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Abstract 

We present a visual construction of a nowhere differentiable function in connection to 
a discussion on mathematical thinking and especially the three worlds of mathematics 
of David Tall. A special feature of the construction is that the main properties of the 
function (continuity and nowhere differentiability) can be proved by discussing 
properties of pictures used to illustrate the definition.  

 

0 Introduction 

Continuous nowhere differentiable functions have an important role in the 
development of mathematics in the 19’th century. Nowadays a great variety of 
constructions leading to such functions are known. See e.g. Thim [2003]. Being 
extremely counterintuitive such functions and their existence present also an 
interesting challenge for learning of the basic concepts of analysis and in 
mathematical thinking in general. For example, David Tall has been using a 
construction which he calls the Blancmange function in many of his writings 
beginning from Tall [1982]. 
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This paper consists of two kinds of material. First we present a construction for a 
continuous nowhere differentiable function. The construction and the way in which 
we present it does not appear in e.g. Thim [2003], though many constructions of 
continuous nowhere differential functions have common features. 

We shall actually present the construction twice: in section 1 by means of a visual 
approach and in section using more formal style. 

Later we use this construction and the two ways to approach it as an example for 
discussing mathematical thinking. We shall be especially interested in the connection 
between our own ideas of the human (social) and objective sides of mathematics 
[Oikkonen “Oulu”] and the famous three worlds of mathematics of David Tall. 

 

1 The function f 

 

We shall give in this Section a construction of a continuous nowhere differentiable 
function by visual means. The construction of our continuous nowhere differentiable 
function f and the discussion of its properties are written below so that the 
presentation suits for a group of students in a university course of analysis. Especially 
it is assumed that the students know in advance the basic properties of the real line 
including completeness and ‘epsilon-delta’-definitions for continuity and 
differentiability.  

What is done below can, however, be easily modified for an audience with no deep 
familiarity with continuity and derivatives (like a group of upper secondary school 
students) much in the same way as David Tall describes in many of his papers and for 
example in the book Tall [2013]. Actually the author has presented a construction of a 
Peano-curve in a similar way to audiences consisting of upper secondary school 
students. 

We assume below some familiarity with nested closed intervals. If this would be new 
to the audience we should spend some time on describing the basic properties of 
nested open and closed intervals and on the completeness (‘there are no holes’) of the 
real line. To be more precise, if [a1, b1], [a2, b2], … are closed intervals and if a1 ≤ a2 ≤ 
… and b1 ≥ b2 ≥ ..., then there are real numbers which belong to all of these intervals. 
If moreover the lengths bn – an tend to 0 as n tends to infinity, then there is a unique 
common element in these intervals. 

This property is actually very interesting for several reasons.  It is rather obvious 
when we ‘look at’ the real line. Hence it is very close to our ‘visual image’ of the real 
line.  It is also rather easy to prove this property in an introductory course in analysis.  
Moreover, this property is a nice version of the compactness of closed intervals and it 
can be used to give a uniform way of proving the main consequences of compactness 
in an analysis course by ‘cutting closed intervals in halves’.  

We define our function f first on [0, 1] so that f(0) = 0, f(1) = 1, and 0 ≤ f(x) ≤ 1 will 
hold for all x in [0, 1]. After this we shall ‘copy’ the original f on every [n, n+1] so 
that f(n) = n and f(n+1) = n+1. For example, for 1 ≤ x ≤ 2, we put f(x) = f(x – 1) + 1. 
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The process of defining f on [0, 1] goes in steps. The initial step is described above. 
At every step we get more accurate information about the value f(x). This information 
tells us that f(x) lies in a certain closed interval [an(x), bn(x)]. (We accept here a 
singleton as a closed interval.) Finally, f(x) will be the unique common element of all 
these intervals. 

The main idea is presented in this simple picture. There is a big rectangle cut to 
smaller dividing it horizontally in four pieces and vertically in two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(COMMENT: THESE SKETCHES COULD PERHAPS BE REPLACED BY 
PHOTOS OF ACTUAL HAND DRAWN PICTURES.) 

Initially, the big rectangle is the square [0,1] x [0,1]. This means that a0(0) = b0(0), 
a0(1) = b0(1) = 1 and for 0 < x < 1, a0(x) = 0 and b0(x) = 1. 

To go to the next step, the big rectangle is cut as in the picture. The ‘graph’ of the 
function f is meant in the picture to give an impression of what the function shall 
roughly look like. The picture is of course ‘wrong’ in the sense that it does not carry 
much exact information about f. Indeed, it only indicates in which smaller rectangles 
the graph of the function f appears. But we can use the picture in order to get some 
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idea of our construction. It does help us to visualize the function we are constructing 
without being a portrait of the function. At least the author found the sketch very 
helpful. 

The values of a1(x) and b1(x) are indicated in the picture above. More precisely, we 
have for instance for values ¼ < x < ½ the values a1(x) = ½  and b1(x) = 1. At the end 
points of this subinterval we have a1(¼ ) = b1(¼ ) = ½ and a1(½) = b1(½) = 1. 
Especially, the graph of the function f will go through the corners as indicated. 

This process is repeated infinitely many times. In cases where the function “goes from 
the upper left corner to the lower right corner” (which is above the case on the 
subinterval [ ½ , ¾ ] ), the picture is used “upside down” like this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pictures of this kind can be used also for indicating proofs for the continuity and 
nowhere differentiability of f – or at least for indicating the thinking behind the 
formal proofs.  
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To do this, some notation will help. Notice that at each step n of the construction we 
use rectangles with certain width wn and height hn. Indeed, 

w1 = 1 and wn+1 = ¼ wn; 

h1 = 1 and hn+1 = ½ hn. 

Especially, the form of these rectangles is characterized by the ratio  

hn+1 / wn+1 = 2n. 

The first immediate consequence of the construction is that whenever  

|x - t| < wn,  

the points (x, f(x)) and (t, f(t)) of the graph of f must lie in  the same or consecutive 
rectangles. (If we were discussing the pictures, It would be natural to show with ones 
finger the points discussed)  

Thus 

|f(x) – f(t)| < 2 hn. 

It follows from this observation that f is uniformly continuous. 

To prove the nowhere differentiability of f we take a new look at the picture 
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 (The picture is of course too wide here, but it is meant to express the idea.)  

Let us show that f is not differentiable at a certain point x0.  We shall consider the 
difference quotients  

(f(x) – f(x0)) / (x – x0) 

for certain other values x. 

In every stage n of the construction, we can locate x0 in a picture like this. We can 
assume that f ‘goes’ from the bottom left corner to the top right corner. (The other 
case where f ‘goes’ from the top left corner to the bottom right corner is quite 
similar.) 

Assume first that x0 is ‘in’ the rightmost quarter. Let the other value x in the 
difference quotient correspond to the left bottom corner. For geometric reasons we see 
that the absolute value 

|(f(x) – f(x0)) / (x – x0)| 

is at least the slope for the rising line drawn in the picture. Thus 

|(f(x) – f(x0)) / (x – x0)| ≥ ½  hn / wn. 

But this ratio can be made as big as we like by choosing n big enough! Notice that if 
x0 is ‘in’ any other part of the picture, we have the same estimate. (If x0 is ‘in’ the 
leftmost part, then we take x to ‘correspond to’ the top right corner of the picture.) 

This observation gives us the following result: For every x0, every ε > 0 and every M 
> 0, there is x for which |x – x0| < ε and  

|(f(x) – f(x0)) / (x – x0)| > M. 
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Especially, f is nowhere differentiable since the difference quotient corresponding to 
any x0 cannot have a limit. 

In this construction and in the arguments above the author likes especially the feature 
that all the thinking is completely visual (or embodied in the pictures, as will be said 
later in this paper). It would be wonderful to present this at a backboard! 

More exactly, the visual proof consists of the above pictures and a discussion while 
observing the pictures. This will suffice to convince most novices and experts. In case 
we would like to write a formalized proof, we could use such a discussion as a 
receipt. We shall come to this theme in section 3 of this paper. 

Since f is continuous and nowhere differentiable, also that the function g(x) = f(x) - x 
is continuous and nowhere differentiable. This function has the additional property 
that g(0) = g(1). So extending g on the whole real line is especially simple: just put 
g(x) = g(x - n) when n ≤ x < n + 1. 

Finally, here is a ‘realistic’ picture of the function f. 

 

It is produced by  Maple using a code kindly written for us by Antti Rasila (in 2007.) 
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2 Variants of the function 

 

To understand the function defined above we only needed the ‘boxes’. There was no 
reference to any actual approximating functions living in the boxes. 

But at each step n of the construction we can in many ways consider a function fn 
satisfying the requirements given in terms of the ‘boxes’. This can be done in many 
ways.  

It follows easily from the construction that every choice of such functions fn leads to a 
sequence of functions uniformly converging to f. 

If we choose the functions to be piecewise linear, the situation is in this respect very 
much like with the blancmange function discussed by Tall in [1982].  

We can choose also the functions fn to be continuously differentiable by using eg., 
suitable trigonometric expressions. For example, 

c+ d − c
2
(1− cos(π (x − a)

b− a
))  

goes from the lower left corner to the upper right corner of [a, b] x [c, d] and has 
derivative = 0 at the end points. 

By use of well-known tricks in analysis, the functions fn can also be made C∞ . So our 
construction has a version which has properties much like the well-known 
trigonometric sums of the form 

an
n=1

∞

∑ sin(bnx)  

as in Weierstrass’ original construction. 

Another interesting point about the function f compared to the blancmange function 
or the trigonometric series above is that our definition in terms of ‘boxes’ shows from 
the beginning of the iteration information about the values of the function: we go to 
smaller and smaller details inside previous rectangles. This information simply gets 
more and more accurate. But at every step we are able actually to draw some kind of a 
picture of the function f by hand. The pictures of the blancmange function and the 
trigonometric series seem to be more difficult to anticipate. 
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The function g(x) = f(x) – x mentioned before has also some interest since it satisfies 
g(n) = 0 for every integer n. Here is a picture of g produced by modifying the code 
yielding the Maple code that was used in the earlier ‘realistic’ picture. 

  

 

There are also other ways to extend f from [0, 1] to the whole real line so that we have 
a periodic continuous nowhere differentiable function. Here is an example. We denote 
this other function by f, too.  

Define first for x in [0, 1], f*(x)	
  =	
  f(x).	
  Define next for x in ]1, 2], f*(x)	
  =	
  f(2-­‐x).	
  Thus	
  
we	
  have	
  defined	
  f*	
  on	
  the	
  interval	
  [0,	
  2]	
  so	
  that	
  f(0)	
  =	
  f(2)	
  =	
  0	
  and	
  the	
  graph	
  is	
  
symmetric	
  relative	
  to	
  the	
  line	
  x	
  =	
  1.	
  After	
  this	
  we	
  define	
  for	
  all	
  n	
  and	
  x	
  in	
  
[2n,2(n+1)]	
  the	
  value	
  f*(x)	
  by	
  f*(x)	
  =	
  f*(x-­‐2n).	
  Notice	
  that	
  here	
  x	
  –	
  2n	
  lies	
  in	
  [0,	
  
2].	
  

	
  

3 A ‘mathematical’ version of the construction 

Our aim in this section is to describe how the construction presented in the previous 
section can be given a more exact form. 
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We use the compactness of closed intervals in the form of the following well-known 
fact. 

Lemma. If [a1, b1], [a2, b2], … are closed intervals and if a1 ≤ a2 ≤ … and b1 ≥ b2 ≥ 
…., then there are real numbers which belong to all these intervals; and if the length 
bn – an tends to 0 as n tends to infinity, then there is a unique common element in 
these intervals. 

 

In the construction of our function we split at every step the square [0, 1] x [0, 1] to 
smaller and smaller rectangles. This can be expressed in terms of two sequences (In) 
and (Jn)  of sets of closed intervals so that the rectangles discussed on step n of our 
construction will be of the form I x J where I is in In  and J is in Jn.  

We shall need one piece of notation. Let I = [a,b] be a closed interval. Denote 

I1 = [a, a + ¼ (b - a)], 

I2 = [a + ¼ (b - a), a + ½ (b - a)], 

I3 = [a + ½ (b - a), a + ¾ (b - a)], 

and 

I4 = [a + ¾ (b - a), b]. 

Similarly we denote for a closed interval J = [c, d] 

J1 = [c, c + ½ (d - c)], 

and 

J2 = [c + ½ (d - c), d]. 

Let I0 be {[0, 1]} and J0 be {[0, 1]} and assume that In and Jn have been defined. Then 
In+1 consists of all intervals of one of the forms I1, I2, I3 and I4 where the interval I is 
in In. Similarly, Jn+1 consists of all intervals of one of the forms J1 and J2 where the 
interval J is in Jn. 

Next we shall express the construction described in section 1 in terms of the present 
notation. We have to define an(x) ≤ bn(x) for all x in [0, 1]. Then we shall define f(x) 
to be the unique common element of all the sets [an(x), bn(x)], i.e.  

f(x) = lim n-> \infty an(x) = lim n-> \infty bn(x). 

As in section 1, we begin with  

a0(x) = 0 when 0 ≤ x < 1 and a0(1) = 1. 

Similarly  

b0(x) = 1 when 0 < x ≤ 1 and b0(0) = 0. 

Thus the set 
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{y | a0(x) ≤ y ≤ b0(x)} 

is a singleton if x is 0 or 1 and it is a closed interval if 0 < x < 1. 

Next we shall assume that an(x) and bn(x) have been defined so that for every I = [a, 
b] in In there is such a J = [c, d] in Jn that for all x in I both an(x) and bn(x) lie in J, and 
that (i) or (ii) below hold. 

 (i) an(x) = c when a ≤ x < b and an(b) = d  

and 

bn(x) = d when a < x ≤ b and bn(a) = c. 

(ii) an(x) = c when a < x ≤ b and an(b) = d  

and 

bn(x) = d when a ≤ x < b and bn(a) = c. 

The interpretation of (i) is that f shall ‘go’ from the left bottom corner of I x J to the 
right top corner of I x J. Likewise (ii) means that f shall ‘go’ from the left top corner 
of I x J to the right bottom corner of I x J. 

We shall discuss case (i); case (ii) is analogous. The intervals I1, I2, I3 and I4 and their 
end-points will be considered separately.  

an+1(a) = bn+1(a) = c, 

if a < x < a + ¼ (b - a), we put an+1(x) = c and bn+1(x) = c + ½ (d - c), 

an+1(a + ¼ (b - a)) = bn+1(a + ¼ (b - a)) = c + ½ (d - c), 

if a + ¼ (b - a)  < x < a + ½ (b - a), we put an+1(x) = c + ½ (d - c), and bn+1(x) = d, 

an+1(a + ½ (b - a)) = bn+1(a + ½ (b - a)) = d, 

if a + ½ (b - a) < x < a + ¾ (b - a), we put an+1(x) = c + ½ (d - c), and bn+1(x) = d, 

an+1(a + ¾ (b - a)) = bn+1(a + ¾ (b - a)) = c + ½ (d - c), and 

if a + ¾ (b - a) < x < b, we put an+1(x) = c + ½ (d - c), and bn+1(x) = d. 

Assume that an+1(x) and bn+1(x) are defined in this way. One can easily check that for 
every I = [a’, b’] in In+1 there is such a J = [c’, d’] in Jn+1 that for all x in I both an+1(x) 
and bn+1(x) lie in J, and that (i) or (ii) below hold. 

 (i) an+1(x) = c when a’ ≤ x < b’ and an+1(b) = d’  

and 

bn+1(x) = d’ when a’ < x ≤ b’ and bn+1(a’) = c’. 

(ii) an+1(x) = c’ when a’ < x ≤ b’ and an+1(b’) = d’  

and 
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bn+1(x) = d’ when a’ ≤ x < b’ and bn+1(a’) = c’. 

This means that the recursive construction shall go on. It follows that we obtain a well 
defined function f: [0, 1] -> [0, 1] since the intersection of the descending sequence of 
sets [an(x), bn(x)], n = 0, 1, 2, ... is a singleton. Next we shall take a new look at how 
to prove that f is continuous and nowhere differentiable. 

It follows directly from the definition of the sequences (In) and (Jn)  of families of sets 
that the length of every I in In is 4-n and that of every J in Jn is 2-n. 

In our construction we use rectangles I x J where I is in In and J is in Jn. The width of 
such is thus 4-n and the height of such is  2-n. The ratio of height and width of such a 
rectangle is  

2-n / 4-n = 2n. 

Proposition: (i) If x and y are in [0, 1] and |x - y| < 4-n-1, then |f(x) – f(y)| < 2-n. 

(ii) The function f is continuous. 

Indeed, if |x - y| < 4-n-1, then x and y lie in the same or in adjacent members of the 
family In+1. Thus the assertion follows directly from the above construction. 

It follows from (i) that f is (uniformly) continuous on [0, 1].  

Proposition: The function f is nowhere differentiable. 

The same rectangles as above can be used to show that f cannot be differentiable 
anywhere. Consider a point x0 in [0, 1] and the difference quotients 

f(x) – f(x0) / x – x0. 

Fix n for a moment. There is I in In for which x0 lies in I = [a, b]. Consider the 
following four cases separately. 

(1) x0 is in I1. Choose x = a + ½ (b - a). Then |x – x0| < ½ 4-n  and  

|f(x) – f(x0) / x – x0| ≥ 2n. 

(2) x0 is in I2. Choose x = a. Then |x – x0| < ½ 4-n  and  

|f(x) – f(x0) / x – x0| ≥ 2n. 

(3) x0 is in I3. Choose x = b. Then |x – x0| < ½ 4-n  and  

|f(x) – f(x0) / x – x0| ≥ 2n. 

(4) x0 is in I4. Choose x = a. Then |x – x0| < 4-n  and  

|f(x) – f(x0) / x – x0| ≥ ½ 2n. 

In every case there is x satisfying |x – x0| < 4-n  and  

|f(x) – f(x0) / x – x0| ≥ ½ 2n. 

This holds for all n = 0, 1, 2, 3, .... Thus the quotient difference  
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f(x) – f(x0) / x – x0 

cannot have a limit as x -> x0. So f cannot be differentiable at x0. 

 

4 Interlude: dogs wearing socks 

 

Sections 1 and 3 differ in style and emphasis. In Section 1 we emphasized the ‘idea’ 
of the construction and in in Section 3 the emphasis was on an attempt to give a 
rigorous expression of the construction. Such a difference will be the main theme of 
the rest of this paper. Before that we shall consider a simple example. 

Consider the following two problems. 

Problem 1. The dog Snoopy wants to wear socks on his paws. Moreover, he wants to 
have socks of the same colour on all his paws. Snoopy has a box that contains blue, 
red and yellow socks. The box is in a totally dark storage. There is no difference 
between the socks besides the colour that Snoopy can use to find out the colour. So 
Snoopy has to take some socks out of the storage to choose socks of the same colour. 
What is the smallest number of socks that suffice for Snoopy to take out? 

Problem 2. Assume that a set X is the union of three subsets A, B and C,  

X = A∪B∪C.  

Find the smallest number k such that for every subset Y of X containing ≥ k elements, 
one of the intersections   

Y ∩A , Y ∩B or Y ∩C  

contains at least 4 elements. 

It is perhaps not too risky to guess that many people would find problem 1 much 
easier than problem 2. But from the point of view of mathematical content, the 
problems are exactly the same. 

The difference is in presentation. Problem 1 suggests strongly mental images to use in 
working with the problem. Moreover our emotions get easily involved in a positive 
way: many of us want to help Snoopy. Problem 2 does not raise similar emotions and 
remains more at a distance. Moreover the mathematical language and notation does 
not strongly suggest mental images or such to use in analysing the problem. 

The power of mental images appears sometimes even in the terminology of 
mathematical research literature. Ramsey theory is a branch of combinatorics where 
the well-known Pigeon-Hole-Principe is elaborated in a nontrivial way. In Ramsey-
theory one divides the family of subsets of n elements (for a fixed n) of a given set in 
subsets (families) and studies subsets of the given set that are homogeneous for this 
division in a certain sense.  

For example, sets of two people can be dived between those where the people know 
each other and those where they do not know each other. In this case a homogenous 
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set will be a set of people who all know each other or none of whom knows the 
others. (‘Knowing’ is here understood to be symmetric.) 

The object of Ramsey-theory sounds (and it is!) very technical and abstract. Therefore 
it is interesting to observe that the divisions studied are often called colourings of sets 
of n elements in the research literature of the branch of mathematics.  

The difference between sections 1 and 3 of this paper are to some extent analogous to 
the difference between problems 1 and 2 of this section. In Section 1 we have an 
example of an attempt to (create,) express and communicate mathematical ideas by 
means of intuitive mental images. In Section 3 we have a more technical presentation 
and the reader has to construct meaning to it. 

Before going to a more careful analysis of this distinction, one more final example of 
the use of pictures to communicate mathematical information. Here is what one might 
even call the ‘universal picture’ in mathematics: some kind of an oval and some dots 
etc. in it.  

	
  

	
  

	
  

	
  

	
  

Many of us have met uses of analogous images in attempts to solve some problem or 
in situations where somebody is attempting to communicate an idea. As such, there is 
really ‘nothing’ in the picture. But in connection to the attempts to think or 
communicate mathematics, such pictures may be of great value.  

The pictures in Section 1 have a rather similar role. Next we shall take a deeper look 
at the distinction discussed in this interlude. 

 

 

5  The “objective – formal” and “human – social” sides of mathematics 

 

Our interest in this latter part of the present paper lies in the relation between 
mathematics and us. It turns out that there are (at least) two ‘dimensions’ in which 
one can make divisions in it. Firstly, there are aspects that are objective and others 
that are subjective or social. To the first belong printed formulas and pictures that one 
can find in earlier parts of this paper. To the latter belong my mental images that I as 
the author had in my mind while writing those formulas or making those pictures, and 
your mental images that you as a reader had in your mind while reading the paper. 
This distinction is the subject of the present section. We refer to this by speaking 
about the two sides of mathematics. 
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Another distinction separates for example pictures and formulas from each other. This 
is related to the famous three worlds of mathematics of David Tall and it will be 
discussed in later sections. 

The two sides of mathematics appear in literature in many ways. One of the most 
important is the distinction between concept image and concept definition in Tall and 
Vinner [1981].  (It seems that the origin of David Tall’s three worlds of mathematics 
lies there.) Concept image refers roughly to one’s understanding of a mathematical 
concept and concept definition to the official definition of the concept.  

Sfard (Sfard 1991) considers the dualism between the operational and structural sides 
of mathematics. This duality is related to a view of three steps: interiorization, 
condensation and reification. Here seems to be a vague analogy to the three worlds of 
Tall to be discussed in a later section. 

There are also some other interesting features in Sfard’s paper. She remarks about 
mental images that ‘... mental images can be manipulated almost like real objects’. 
She also points out that higher mathematics is considered rather little in literature and 
goes on to stress the importance of higher mathematics in this respect. 

These have some resemblance to the three worlds of Tall, but the ordering makes a 
big difference. The doctoral thesis of Hähkiöniemi (2006) is interesting in this 
respect. Tall (2008) remarks that Hähkiöniemi (2006) considered the routes of 
students towards learning the derivative. Tall say that he ‘found that the embodied 
world offers powerful thinking tools for students’ who ‘consider the derivative as an 
object at an early stage’. According to Tall this questions Sfrad’s suggestion that 
operational thinking precedes structural. We shall consider David Tall’s views in 
more detail later. 

Also the paper Fishbein (1994) has some connections to the present paper. 

In our own work as a university teacher of mathematics and a research 
mathematician, a division between two sides of mathematics has become important. 
But the emphasis seems to be somewhat different from those approaches referred to 
above. For us the division concerns what one does ‘here and now’ while e.g. teaching 
a mathematical concept: does one in the next moment speak about the ideas behind a 
mathematical concept or does one work with the formal definition. Earlier versions of 
our approach are discussed in Oikkonen (2009). (See also Oikkonen (2004) and 
Oikkonen (2008). The latter is a preliminary version of Oikkonen (2009).)  

In Oikkonen (2009) and Oikkonen (2004]) one of the main ideas is to consider the 
human and formal sides of mathematics in teaching and in ‘doing’ mathematics. It has 
turned out fruitful in the author’s own work as a university teacher to look at 
mathematics as something having a formal and human side.  

This is very much connected to the author’s attempt to share with his students the 
expert’s way to think and to help them to step towards becoming an expert in this 
way. To concentrate in teaching on the interplay between these two sides, has become 
especially important in the way in which the author has developed his own teaching. 
We shall develop below these ideas further and relate them to the famous three worlds 
of mathematics of David Tall (see Tall (2013).) The construction of our function f at 
the beginning of this paper will act as an interesting example in this discussion. 
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Let us consider as an example of the two sides the notion of continuity of a function g 
at a point a. The idea is simple: g(x) should be near g(a) when x is near a.  More 
exactly, if we draw two horizontal lines, one above and one below y = g(a), then there 
is are two such vertical lines, one left and one right of x = a that the graph of g(x) does 
not ‘cut’ the ‘floor’ or ‘roof’ of the rectangle formed by the four lines.  And we can 
make these rectangles lower and lower (smaller and smaller) as long as we like. Two 
such rectangles are shown in the following picture 

 

 

 

 

 

 

 

 

 

 

 

 

  y = g(x) 

 

 

 

                              a    
     

 

 

Pictures of this kind are related to a rich variety of mental images that are helpful in 
thinking about continuous functions. Such mental images are examples of what we 
mean by the human side of mathematics.  

As such, the pictures drawn on the blackboard or printed above are objective in the 
sense that anybody can observe them. We shall come back to this aspect later. 
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Continuity has also a formal aspect. The continuity of g at a has the well-known 
definition: g is continuous at a, if (and only if) for every epsilon > 0 there is such a 
delta > 0 that |g(x) - g(a)| < epsilon for all x satisfying |x - a| < delta. 

One of the main purposes of an introductory course in analysis is to teach this kind of 
definitions and proofs of the main theorems of analysis based on such definitions. But 
it is not an easy task. This is not helped by the way how we too often begin solutions 
of examples or proofs of theorems: ‘Assume that epsilon > 0. Let delta = 3/7 times 
epsilon...’ 

Our experience in teaching analysis supports the idea that it is helpful to change the 
viewing point from which we look at mathematics. This takes place by combining the 
formal definitions with an active use of mental images like the one described above. 
By doing this it is also possible to reveal in teaching the way in which an expert 
mathematician thinks.  

In our experience this kind of an approach helps in making the content of a 
mathematics course meaningful and understandable to students. Thus a course in 
mathematics is not only the polished formal content of the course but also – and to the 
author essentially – the thinking and culture that lies behind the text. We believe that 
this approach explains partially the success shown in Oikkonen (2009). (There are 
also other pedagogical ideas involved in this paper.) 

Our own path to this kind of an approach results from the striking similarity between 
two seemingly quite different types of discussion on mathematics in which the we 
have taken part: those taking place in math days in elementary schools and those 
taking place when experts discuss some problem in research mathematics. The ‘here 
and now’ choice between different kinds of action that was mentioned above seems to 
be characteristic to such discourses. 

So we have two sides of mathematics. But which of them is the correct one? Let us go 
back to continuity: which side is the correct one, the human (mental) images or the 
formal epsilon-delta definition? Our own answer is that neither of them is the correct 
one. The concept of continuity depends on both of its sides and it is to us really a kind 
of interplay between these two sides. 

Let us consider our distinction more closely.  It seems to us that it may be fruitful to 
adjust our terminology concerning the two sides of mathematics slightly.  Below we 
shall call the two sides subjective-social and formal-objective. The first term 
corresponds to what was called the human side above but seems actually to be more 
varied. It contains individual aspects like one person’s mental images, thinking and 
emotions, and it also includes social aspects like discussions or gestures. The latter 
corresponds to what was called formal above but is actually richer. It refers to those 
aspects of mathematics that are independent of the observer. Such include written 
mathematics (formulas, text and drawings on a blackboard, books etc.).  

The author’s personal view is that mathematics is interplay between its formal-
objective and its subjective-social sides. This view comes from experiences in making 
and sharing mathematical research; and from experiences in teaching. This view 
seems to be a fruitful basis – at least for the author – for work to improve teaching 
and learning in mathematics. One aspect in this kind of division between the two sides 
is that whenever in contact to mathematics like in teaching, one has ‘here and now’ 
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the choice between these. Think about a lecture about continuity. At every moment 
the lecturer either stimulates mental images and ideas or handles exact mathematical 
calculations etc. 

Finally, how does the real line fit to this division between the two sides of 
mathematics? In a sense, the real line lives (in different ways) of both sides. We have 
and share a rich variety of mental images of the real line on the subjective-social side. 
We have various formal approaches to the real line on the objective-formal side. 
These include the axioms of the reals and constructions of the reals by means of e.g. 
Dedekind cuts or equivalence classes of Cauche sequences of the rationals. 

As has been indicated earlier, this kind of a distinction appears between our Sections 
1 and 3 as described in (i) below, and in a sense inside Section 1 as described in (ii) 
below.  

(i) In Section 1 we approach the construction from the point of view of strong 
reference to mental images and in Section 3 the emphasis is on more conventional 
mathematical text. 

(ii) I as the author had my own mental images of the construction and the function to 
be constructed. This lead to something objective, observable to everybody like the 
pictures used in Section 1. And while reading, the readers produce their own mental 
images. 

Next we shall consider a different way of looking at the distinction between sections 1 
and 3. 

 

 

6 David Tall’s three worlds 

In Section 1 we discussed a construction of the function f by means of certain pictures 
in which the construction was embodied in a certain sense. At the end of the section 
there was some symbolic manipulation in connection to discussing the proofs of the 
continuity and nowhere differentiability of f. 

In Section 3 we considered the function f from a more theoretical point of view. The 
presentation was symbolic of course. But it belongs actually to theoretical 
mathematics usually characterized by being formal and often referring to an axiomatic 
treatment of mathematics. 

In this sense our construction of the function f and interest in it are related to David 
Tall’s famous “three worlds of mathematics” (see e.g. Tall (2013) or (2008)) in an 
interesting way. It is also interesting to see the paper by Tall and Di Giacomo (2000) 
which studies the role of pictures in mathematics and especially in connection to a 
construction for a everywhere continuous nowhere differentiable function called there 
the Blancmange-function. See also Tall (1983). 

Let us recall Tall’s worlds briefly. Tall calls these by Tall the names conceptual – 
embodied, proceptual – symbolic, and axiomatic – formal.  Tall has discussed his 
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worlds in a great number of writings and the concepts have developed somewhat over 
the years. 

In (Tall 2008) the worlds are described like this. 

‘The conceptual-embodied world, base on perception of and reflection on properties 
of objects, initially seen and sensed in the real world but then imagined in the mind; 

the perceptual-symbolic world the grows out of the embodied world through action 
(such as counting) and is symbolised as thinkable concepts (such as number) the 
function both as processes to do and concepts to think about (precepts); 

the axiomatic-formal world (based on formal definitions and proof), which reverses 
the sequence of construction of meaning from definitions based on known objects to 
formal concepts based on set-theoretic definitions.’ 

On page 133 of (Tall 2013) the worlds are described as follows:  

‘A world of (conceptual) embodiment building on human perceptions and actions 
develping mental images verbalized in increasingly sophisticated ways to become 
perfect mental entities in our imagination; 

A world of (operational) symbolism developing from embodied human actions into 
symbolic procedures of calculation and manipulation that may be compressed into 
procepts to enable flexible operational thinking; 

A world of (axiomatic) formalism building formal knowledge in axiomatic systems 
specified by set-theoretic definition, whose properties are deduced by mathematical 
proof.’ 

For our purposes, a good quick feeling of the distinction is given by how Tall in 
(2013, p. 25) relates the system of the real numbers to these worlds. The real numbers 
have embodiment as a number line, symbolism as (infinite) decimals etc. number 
notation,  and formalism as a complete ordered field. 

Tall’s ‘three worlds of mathematics’ have an interesting relation to our view of the 
two sides of mathematics as will be discussed in the next section.  

 

 
 
7 There are six =  2 x 3  parts of mathematics 
 
In this section we argue that a combination of the two sides discussed in Section 5 and 
David Tall’s three worlds discussed briefly in the previous section may lead to new 
insight in mathematics. Especially it may help in better understanding of Tall’s three 
worlds.  
 
It seems to us that our distinction between subjective-social and objective-formal and 
Tall’s division between conceptual – embodied, proceptual – symbolic, and axiomatic 
– formal look at similar features in mathematical thinking from two different 
standpoints. Moreover the resulting 2 x 3 = 6 parts of mathematics help to see easier 
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some aspects. So we shall consider some examples that show how each of Tall’s three 
worlds seems to divide into two sides. 
 
The case of the conceptual – embodied world seems especially natural. Our own 
mental images of mathematical objects or situations are subjective embodiment. It 
becomes social when a group of people shares such images while working on a 
problem. Various objects like number sticks etc. made for teaching mathematics are 
examples of objective embodiment. 
 
A number line was mentioned above as an embodied version of the system of the real 
numbers. It can belong to either side depending on what we actually mean. The idea 
of a line of numbers belongs to the subjective-social side whereas an actual line 
drawn eg. on a blackboard belongs to the objective-formal side. 
 
But is the real line itself an objective ‘mathematical object’ belonging to the 
objective-formal side of mathematics? What do we think about it and its existence? In 
a sense this is not an important question here. On the subjective-social side most 
mathematicians seem to behave as if the real line would actually “be there”. But to us, 
it seems that we cannot distinguish those mathematicians who really believe that the 
real line “is there in a Platonic universe” from those who only behave as if it existed. 
The theorems concerning the reals are proved using the axioms of the reals in the 
objective-formal side of Tall’s axiomatic-formal world and they make no direct 
reference to the truth or meaning of the actual statement the ‘reals exist’. In this sense 
formalism and platonism are not very far from each other. 

Moreover, it is not clear how to reply from a set-theoretic point of view to the 
question what the real line really is. Namely, there are different constructions 
(Dedekind-cuts of the rationals, certain equivalence classes of Cauchy sequences of 
the rationals) leading to different sets. 

The	
  case	
  of	
  the	
  proceptual – symbolic world is more interesting. Rules for 
manipulating symbols and correct application of such rules belong to the objective-
formal side. These include long divisions in elementary school or solving equations or 
doing differentiation of expressions for functions in upper secondary school. 
Students’ own minitheories and systematic errors seem to belong to the subjective-
social side of the the	
  proceptual – symbolic world.  

Perhaps also various routines applied in the so called street mathematics in basic 
calculations are also examples of this side of the proceptual – symbolic world.	
  

Written	
  university	
  level	
  mathematics	
  with	
  its	
  axioms,	
  definitions	
  and	
  theorems	
  
is	
  an	
  example	
  of	
  objective-­‐formal	
  side	
  of	
  the	
  axiomatic – formal world of 
mathematics. Higher level strategic discussion on research mathematics belongs to the 
subjective-social side or the	
  axiomatic – formal world. An example of this represents 
the statement  “she mixed ideas from physics to analysis to solve the problem”. 

The step from the subjective-social side or the	
  axiomatic – formal world to the 
subjective-social side of embodied mathematics with its mental images and gestures is 
very short. A nice example of this is in the Introduction of W. Hogdes’ book ( 1985) 
where he tells about a difficulty with his dissertation. The supervisor C. C. Chang 
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made a back and forth movement with his hand and said ‘this should help’. According 
to Hodges, it helped. 

	
  

	
  

	
  

	
  

	
  

	
  	
  	
  	
  	
  	
  	
  

	
  

	
  

	
  

Before leaving this section we shall have closer look at the concept of continuity 
discussed above in connection to our two sides of mathematics. There we considered 
the following kind of drawings. 
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  y = g(x) 

 

 

 

                              a    
     

The notion of continuity and the function studied is clearly embodied in such a 
drawing. (Of course it is possible that there is no specific function that is considered 
and that the whole discussion concerns the concept of continuity.) This drawing is 
clearly objective in the sense that everybody can observe it. So the drawing belongs to 
the objective-formal / conceptual-embodied part of mathematics. 

But these drawings are used either by oneself to think about continuity or by a group 
of people to discuss continuity. Such actions belong to the subjective-social / 
conceptual-embodied part of mathematics. 

When one works with examples of assertions concerning continuity, one usually has 
to manipulate mathematical formulas. As long one thinks or discusses  about how to 
proceed, one acts in the subjective-social / proceptual-symbolic part of mathematics 
When these formulas are actually written they become observable and thus objective 
and so one acts in the objective-formal / proceptual-symbolic part of mathematics. 

But usually the real interest lies in understanding, teaching or using the ‘epsilon-delta’ 
-definition of continuity, and so the subjective-social or objective-formal side of 
Tall’s axiomatic-formal world is involved. 

 

8 Looking at the function f from the  point of view of the six “places of math” 
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Now we shall consider the function f discussed at the beginning of this paper form the 
point of view of our two sides, Tall’s three worlds and the six parts of the previous 
section. 

Let us first consider our distinction between the two sides of mathematics. The hand-
drawn pictures used in section 1 of this paper are formal-objective in the sense that 
anybody can observe them. In this sense they are like written mathematics. But to use 
them in connection with our function f as above, several subjective-social activities 
are essential.  

The pictures get meaning in connection to thinking and discussing the construction 
and properties of the function f. The author and hopefully the reader constructed 
several mental images of their own related to them. If the construction is to be 
discussed between several people like in a seminar, then some kind of social sharing 
mental images will take place. 

On the other hand such thinking and discussion would be very hard in absence of the 
pictures (drawn or imagined). In an important sense, the definition and proofs related 
to f are not merely in the pictures, nor in the thinking and discussions. What seems to 
be the heart of the matter is the interplay between the discussion and the objective 
pictures. 

In this way the construction of our function f seems to be a good example of the 
interplay between the two sides of mathematics.  

The construction of our function f seems to be a good example of the interplay 
between the two sides of mathematics. The discussion of the construction of f had 
strong use of pictures and mental images. But these were a way of communicating the 
formal construction of the function and formal proofs for the continuity and nowhere 
differentiability of the function f. 

Our construction of the function f seems to relate to Tall’s three worlds in the 
following way. The hand drawn pictures and discussions around them are conceptual 
– embodied. Thus Tall’s conceptual-embodied seems to contain aspects that belong to 
our formal-objective side (the pictures) and aspects that belong to our subjective-
social side (mental images and discussions). 

Toying with our hand drawn pictures to get a concrete feeling of the function f had an 
important role in the beginning of this paper. This takes place when one by pen and 
pencil tries to get a feeling of the function f. (This can be used also when introducing 
the function f to students – in a university class or even in a secondary school.) Doing 
these calculations and making these pictures belong to the human-social side. The 
pictures and calculations as such belong to the formal-objective side. In Tall’s 
terminology making these drawings and calculations with f belong to the proceptual-
symbolic world.  

The exact formulation of the definition of f and the exact proofs for the main 
properties of f are in Tall’s terminology axiomatic–formal. In our terminology these 
aspects belong to the objective-formal side. But working towards these proofs 
thinking about them belongs to our subjective-social side. 

This supports a view that our two sides of mathematics and Tall’s three worlds of 
mathematics fit nicely together in a sense that they look at the same mathematical 
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scenery from two “orthogonal” directions. Both of our two sides correspond to 
aspects of most of Tall’s three worlds and each of Tall’s three worlds has aspects of 
both of our two sides. This holds even for the formal-axiomatic world for example in 
the sense that reading and making proofs belong to our subjective-social world. 

One of the most interesting features of the construction and argumentation concerning 
the function f at the beginning of this paper is that it serves as an example of an 
unusual route through the six parts of mathematics to present a piece of higher 
mathematics. Especially many details were left for the audience. But such omission of 
detail is typical for most published research mathematics: many details are left for the 
expert reader. 

 

9 Epilogue 

Both Tall’s three worlds and our two sides of mathematics are closely related to 
attempts to understand how mathematics can be made meaningful to people.  

At the website http://luma.fi/1324 there is a video where the author plays in this kind 
of a way with secondary school students with a visual description of a construction of 
a Peano curve. (The location of this video may change in future; the author shall help 
the reader.) This construction has very much in common with a the construction of 
our f in that they both are based on a similar use of simple pictures. 

In Tall [2008] David Tall uses the blancmange function to illustrate his three worlds. 
In his paper, images of the function have a central role as an embodiment of the 
function. Also the main properties of the function are made obvious by means of these 
pictures. Indeed, when one zooms towards smaller and smaller details, one becomes 
convinced that the graph never seems to approach locally a straight line. So the 
function obviously cannot be differentiable anywhere.     
 
But these pictures are the product of a computer program, not one’s own thinking. 
Hence to believe in the nowhere differentiability of the blancmange function, one has 
to rely on the output of a machine – i.e. in a kind of a black box. This is however only 
a very superficial impression. Tall describes in private communication how he lets his 
audience to get a feeling of what happens in the construction: “...that the pictures are 
absolutely intended to make embodied sense and to be interpreted in terms of 
'ordinary thinking'. I do it with my hands in talks, imagining successive sawteeth. I 
use two hands to show a single sawtooth, then bend my fingers over to show two half-
sawteeth. I even bend my hands and fingers to suggest four half sawteeth (try it!) but 
there the physical sensations need to move to imagination. I even get members of the 
audience to hold imaginary pictures, say with successive sawteeth to imagine the 
graphs added together. The idea is simple, the computations (which the computer 
performs) give precise pictures however, the ideas give an embodied proof that the 
function is nowhere differentiable, which has the power to be translated into a formal 
proof.” (Tall has had on his website photos of such an occasion in connection to a 
visit in Australia.) 
 
It is interesting to take one more look at how Tall’s three worlds and our two sides are 
related to learning and doing mathematics. Tall’s worlds can easily be seen as three 
steps of growth towards deeper and more abstract (expertise in) mathematics. But a 
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more correct view seems to be that more than one of them are present in school level 
mathematics and that all the three worlds are present in an expert’s relation to 
mathematics. They have an established status in scientific literature on how we learn 
mathematic. Our two worlds come originally (in the author’s own development) from 
observing the similarity between discussing mathematics in a math day with pupils in 
an elementary school to discussing mathematical research problems with other 
research mathematicians. This observation has been very helpful in the author’s own 
teaching. At least to the author there is no controversy between Tall’s three worlds 
and our two sides.  They are simply two ways to look at learning and doing  
mathematics from different viewpoints. 
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