 0. Let (U,¢) be the Riemannian
normal coordinates at  with respect to g. Then it holds that g;;(x) =
(Opr, 0p;),, = dji. Let vy = Opy(x). Write

Ak = :‘j:v('Uja 'Uk) = :‘jz(vkv Uj) and A = [ajk]?,kzl'
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Since metric tensor g is positive definite, it holds that there exists a
set of vectors rq,...,r, € R™ and set of strictly positive real numbers
Pl, - - Pn such that
Ar; = pjrj, and rj - 1 = 0.
Note that vector r; = (rjl-, ..., 77) € R". Define vectors
w;j 1= rjful e T, M.
Then it holds that

n

g(w;,wi) = g(rﬁ»vl,rfﬁvl) = ré-rﬁg(vl,vg) = Zré-rfg =71 T =0k
=1

and
9wy, wi) = rirgg(u, ve) = awrlry, = i - (Ary) = re - pjry = pidjn.

These calculations prove that (w;)j_, is a basis of T, M and in this
basis we have

g = diag(1,...,1) and g = diag(p1, ..., pn).

We say that o, is the unique elementary symmetric polynomial of
degree p of n variables, if p < n and

p
op(Xt,. X)) = > [ X

1<j1<j2<...<jp k=1

Let
b; = l(H ) D)

S —
Then

[ o = det(Ga) = det(g~ (2)3(x)) >0,

and the numbers ¢; € R satisfyg; < ¢ < ... < ¢,

Let 0, be the elementary symmetric polynomial of degree p of vari-
ables ¢1,...,¢, and ap(gz/ﬁ\i) the elementary symmetric polynomial of
degree p — 1 of variables ¢1,...,0;_1, ®iv1, ..., On.

Lemma 5.2. The matrices of mappings Sy are given by

Sk = (=1)" " diag(on_r1(1), Ont1(62), -+, Onr1(n)).

Proof. Recall that the coefficients ¢ of (53) are the same as the ones in
(52). We will start by showing that the coefficients ¢, can be calculated

as
(-1 b

(P12 -+ - )T

C =
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Let k € {0,...,n}. First we calculate
(¢1¢2 e ¢n)k+l H k+1 H p (kn+~:1 = H p]) (knJ;ll (k+1)
J=1 j=1

If k = n the calculation above and (52) prove that

cp = detG = Hpj = (¢16 .- Pn) Y.
j=1
Next we consider the case k € {0,...,n — 1}. By definition

n—=k n n—=k
n—k 1
Opk = E H% = (HPJ)”“ E, Hp_.'
1<j1<go<+<jn_k k=1 j=1 1<j1<ja < <jn_k k=1 "JF

Now it holds

(¢1¢;T.ljz5n)k+1 - (Hpﬂ)% Eoaat Z H .

Jj=1 1<j1<je<-<Jn—k k= 1

(Il X H —= ¥ pﬁmif" = (—1)"Fey

1<j1<g2<<Jn—k k=1 Pi 1<j1<g2<<Jn—k
To verify the claim of this Lemma, we use induction on k. For k = 0
we see that

2

1 Y .
So = (m) ’ coG = (—1)n(¢1¢2 .- -<Z5n)2dlag(m, P25 - - -Pn)
1 1

n 2 1; 1
= (A ntn - ondine( o S ) B
= (—1)"diag(P203 . . . On, D103 . . . py ..., P1D2 . . Pp1)
= (‘Undiag(gn—l(égl)a Un—l(qg;)a e ao-n—l(gs;))'
Next we assume that matrix S,_; has form
Si1 = (=1)"" D diag(on- 1)1 (G1), O p-1)-1(02); -+, Tuu-1)-1(B0)).
Now it holds that

1 n%l 1 n+
Sk = (detG) G<S’“ 1t (d tG) Ck Id)
= (G102 . .. dp)diag (p1,- .., pu)((—=1)" * Vdiag(gn_r(d1), Oni(B2), - - ., Tui(Pn))

k+1(_1yn—k On—k
+(P1da ... 0n)" (1) (G2 o) Id)

= diag (¢1",¢5 .- 0, )(=1)""
*dlag (Un—k - O-n—k:(ggl)a Op—k — Op— k(¢2) sy On—k — Un—k@;))

= (_1)"*kd1ag (U”_k _Qf-ln_k(gbl)’ o On—k _;-n—k(gbn)
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The claims follows, since for every [ polynomial o; — al(qz-) is precisely
sum of those [-products of ¢;’s which all contain ¢;. Clearly same

argument holds for polynomial gbial_l(g/b\i). O
Next we define a function F': R x TM — R by formula
Ft(x,f) = tnillnfl(l',g) + ...+ [O(l',é-)

For a fixed point (z,¢) in tangent bundle of M, function F(z,§) is a
polynomial of ¢ of degree n — 1. Let the complex roots of polynomial

Fi(z,&) be ty(x, &), ..., th_1(z,§).

Lemma 5.3. Let « € M. Then for everyi € {1,2,...,n — 1} the fol-
lowing statements are true: For any& € T, M the rootsty(x,§), ..., ty_1(x,§)
are real and

¢i(r) < ti(z,§) < dia(z).

Proof. Fix a point (z,&) € T'M. For simplicity we write ¢; := ¢;(z, &)
and ¢; := ¢;(z). Choose such a basis in T,,M that

g =diag (1,...,1) and G = diag (p1,..., pn)-
Let P; be the polynomial

[y

3

~

Pt)= T (=)= (-1)" " t* 00 ass().

k=1, k#i

Recall that we have defined the mapping [.(£) := g.(Sk&,€). By the
Lemma 5.2 we have that

I(€) = (1" Y on (D).

Q
Il
o

Thus we can write polynomial Fy(z, &) in form

n—1 n
Fi(z,€) = > (-1)" "> 00 4 1(01)€
k=0 =1
n n—1
= =@ (e, ()
i=1 k=0

= (P& + Po(t)E3 + ...+ Pa(t)E2).

Recall that ¢; < ¢;11. We will split the rest of the proof to three
different cases.

Suppose first that ¢; < ¢; 11 and & # 0 for every i € {1,...,n— 1},
By the definition of polynomial P; we see immediately that P;(¢;) =0
if 7 = j. Therefore it holds that

Fy, = —Pi(¢:)€2.



34 MATTI LASSAS AND TEEMU SAKSALA

According to the definition of polynomials P; and P, it holds that
Pi(¢i) = (¢i — ¢1)(¢i — 2) ... (&5 — Gi1)(Gi—Pi1)(Pi—Piv2) - - . (Pi—Py)

N J/

-~
>0

and

Pz'+1(¢z'+1) = (¢i+1 - ¢1)(¢z’+1 - ¢2) :

-

(¢i+1 - Qﬁz’fl)(qﬁzﬁrl - ¢z)

=0
(Piv1 — Giv2) -+ (ig1 — bn).

Therefore numbers Fy, and Fy, , have different signs. Since F' is real
valued and continuous, it has atleast one root in interval |¢;, ¢;i1].
Since degree of F'is n — 1 and intervals |¢;, ¢;11[ are disjoint we see
that F' has exactly one root t¢; in interval |¢;, ¢;41].

If ¢, < @11 and & = 0 for some k € 1,...,n — 1, we have that
F¢>k =0 and (bk = tk.

If ¢p = Ppyq1 for some k € 1,...,n—1, then P,(¢r) = 0 and therefore
F,, =0.

Therefore for all the cases we have proved the claim of this Lemma.

U

5.2. Part II, Hamiltonian systems on regular level sets. Let
(M*" w, H) and (M*", &, H) be Hamiltonian systems with Hamilton-
ian vector fields V' and, V' respectively (For concepts, not explained
here, see 38| chapter 18.). Suppose that h and h are regular values of
H and, H respectively. We define regular level sets
Q={re M H(x)=h}
and
Q={x e M*: H(x)=h}.
Lemma 5.4. Let x € Q. Then T,Q ={X € T,M : XH = 0}.

Proof. Let i : Q <= M be the inclusion mapping. We first prove that
T,Q = KerH,, H, : T,M** — T,R.

Since @ is a smooth submanifold of M?" we will identify T,Q with
i.(T,Q) C T,M?*". Since @ is a level set of H we have that H o1 is
constant. Therefore

(Hoi),X =X(Hoi)=0, for every X € T,Q.

But this means that mapping (H o), : T,,Q) — TR is a zero mapping.
Since (H o), = H,o1i,, we deduce Im i, C KerH,. Since h is a regular
value, we know that H, is surjective. By rank-nullity law and since
dim @ = dim M*" — dim R we have

dimKerH, = dim T, M*" — dim R = dim T,Q = dimIm 1,.
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This proves the claim T,Q = KerH,. Let f € C*(R) and X € T, M?*".
Then we have

(H,X)f =X(foH)=(foH)XH.

According to what we proved earlier, we know X € T,(Q if and only if
H,X = 0. By preceding formula this is true if and only if XH = 0. U

Let U C M?" and U C M?" be neighborhoods of () and @, respec-
tively.

Definition 5.5. Diffeomorphism ® : U — U is orbital on QifP(Q) =
Q and ®|g maps orbits of V' to the orbits of V' and vice versa. In other
words this means that for every orbit v : [a,b] — Q of V' there exists a
diffeomorphisim « : [¢,d] — [a,b] such that
d
it
Since @ is a regular level set of smooth mapping H : M?" — R on
manifold M?" it has dimension 2n — 1. Let ¢ be the restriction ®|q.

do Yo Oé)|t:t0 = ‘/(Cbowoa)(to)'

Lemma 5.6. There exists functions a; : Q — R and as : @ — R such
that for every p € Q holds:

©.(V,) = a1(p) V() and az(2(p))®.(dH), = (dH)s().

Proof. Since V is a Hamiltonian vector field on M?" and Q is a regular
level set of H, we know that Vg is also a smooth vector field on @
([38] 18.22). Let p € Q. Since V' is the Hamiltonian vector field on @,
there exists an orbit v of V' on () such that y = p and 4y = V},. Since
® is orbital we have

.V, = &,
= (o 0o )
= Lo (S (0 )l 0)
— %al\t:o%(éovo&)lm—l(m
= %Of \t—0‘7<1>(p)

Now we define that a;(p) = 4a~'|,—. Since vector fields @,V and

V are smooth and the smoothness of vector fields is equivalent to the
smoothness of its coefficient functions we deduce that a; is smooth.
Let p € M*" and X € T,Q. To show that ax®.dH = dH, for some

smooth function as, it suffices by Lemma 5.4 to prove that o*dH (X) =
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0. Since ® maps () onto é we have
0=X(Ho®)=d,X(H)=ddH(X).
O
Let 0 : TQ — T*(Q be the restriction w|g and ¢ = c~u|©, respectively.
Since ¢ takes ) onto @), we can consider ¢*c as a 2-form on Q).
Lemma 5.7. Let 6 be the flow of V. Then 0 preserves the form ¢*c.

Proof. According to Theorem 18.16 of 38|, it suffices to show that the
Lie derivative Ly (¢*c) = 0. Let us verify this using Cartan’s formula

(54) Ly(¢*0) = d(wv(¢70)) + v (d(9*0)).
Let X € TQ). By the Lemma 5.6 we have that
w (0 (X) = 5(0.V, 6.X) = F(a1V, 6. X)
= a1dH (¢, X) = ad. X (H) = aX(H o ¢) = 0.
Hence the first term of (54) vanishes. We defined that ¢ = &|5. Since

Cj is a submanifold of M’ 2n the inclusion mapping i : Cj s M2 is a
smooth embedding. Therefore for all X, Y € T(Q) it holds that

FOX,Y) = 0(i.X,0.Y) = 3(X,Y) = 5(X,Y),

le., 0 =1i'w. Since form w is closed on MQ", we know that o is closed
on @ by Lemma 12.16 of [38]. Now we also have that the second term
of (54) vanishes, since d(¢*c) = ¢*(do) = 0 by equation (12.18) of
138]. O

We can consider 2-form w on M?" as a mapping
w: TM*™ — T*M*", w(v)(w) = w(v,w) for all x € M*",v,w € T, M*".

Since form w is non-degenerate, we know that mapping w is a linear
isomorphism on fibers T, M?". Let 0 := w|g : TQ — T*Q. We want to
show that
Ker 0|7, = span(V(x)).

We start with observing that V(z) € T,Q if x € Q. This holds since
V(H) =w(V,V) =0 and therefore V satisfies the conditions of Lemma
5.4.

Next we show that w(V, X) = 0 for any X € T,Q. Let v be such a
smooth path on () that at point x it has a velocity X. Since @ is a
level set, we have

d
0= %(Hoy) =VH=w({V,X).
We denote by A“ the sympletic complement of set A with respect to
sympletic form w. Suppose that for X € T,Q it holds o(X,-) = 0.

Therefore dim span(X, V) = 2n—1, since for every W € T,Q) we have
waV +bX, W) = aw(V,W) 4+ bw(X, W) = 0.
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On the other hand it holds that
dim span(V, X)“ + dim span(V, X') = 2n

= dim span(X, V) = 1.

But this means precisely that X € span(V'). Denote span(V) = (V).
By considerations made above we know that (V) = Ker 0. The
kernel of form ¢* is also (V'), since by Lemma 5.6 we have for every

X e T,Q that
*5(V, )?) = 5(¢*Va (b*X) - 5(@1‘7, (b*X) = al(b*X(ﬁ) = alX(roqﬁ) =

since ¢(Q) = é

Let TQ)/ (V) be the quotient bundle of Q) i.e. the fiber of TQ/ (V) is
the vector space T,Q/ (V). Next we consider two induced tensor fields
o and ¢*o on quotient bundle 7Q/ (V'), i.e., we define for [X],[Y] €

TQ/ (V)
o([X],[Y]) = o(X,Y) and ¢*0([X], [Y]) = ¢70(X,Y).

These forms are well defined, since both forms ¢ and ¢*c have the same
kernel (V). These induced forms are both nondegenerate since

o([X],-) =0 if and only if X € (V).

Therefore we can define an operator o~1(¢*a) on the quotient bundle
TQ/(V), if we again consider forms as a fiber vice linear mappings
from TQ/ (V) to (T'Q/ (V))*.

Let p € . Since p is a regular point for H, we can choose the
Darboux coordinates x1, vy, . .., Tp, Yy, for p such that y; = H and V =
oxry = 8%1. By Lemma 5.4 it holds that vector fields Oxy, Oxs, Oy, . . .,
0x,, 0y, are tangential to ) at p since by Darboux criterion
(55)

0= {ylayk}w = {H, yk}w = Oxi,H and — 0y, = {ylaxk}w = =0y H.

According to Lemma 5.6 there exists functions a; and as such that
P.(V,) = ar(p)Va) and as(@(p)®.(dH), = (dH o).
We denote a := ajay. Therefore

O* W (Dx1,0y1) = B(®.0x1, P.0y1) = B(D,0x1, P.Oy1 ) = a0(V, ®.0y1)

= a1 dH (®,0y,) = aias(P.dH)(D.01)) = adH (dy,) = a=— = a.

With similar computations one gets

Q*w(0x1, Ory) = 0 and also @*w(dz,0y,) =0, j # 1.
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This means that the matrices of w™! and ®*® are of the form

0 1 00 ...0
-1 0 00 ...0

. 0 0
. A
0 0
and
0 a 0 O 0
—a 0 Ci Cy ...Cop—2
o~ 0 —C1
(57) O w = 0 —cy
. B
0 —cop
Therefore we get that
—a 0 1 C Con—2
0 —a 0 O 0
e 0 d
(58) w Pt = 0 dy
: A7'B
0 d2n72
This proves that
(59) det(w ' ®*©) = a’det(A™'B).

Matrix A™'B is now the matrix of mapping o~ 1¢*7, since by formula
(55) we get 01¢*g by removing the first and second rows and columns
of matrix (58).

Lemma 5.8. For everyt € R the characteristic polynomial X -1 (45 (1)
1s preserved by the flow 6 of V in Q.

Proof. Note first that by Lemma 5.6 it holds

Ly (W) = aC%V(CI)*ZB) = aLl g7 (P*w) = 0,
since Hamiltonian vector fields are sympletic. For all invertible tensors
fields T" and vector fields X the following are equivalent

Lx(T)=0and Lx(T™ ") =0.
We will also use two following facts
0=Ly(w D) = Ly(w HPQ0 + w 'Ly (P*D)

and

if Ly (w '®*@) = 0 then Ly (det(w '®*@)) = 0.
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The first one is the product rule of Lie derivatives and the latter one
is the Jacobi formula for the Lie derivative of a determinant.
Take the Lie derivative from both sides of equation (59) to conclude

(60) det(c'¢*) Ly (a*) + a*Ly (det(c'¢*5)) = 0.
By formula (58) we can write
(61) O*0 = adx' N dy' + ¢*G.

Take the Lie derivatives from both sides of equation (61) and recall
Lemma 5.7. Then we get

0 = (Lya)dz' Ady' + aly(dz' A dy').
By Corollary 18.11 of [38], it holds

Ot oyt
) = 1 = 1 = _—
8951) d(1) =0 and Ly(dy") d(&cl

Thus we must have that Lya = 0. By formula (60) and the Leibnitz
rule we must have that

Ly (dz') = d(Va') = d( ) =0.

Ly(det(c71¢"F)) = 0.
O

Next we will point out few important properties of skew symmet-
ric matrices. Recall that a square matrix A with real entries is skew
symmetric, if AT = —A.

Lemma 5.9. For a real skew symmetric matriz A the following state-
ments are true:

(1) If A has an odd number of columns and rows, then detA = 0.

(2) If A is invertible, then A~ is skew symmetric.

(3) If A and B are skew symmetric n-matrices and n is even, then
for every t € R, det(A™'B — tId) = p*(t) for some polynomial

.
(4) Kernel of A has an even dimension, if number of rows is even.
Kernel of A has an odd dimension, if number of rows is odd.

Proof. (1) If A has an odd number of rows and columns, then it
holds that

det(A) = det(AT) = det(—A) = (=1)*"Tdet(A) = —det(A).

Therefore detA = 0.
(2) If A is an invertible skew symmetric matrix, it follows that

(ATTA)T = AT(AHT = —AAHT =1d.
Thus (A~1)T = —-A~L,
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According to [37], detA = ¢?, where ¢ is a polynimial of degree
n with variables of entries of A. Since the sum of skew symmet-
ric matrices is skew skymmetric, we have for skew symmetric
matrices A and B

det(A™'B —t 1d) = det(A ')det(B — tA) = s2¢*(t),

for some polynomial ¢ of degree n and real number s. Espe-
cially this means that the characteristic polynomial y 4-15(%) is
a square of a polynomial p(t) := sq(t).

By Spectral theory every symmetric matrix B € M(2n,C) has
2n real eigenvalues. It holds that iA is a symmetric matrix since

(iA)" = —iA* = —iAT =iA.

Suppose that A is an eigenvalue of A with eigenvector v. Then
it holds that

1AV = i),

i.e., i\ is an eigenvaluea of iA. Since all the eigenvalues of 1A
are real, it must be that i\ is real. But then we must have that
A is purely imaginary. Since the characteristic polynomial of
A has only real coefficients and since conjugation of complex
numbers commutates with sum and product, we see that also
A is an eigenvalue of A.

By Fundamental theorem of Algebra we have that the char-
acteristic polynomial of A has as many roots as A has rows.
Now it must be that 0 is a root of even/odd multiplicity for x4,
if A has even/odd number of rows, since every non-zero root
comes in pairs A and X. This proves the claim, thus eigenspace
of 0 is precisely the kernel of A.

O

We define a Pfaffian of skew symmetric matrix A as

Pf(A) = 6, if detA = §*.

Let us return back to the our Hamiltionian setting. Let p(t) =
Xo-1(¢+3)(t). Since given in the basis 1, H,x2,¥s, ..., %y, yn the both
forms o and ¢*c are skew symmetric, we see by the considerations
made above of skew symmetric matrices that p(t) = (6(¢))? where
deg(d) = n—1. By Lemma 5.8 polynomial p is preserved by flow of V',
therefore also ¢ is preserved.

Since we have that

det(¢*o — to)

p(t) = det(c ' (¢*F) — tId) = T

it follows that

5(t) = Pf(gz;*ga—) to)



DISTANCE DIFFERENCE FUNCTIONS 41

Theorem 5.10. Let diffeomorphism ® : U(Q) — U(Q) be orbital on
Q. Then for each t € R the polynomial

PR tw)
P = =y

1s an integral of Hamiltonian flow of V. In particular all the coefficients
of P are integrals of V.. Here a = a(x) = a1(x)az(x), where ay and ay
are as in Lemma 5.6.

Proof. Choose a point = € @ and let a; = a1(x), a2 = ag(P(x)). First
we note that V,, # 0 since w is non-degenerate and w(V,, X) = XH =0
if and only if X € T,,(Q) by Lemma 5.4. We consider a two form ®*w—aw
on T,M?". Let u € T,M?". By Lemma 5.6 we have that

w (DD — aw)(u) = D*T(V, u) — aw(V, u) = a@(V, ®,u) — adH (u)
= aydH(P,u) — adH (u) = a;®* (dH)(u) — adH (u)

and
a1 9" (ay®.dH)(u) — adH (u) = ay(az o ®)dH — adH = 0.

Therefore we have proved that (V,) C Ker(®*w — aw), if we consider
again ®*W — aw as a linear mapping from T, M?*" to T} M>*".

By Lemma 5.9 we know that the kernel of ®*w — aw has an even
dimension since dim M?" = 2n. By Lemma 5.9 we also know that the
kernel restriction of ®*w — aw into T, has dimension of odd mul-
tiplicity. Therefore the set (T,M** \ T,Q) N Ker (®*@w — aw) is not
empty. Let A € (T,M**\ T,Q)NKer (®*w — aw). Now it must be that
A € Ker (¢*w — aw) and

w(V, A) = dH(A) = AH # 0,

by Lemma 5.4. Since w is bilinear, one can choose vector A such that
w(V,A) = 1. Since V € T, we can choose vectors {eq,...,e9, 2} C
T,(Q such that (Vi ey,..., e, o) is a basis of T,(). Now it holds that
(A, V,eq,..., e, ) is a basis of T, M?".

Let (A*,V* el,... €5, 5) be a basis in T, M that is a dual basis for
(A, V,eq1,...,ea,2). Since w(V,-) € TFM, we can write it as

2n—2

w(V, ) = blA* + bgv* -+ Z bi+2€;k.
i=1

Since we assumed that w(V, A) = 1, it follows that b; = 1. Since w is
a 2-from it holds that 0 = w(V, V') = by. For the other base vectors we
have that

bl'+2 = UJ(‘/, 61') = eZ-H =0.

Now we have proved that (tw(V,-)); = td6t. Since we know that V &
ker(®*w — aw) it follows that (®*@ — tw)(V,); = (a — t)d}.
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Since ®*w — tw is a skew symmetric matrix, we can easily calculate

its determinant as we have obtained a nice representations for matrix
(P*w — tw),

0 a—t ()
det(®*'w —tw) =| —(a—t) 0 0...0
- 0 (PWU—tw)ne
= (a —t)?*det((P*@ — tw)|r,0) = (a — t)*det(¢p*c — to).

From this equation we see that

Pf(d*w —
We also see that
0 1 (%
det(w)=| =1 0 0...0|=det(w|n,q) = det(o).
—(*) 0 wlne

Finally we have proved that

v PH®T—tw)  PHGT —to)
O P N T R

Now our claim follows from reasoning made after Lemma 5.9. g

5.3. Part III, Proof of main theorem of [41]. Let M,n > 1 be
a smooth manifold with geodesically equivalent metric tensor fields ¢
and g. In this part we will provide a proof to the main theorem of [41].

We will use tools introduced in [41]. The main idea is to use Theorem
5.10. Let 7 > 0. Define sets

UgM = {(p,§) € TM : [[{][4(p) =7}
and
UM = {(p,§) € TM : [[{][z(p) =7}

respectively.
Choose p € M and let (U, x) be any smooth coordinates near p. Let
(TU, (x,v)) be coordinates in T'M related to (U, z) as

TU = 77U, and (z,v)(p, €) = (2(p), v(€)) = (x(p), (€)i0),

where 7 : TM — M is the projection to the base point and £ = £'0x;],.
Let (T'M,w,, H,) be the Hamiltonian system with w, = d[g;;v?dz’]

and Hy (&) = %gijgigj in local coordinates. Then the Hamiltonian vector
field of this system is same as the geodesic vectorfield
0 .0
Xy = oF— — Ffjvlv]—.

&rk c%k
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Let Z be the zero section of M. We define a mapping ® : TM — T'M

by formula
(¢:€) ( ), §€”
By this formula @ is continuous, since at each ¢ norms || - |4 and

| - l5() are equivalent. Therefore there exists 0 < ¢(¢q) < C(q) such
that

1€ll5 c(a) < li€lly < lillg Cg) for all £ € T, M.

By continuity of norms it holds that ®(¢,&) — 0 as £ — 0,. By this

definition mapping @ is clearly smooth in TM \ Z and has a smooth
inverse V: TM\ Z —-TM\ Z

o

since

) _ (. el Ity
(@0 W) = (46 ||sH§IIQ||g> (2,€).

Lemma 5.11. Let 0, be the geodesic flow of g and 05 the geodesic flow
of g respectively. Let r > 0. Function ® maps Uy M onto U; M, takes
orbits of 0y to the orbits of 05 and is orbital on Uy M.

Proof. Let (q,§) € Uy M. Then it holds that

P(q,8) = <q,§@)

r
IISW

Thus by symmetry of ¥ we have shown that ®(Uy M) = U7 M.

Since metrics g and g are geodesically equivalent, it follows that
the geodesics of both metrics have same images on manifold M. Let
v : (—€,€) — M be a geodesic of metric g parameterized with arclength.
Then it holds that ¢ — (v, :) is an orbit of 6, and

and therefore

lg =1

. r .
(e, 4e) = <%,—. %>, where Y|
[ealF; [ealF;

Here we use notation 7(t) = 7. Give an unit speed parametrization

for v with respect to metric g and it follows that ®(+;,4;) is an orbit
of 95.

Since TM\Z is open, UyM,U;M C TM\Z and ® : TM\Z —

TM\Z is a diffeomorphisim, we have proven that ® is orbital on Uy M.

U
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By definition of sets Uy M and Uz M it is obvious that
r _ —1 T T -1 r
;M = H{ 2} and Uz = BT},

Recall that a standard way to embed T, M in T, o\T'M, § € T,M is the
mapping w . (q,¢) € TM\Z and embed Ty M — T4 T M.
Define c(t) = ¢t 6 T M. Calculate

d
H.& = S (H 00)(1)lr = 2l e = 2 €]l #0.

Since R is one dlrnensmnad7 we have shown that, for any (¢,&) € TM\Z
push forward mapping H. is onto. Thus sets Uy M and Uz M are regular
level sets and therefore sets UgM and UM are smooth sub manifolds
of M with codimension 1.

Clearly it holds that H, = Hz o ® and H; = H, o V. By [3§], 6.12.
it also holds that ®*dH, = d(Hj o ®). Therefore it holds that

dH, = d(H; o ®) = &*(dH;) = U, (dH;) = d(Hg o U) = dHj.

Let v be a geodesic of g with respect to initial conditions 7(0) = p and
4(0) = £. Let o be an unit speed parametrization of v with respect to
metric g such that «(0) = 0. Consider now a curve 7 : R — M defined

by
F(t) = ([[€llga(t))-

Since 7 is a geodesic of g, it follows that 7 is a geodesic of ¢ with
condition
d - . . - 1€ 1l

—(t = t t =
70, = He@Nlelam)] = et
Then the geodesic vector fields Xy, and X H; satisfy
Xn,(p. &) = (7(0),%5(0))

€.

and

6l 6) = G, 50,

1€]]5

since 7 is an geodesic of g with initial values (p, ”EH%) Let 5(t) =
1€]|4(t). According to the proof of Lemma 5.6 it holds that

el _ llls - 1€l
el = e, P e,

In coordinates (z,v) of TU we have at p that

XHg(cD(pa g)) = XHg(pv

X, (p,€) = 67 0)|_ Xn, 6)

wy = d[gijv'd2’] and w; = d[g;;v'da’].
Then it holds that

Wg = d[gijvidxj] = d(gijvi)/\dxj == (gz'jvi)dxk/\dxj—ﬁvk (gij’lji)dxj/\dvk
= O, (gij0")da® N da? — gijopida? A do*
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and

s st -]

Therefore it holds that

oo - e
= Al 2 [Eh ]

For each £ € T,M \ {0} we define
loO)llg~
ik = T3 [ Gigv ]
ovg Lllv()llz™
From now on we identify vector ¢ with mapping v. With this small
abuse of notation we have

B loll,~ ]
*= avk[uvugg”” '

As in the first section of this appendix, we can choose such a basis for
T,M that matrices g and g are

g = diag(1,...,1) and g = diag(p1, ..., pn),
here p; > --- > p, > 0. In this basis it holds that

noo2 lollg ) vl
O Nyl e~ Pl
Alk T pla’l} U; n 5 - p26 ” H plvl H’U”2 Vg |-
¥ Zj:l Pjv; g g
Let us define
lollg ) llvlle
P HUH A, = —pyo; and B, = 1o Pipllg
"ol lvlI3
Also set A= (Ay,...,A,) and B = (By,...,B,). Then we can write
(63) [Aij] = diag(pa, - - ., pn) — A® B.

Since in T, M we have g = J;;, it holds that

wy(p) = On, (gi0")da™ A da? — Sjpda? A dv™.
Due this, formula (62) and the considerations made above a 2n x 2n-
square matrix ®*wy — tw, at (p,v) looks like

( —([Az'j]*+ t;;) [Aij]gtéij ) '

—([Aij] + tdy) 0

Calculate

det(@*wg — twg) = ‘ = det([AU] + téz‘j)Q
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and

det(w,) = '

*
—5y;
We define

A"(t) := det([As;] + t0;;) = det(diag (t + p1,. ...t + pn) — AR B).

Note that the last equality holds due equation (63). By the consider-
ations we made about the Paffians of the skew symmetric matrices, it

holds that
Pf(d*w — tw)
A(f) = - P
(t) Pf(w)

Lemma 5.12. It holds that

A™Mt) = (E+ )t + p2) -+ (E+ pn)
(64) —(A1B1)(t+ pa)(t + p3) - (L + pn)
— (4 ) (4 p2) (4 pa) - (E+ pin-1)(AnBy).

Proof. We prove the claim by induction. We start with step n = 2.

t+py — A1 By —Ay By

A2(1) =
(t) —AlBQ t+ M2 — AQBQ

= (t+pu1)(t+pe) — Ay By (t+po) — (t+ 1) As Bo+ A1 Ay By By — A1 Ay By By

= (t+ p)(t + p2) — Ay Bi(t + p2) — (t + p2) A2 Ba.
Assume that A"7!(¢) and A" (1) satisfy equation (64). Let us prove
the claim in the case of A™(¢). By induction assumption we have

n

nAM(t) =Y (t+ p; — AiB;)detM;; + Z 1)7+7+1 A, B;det M,
=1 i,j=1j#i

n

= (t+ pi — AiBi)det M;; + Z 1)+ A; A; B; Bydet M,

1=1 1,j=1 j#i

(t+ pa)(t+ i) -~ (E+ pim)
=n | —(AB)(t+ p2)(t + pz) - (+ pn)
— (4 pa) (E+ p2) (E+ ) -+ - (84 1) (AnBy)

(65)
ij=1i#j k=1, k#i,j ij=1, j#i
Here M;; is the n — 1- square matrix where we have deleted the i

column and j* row Matrix M is like M;;, but B; and A; are removed
from j** row and i** column. For instance

MIQ = Mﬂ
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~1 —As — Ay - —A

—Bs  t+4 p3 — A3Bs —AyBs s —A,Bs
— | —Bs —A3By t+py —AyBy - —A,B,

If we can prove that (65) is zero, then we are done with the induction
claim for A™(t). To verify that (65) is zero, it suffices to prove that

n

detMy = (—1)™ [T ¢+ mo)-
k=1,k+i,j
This follows by an induction in a following way. Calculate det]\Zj with
respect to the i row. Then one of the sub determinants of M,; is

(—=1)" A" 2(¢) and all the others have a similar looking form as M;;.
Therefore

det]\f\/[/ij:

(I evm= Y (4B I G+ w))
k=1, k#i,j k=1, k#i,j 0=1, 04,5,k

+ ) ((—1)z‘+kAkBk(—1)j+k 11 (t+ug))

k=1, k#j (=1, b4k

= (1" T (¢t m).
k=1,k#i,j

Let 6" 1(¢) be such a polynomial of degree n — 1 that
A™t) = (a —1)" (1),

where a = a(p,v) = ”ZIIE

. The polynomial 6"~ ! exists since

Q@

lvlg

vl [vllg
(a+ pi) = = pi = A;B,;
[v]lg vl piv;

and by equation (64) it holds that

n - Z?:1 jv]2-
A"(a) = [T(a+ ) (1~ W) 0.

i=1
Write
A™(t) = t" 4 a1t 4 -+ ag and 5”_1(15) =" b, ot" 2 by
for some (a;)?=y and (b;)}=2. Calculate

(t=a)d" ' (t) = (t = a)(t"" + buat" 7 + -+ + Do)
="+ by —a)t" . (b1 —aby )" (by—aby )t —aby.
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Then it holds that

a, =b,=1
Ap—1 = bn—2 —a

(66)

Ap—t, = bp—p—1 — aby_p,

ag = —abo

Note that the coefficient ag can be calculated from formula (64) in the
following way

ag = A"(0) = py - pin — Ay Bipiapiz -+ - fln — - oo — pafiofiz - pn1 Ay By
n llvllg [[vllg
[ollg\" [ollg\" "t~ 2 Tolls — Pillelly
= (=1)"(p1-- 'pn)< ) +(=1)"p1 - 'pn( ) v; (—q>
IellF; IellF; Zl [0]2

. lol\m . (Il melells = E i3
= e () + (o) )
= e ()

vll5

By formula (66) it holds that

Qg

(67) bo=——=(=1)""(p1-- 'Pn)<M>n+l°

a vll5

In the first section of this appendix we defined that

5u(n.0) = (G42)

k+2 Kk
n+1

Cin_i-H (U)
i=0

and
Ie((p, v)) = gp(Sk((p, v)), v).

Thus it holds that

So((p.0)) = () )

detg,
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and therefore we have that

Iy(z,v) =

Note that

_ Pf(®*0 — tw)
n—1 o

" = P

and by Theorem 5.10 each coefficient of polynomial §"~! is an integral
of geodesic flow of g. Since H, is an integral of geodesic flow of g, also
Iy is an integral of geodesic flow of g by calculations made above.

Since we do not need other functions I, kK > 1 in our results, we
skip the proofs to show that each I, has a similar kind of connection
to coefficient by as Iy and by have. This is done in [41]. Thus we have
proved Theorem 5.1 that is by Matveev and Topalov and is the main
result of [41].
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