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These notes are intended for a 10cr course and thus this autumn we will cover
only about half of material in them. However, the half is not the first half, rather
a selection of the material from these notes.

In the course we go through the very basic results from descriptive set theory.
In our approach to the topic, the use of games is more explicit than what is usual
in the literature. We do not assume any previous knowledge on set theory nor on
first-order logic, everything needed is covered in Section 1 of these notes. Still,
having taken the course Elements of set theory helps (the excellent slides by Fan
Yang for the course Elements of set theory are recommended for those that have
not taken the course). For the history of the topic, see [Mo] (Borel* sets are due
to D. Blackwell and Vaught codes are due to R. Vaught). For further reading [Ke]
is recommended.
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1. Preliminaries from set theory

Our approach to set theory is näıve i.e. we do not introduce any formal
language. So when we talk on a general level about properties of sets, usually
denoted by ϕ , ψ etc., we do not specify what these are. What we really mean by
these, are properties that are expressible by a first-order formula with parameters.
But since (at least) practically all mathematical properties are such, we do not
bother to be more precise here. (Here we are dangerously close to the philosophy of
mathematics and we do not want to elaborate further.) Also our notation seems to
suggest that all classes i.e. the totalities of all sets that have some given property
ϕ , are mathematical objects. But not all of them are, e.g. V , the class of all
sets (one can choose x = x as the defining property), is not, at least not from the
point of view of set theory (again we do not want to elaborate further). However,
a closer study shows that the way we use V and other proper classes (i.e. classes
that are not sets) is done only to simplify our notations. Those readers that are
not comfortable with our approach are invited to consult [Je].

1.1 Axioms

The membership relation within the elements of V is denoted by ∈ (so if a
is a set and b ∈ a , also b is a set). In addition, for classes C and sets a we write
a ∈ C meaning that a has the defining property of C .

I Extensionality: If sets a and b have the same elements, then a = b .

Notice, that also the inverse of the implication in Extensionality holds. And
that from now on to determine a set, it is enough to describe its elements, e.g.
{3, 8, i} , {n ∈ IN| n is even} ,..., and of course ∅ . Also we extend the idea in
Extensionality to classes i.e. two classes are considered the same if they have the
same elements and a class and a set are considered the same if they have the same
elements.

1.1.1 Exercise. Show that every set is a class.

II Foundation: Every non-empty set a has an ∈ -minimal element i.e. there is
x ∈ a such that for all y ∈ a , y ̸∈ x .

III Pairing: For any sets a and b , {a, b} is a set.

Notice, that from Pairing it follows that for every set a , {a} is a set.

1.1.2 Exercise. Show that there is no set a such that a ∈ a or sets a and
b such that a ∈ b ∈ a .

IV Separation: If a is a set and ϕ is a property, then {x ∈ a| ϕ(x)} is a set,
where ϕ(x) means that x has the property ϕ .

V Union: For every set a , the union ∪a of the elements of a is a set (x ∈ ∪a if
x ∈ b for some b ∈ a).
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1.1.3 Exercise.
(i) Show that if a, b, c, d and e are sets, then {a, b, c, d, e} is a set.
(ii) We write (a, b) for the set {a, {a, b}} . Show that
(a) (a, b) is indeed a set,
(b) if (a, b) = (c, d) , then a = c and b = d .

VI Power Set: For every set a , the power set P (a) of a is a set (x ∈ P (a) if
x ⊆ a).

So far we have had no axiom that states that there exists even a single set.
The next axiom says that there is an infinite set. However, it seems to assume that
the empty set already exists. So should we not have an axiom that says this? We
could have such an axiom but usually it is not included. The axiomatic version
of set theory is developed within the first-order logic and there it is common to
define the proof system so that one can always prove that there exists x such that
x = x (in basic logic courses it is explained why it is done this way). So in the
case of set theory, one can always prove the existence of at least one set.

1.1.4 Exercise.
(i) Show that the empty set ∅ exists.
(ii) For sets a and b , show that a× b = {(x, y)| x ∈ a, y ∈ b} is a set.

VII Infinity: There exists an inductive set i.e. a set a such that ∅ ∈ a and if
x ∈ a , then also x ∪ {x} ∈ a (exercise: show that x ∪ {x} is a set).

When we talk about functions f from a set a to a set b , we always mean
that f = {(x, f(x))| x ∈ a} is a set. We talk also about class functions:

1.1.5 Definition. Let C be a class. We say that a function F : C → V is
a class function if the graph of F is a class i.e. there is a property ϕ such that
for all sets x , x has the property ϕ iff x = (a, F (a)) for some set a ∈ C .

VIII Replacement: If a is a set and F : a → V is a class function, then
{F (x)| x ∈ a} is a set.

1.1.6 Exercise.
(i) Show that if a is a set and F : a→ V is a class function, then F is a set.
(ii) Show that if a and b are sets and f : a → b is a function, then it is a

class function.

IX Choice: If a is a set and every x ∈ a is non-empty, then there is a function
f : a→ ∪a such that for all x ∈ a , f(x) ∈ x .

The theory that consists of all these axioms is called ZFC. If the Choice is
left out, the resulting theory is called just ZF. Unless we state otherwise, we work
in ZFC.
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1.2 Recursive definitions

1.2.1 Definition.
(i) If C is a class, then a class < is called a partial ordering of C if the elements

of < are of the form (x, y) , x, y ∈ C , and the following holds: if (x, y), (y, z) ∈< ,
then (x, z) ∈< and (y, x) ̸∈< . Instead of writing (x, y) ∈< , we will simply write
x < y .

(ii) A partial ordering < is a linear ordering, if in addition, for all x, y ∈ C ,
x < y or x = y or y < x .

(iii) A partial ordering is well-founded if for all x ∈ C , {y ∈ C| y < x} is a
set and if a is a non-empty set such that every element of it belongs to C , then a
has a <-minimal element. If in addition the partial ordering is a linear ordering,
it is called a well-ordering.

1.2.2 Theorem. Suppose C is a class and < is a well-founded partial
ordering of C . Let ϕ be a property and assume that for all x ∈ C , if every
element of {y ∈ C| y < x} has the property ϕ , then also x has it. Then every
element of C has the property ϕ .

Proof. Suppose not. Let x ∈ C be such. We show first that we can choose x
so that it is <-minimal element of C among those that do not have the property
ϕ : If x is not such then the class a of all element of C which are smaller than x
and do not have the property ϕ is non-empty and a set. Since < is well founded,
a has a <-minimal element. Clearly this is as wanted.

But if x is a minimal among those that do not have the property ϕ , then every
element of {y ∈ C| y < x} has the property, and so also x has it, a contradiction.

1.2.3 Theorem. Suppose C is a class, < is a well-founded partial ordering
of C and G : V → V is a class function. Then there is a unique class function F :
C → V such that for all x ∈ C , F (x) = G(F � Cx) , where Cx = {y ∈ C| y < x} .

Proof. We say that A ⊆ C is downward closed if x < y ∈ A implies x ∈ A .
We start with an exercise:

1.2.3.1 Exercise. Suppose that a set A ⊆ C is downward closed and
f, g : A→ V (recall Exercise 1.1.6) are such that for all z ∈ A , f(z) = G(f � Cz)
and g(z) = G(g � Cz) (notice that Cz ⊆ A). Show that f = g . Conclude that if
F exists, it is unique.

Now let ϕ the following property of sets a : a is of the form (x, y) where
x ∈ C and y is such that there is a function fx : Cx → V such that y = G(fx)
and for all z ∈ Cx , f(z) = G(fx � Cz). We will show that for every x ∈ C , there
is a set y such that (x, y) has the property ϕ . Then since by Exercise 1.2.3.1,
such y is unique, ϕ defines a class function C → V .

To see that y exists, it is enough to show that fx exists. We prove this by
induction i.e. by using Theorem 1.2.2. So suppose that the claim holds for every
z ∈ Cx . We notice

(*) if z, w ∈ C and fz and fw exist, then fz � (Cz ∩Cw) and fw � (Cz ∩Cw)
satisfy the requirements of Exercise 1.2.3.1 for A = (Cz ∩ Cw) and thus fz �
(Cz ∩ Cw) = fw � (Cz ∩ Cw).
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So by (*), if Cx does not have maximal elements (z ∈ Cx is maximal if there are
no y ∈ Cx such that z < y ) fx =

∪
z<x fz is as wanted. On the other hand, if Cx

has maximal elements, we let fx = (
∪

z<x fz)∪ {(z,G(fz))}| z ∈ Cx is maximal} .
Again by (*), fx is as wanted.

So we are left to prove that for all x , F (x) = G(F � Cx). So suppose that
this holds for all z ∈ Cx and let fx be as in the definition of ϕ . Then by Exercise
1.2.3.1, F � Cx = fx and thus F (x) = G(fx) = G(F � Cx).

1.3 Ordinals

1.3.1 Definition.
(i) We say that a set a is transitive if x ∈ y ∈ a implies x ∈ a (i.e. ∪a ⊆ a).
(ii) We say that a set α is an ordinal if it is transitive and linearly ordered by

∈ . For ordinals α and β , one usually writes α < β instead of α ∈ β and α ≤ β
for α < β or α = β .

(iii) The class of all ordinals is denoted by On .

1.3.2 Exercise.
(i) Show that ordinals are well-ordered by ∈ .
(ii) Show that 0 = ∅ is an ordinal.
(iii) Show that if α is an ordinal, then also α+ 1 = α ∪ {α} is an ordinal.
(iv) Show that if a is a set of ordinals and for all α, β ∈ a , either α ⊆ β or

β ⊆ α , then ∪a is an ordinal.
(v) Show that if α is an ordinal and β ∈ α , then β is an ordinal.
(vi) Show that if α and β are ordinals, then so is α ∩ β .

1.3.3 Lemma. Let α and β be ordinals.
(i) If α ⊆ β , then either α = β or α ∈ β .
(ii) Either α ⊆ β or β ⊆ α .

Proof. (i): Suppose α ̸= β . Then β − α is not empty and thus it has the
least element γ . If δ ∈ γ , then δ ∈ β and so by the choice of γ , δ ∈ α . On the
other hand, if δ ∈ α , then γ ̸≤ δ , because otherwise γ ∈ α and this is against our
choice of γ . Thus since ∈ linearly orders β , δ ∈ γ . It follows that α = γ and so
α ∈ β .

(ii): Now by Exercise 1.3.2 (vi), γ = α ∩ β is an ordinal. Then γ = α or
γ = β because otherwise by (i), γ ∈ α∩ β = γ . In the first case α ⊆ β and in the
other case β ⊆ α .

1.3.4 Exercise.
(i) Show that On is well-ordered by ∈ .
(ii) Show that α+ 1 is the least ordinal strictly greater than the ordinal α .
(iii) For a set a of ordinals show that ∪a is the supremum of a (in particular,

∪a is an ordinal).

1.3.5 Definition.
(i) We say that an ordinal α is a successor ordinal if α = β + 1 for some

ordinal β and otherwise α is called a limit ordinal. However, 0 is usually not
considered a limit ordinal.

(ii) By ω we denote the least limit ordinal ̸= 0 (if such ordinal exists).
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1.3.6 Lemma. For every ordinal β there is a limit ordinal α > β .

Proof. We show first that ω exists. By Infinity, there is an inductive set b .
Let a = b ∩ On and α = ∪a . By Exercise 1.3.4 (iii), α is an ordinal. Also it is
easy to see that a is inductive and thus α can not be a successor ordinal. So in
particular ω exists.

Now for given ordinal β , choose a function f : ω → On so that f(0) = β
and for successor ordinals γ + 1 ∈ ω , f(γ + 1) = f(γ) + 1 (exercise: show that f
exists and rng(f) ⊆ On , keep in mind that every ordinal in ω excluding 0, is a
successor ordinal). Let α = ∪rng(f). Clearly α is as wanted.

1.3.7 Exercise. Show that there is no class function f : ω → V such that
for all n ∈ ω , f(n+ 1) ∈ f(n) .

1.3.8 Theorem. For every set a there is an ordinal α and a one-to-one
and onto function f : α→ a .

Proof. Let b be the set of all non-empty subsets of a and g be the choice
function for b . We define a class function G : V → V so that for all ordinals β and
functions h : β → a with rng(h) ̸= a , G(h) = g(a− rng(h)) and for all other sets
x , G(x) = a . Let F : On → V be such that for all ordinals γ , F (γ) = G(F � γ)
(by Theorem 1.2.3) and suppose that for some ordinal γ , F (γ) = a . Then by
letting α be the least such ordinal, α and f = F � α are clearly as wanted.

So it is enough to show that for some γ , F (γ) = a . Suppose not. Then
(by Separation) F−1 is a class function from a subset of a onto On . Thus by
Replacement On is a set. Thus β = ∪On is an ordinal. So β ∈ β + 1 ∈ On and
thus β ∈ β , a contradiction.

1.3.9 Exercise. (Zermelo’s well-ordering theorem) Every set can be well-
ordered.

In fact, under e.g. ZF, Zermelo’s well-ordering theorem is equivalent with
Choice: To get Choice, simply choose a well-ordering < for ∪a and then for every
x ∈ a , let f(x) be the < -least element of x .

The sets Vα in the next exercise form so called cumulative hierarchy.

1.3.10 Exercise. We define Vα for all ordinals α as follows: V0 = ∅ ,
Vα+1 = P (Vα) and for limit ordinals α , Vα = ∪γ<αVγ . Show that

(i) α 7→ Vα is a class function,
(ii) for γ < α , Vγ ⊆ Vα ,
(iii) for all sets a there is an ordinal α such that a ∈ Vα .

1.4 Cardinals

1.4.1 Definition. We say that sets a and b have the same cardinality, if
there is a one-to-one and onto function f : a→ b .

1.4.2 Exercise.
(i) Show that the equicardinality relation from Definition 1.4.1 is an equiva-

lence relation.
(ii) Show that if there is an onto function f : a→ b , then there is a one-to-one

function g : b→ a and vice versa assuming that b ̸= ∅ .
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1.4.3 Theorem. (Cantor-Bernstein) For all sets a and b , if there are one-
to-one functions f : a→ b and g : b→ a , then a and b have the same cardinality.

Proof. For all n ∈ ω , we define sets An and Bn as follows: A0 = a ,
B0 = b , An+1 = g(f(An)) and Bn+1 = f(g(Bn)). Finally, let A =

∩
n<ω An

and B =
∩

n<ω Bn . Clearly, for n < ω , An+1 ⊆ An and Bn+1 ⊆ Bn . Also (e.g.
draw a picture) f � (An − g(Bn)) is one-to-one function from An − g(Bn) onto
f(An) − Bn+1 , g

−1 � (g(Bn) − An+1) is one-to-one function from g(Bn) − An+1

onto Bn − f(An) and f � A is one-to-one function from A onto B . By putting
these together, the required one-to-one and onto function is found.

1.4.4 Definition.

(i) We say that an ordinal α is a cardinal if there are no β < α and a
one-to-one function from α to β .

(ii) We say that a set a is finite, if for all one-to-one functions f : a → a ,
rng(f) = a .

1.4.5 Lemma. ω and every n ∈ ω are cardinals. In fact, every n ∈ ω is
finite.

Proof. We start by proving the claim for the elements of ω . Clearly it is
enough to show that they are finite. We prove this by induction (i.e. using
Theorem 1.2.2, keeping in mind that all elements of ω , excluding 0, are successor
ordinals and, in fact, the claim we prove is that every ordinal α is either finite or
≥ ω ).

For n = 0, this is clear. So suppose that this holds for n and let f : n+1 →
n+1 be one-to-one. For a contradiction suppose that rng(f) ̸= n+1. By applying
a transposition, we may assume that n ̸∈ rng(f). But then f � n is a one-to-one
function from n to a proper subset of n , a contradiction.

If ω is not a cardinal, then there are n ∈ ω and a one-to-one function f :
ω → n . But then f � n+ 1 contradicts what we just proved.

1.4.6 Exercise.

(i) Show that an ordinal α is finite iff α ∈ ω .

(ii) Show that all infinite cardinals are limit ordinals.

(iii) Show that if a is a set of cardinals, then ∪a is a cardinal.

1.4.7 Lemma. For every set a , there is a unique cardinal κ for which there
is a one-to-one function from κ onto a .

Proof. Clearly there cannot be more than one such cardinal. So we prove just
the existence: Let κ be the least ordinal such that there is a one-to-one function
f from κ onto a (such κ exists by Theorem 1.3.8). It is enough to show that κ
is a cardinal. If not, then there is α < κ and a one-to-one function g : κ→ α . By
Cantor-Bernstein, we can choose g so that it is also onto. But then α and f ◦g−1

witness that κ was not minimal.

1.4.8 Definition. Let a be a set. The unique cardinal κ for which there is
a one-to-one function from κ onto a , is called the cardinality of a and is denoted
by |a| . If the cardinality of a set is ≤ ω , we say that the set is countable.
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1.4.9 Exercise.

(i) Show that a set a is finite iff |a| ∈ ω .

(ii) Show that |a| ≤ |b| iff there is a one-to-one function f : a→ b .

The elements of ω are called natural numbers and thus ω is called also the
set of natural numbers i.e. IN. We also write 0 = ∅ as already mentioned and
1 = 0 + 1 = 0 ∪ {0} , 2 = 1 + 1, 3 = 2 + 1 etc. Recall that for all n ∈ ω ,
n = {0, 1, ..., n− 1} .

For the rest of this section, we will concentrate on the cardinal ω . From the
appendix one can find these basic facts proved also for uncountable cardinals.

1.4.10 Lemma. |ω × ω| = ω .

Proof. Clearly |ω×ω| ≥ ω and thus it is enough to find a one-to-one function
f : ω × ω → ω . E.g. f(n,m) = 2n3m is such function.

As a hint for the item (i) in next exercise we want to mention that the claim
in the item can not be proved without Choice. If Choice is not assumed, it is
possible that the set of reals is a countable union of countable sets and we will see
later that the set of reals is not countable and this can be proved without Choice.

Also, instead of talking about functions f : I → X for some sets I and X , it
is sometimes notationally convenient to talk about indexed sequences (xi)i∈I . So
by an indexed sequence (xi)i∈I we simply mean a function f : I → V such that
for all i ∈ I , f(i) = xi . Thus for x : a→ V , we sometimes also write xi in place
of x(i).

1.4.11 Exercise.

(i) Suppose that a is a countable set such that also every element of it is
countable. Show that ∪a is countable.

(ii) Show that there are sets Xi ⊆ ω , i ∈ ω , such that for all i , Xi is infinite,
for all i ̸= j , Xi ∩Xj = ∅ and

∪
i<ωXi = ω .

(iii) Show that the set of rational numbers is countable.

For sets a and b , by ab we mean the set of all functions from b to a (e.g.
INn ). If b = β is an ordinal we also write a<β for

∪
α<β a

α and a≤β for
∪

α≤β a
α .

On the level of notation, we also identify f : 2 → X with (f(0), f(1)) and thus
think that X × X is the same as X2 , see the discussion on indexed sequences
above.

1.4.12 Lemma. |P (ω)| = |2ω| = |2ω×ω| = |(2ω)ω| = |ωω| .

Proof. For |P (ω)| = |2ω| , just map every a ⊆ ω to its characteristic function.
|2ω| = |2ω×ω| is clear by Lemma 1.4.10. To find a one-to-one function F from
2ω×ω onto (2ω)ω , simply for η ∈ 2ω×ω let ξ = F (η) be such that for all n,m < ω ,
(ξ(n))(m) = η(n,m). Since 2ω ⊆ ωω , |2ω| ≤ |ωω| . Finally since |ω| ≤ |2ω| , it is
easy to see that |ωω| ≤ |(2ω)ω| .

One often denotes |2ω| by just 2ω . It is clear from the context which possi-
bility we mean.

1.4.13 Theorem. |P (ω)| > ω .
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Proof. By Lemma 1.4.12, it is enough to show that 2ω > ω . For a contradic-
tion, suppose 2ω ≤ ω . Clearly, 2ω ≥ ω and thus, under the counter assumption,
there is a one-to-one function f from ω onto 2ω . Denote f(n) by ξn (i.e. we
enumerate 2ω ).

Let g : ω → 2 be such that for all n < ω , g(n) = 1−ξn(n). Then g ∈ 2ω and
so for some m < ω , g = ξm . Now g(m) = 1− ξm(m) = 1−g(m), a contradiction.

So in particular, there is a cardinal strictly greater than ω . The least such is
denoted by ω1 .

1.4.14 Definition. Let κ be an infinite cardinal.
(i) The cofinality cf(κ) of κ is the least ordinal α such that there is a function

f : α→ κ such that ∪rng(f) = κ .
(ii) κ is called regular if cf(κ) = κ .

1.4.15 Exercise.
(i) Show that for all infinite cardinals κ , cf(κ) is a regular cardinal.
(ii) Show that ω and ω1 are regular.

1.4.16 Fact.
(i) ω is the only regular limit cardinal whose existence is provable in ZFC

(see Definition A.5 in the appendix).
(ii) ZFC does not prove or disprove CH (continuum hypothesis) i.e. the claim

that 2ω = ω1 (assuming ZFC is consistent).

1.4.17 Exercise.
(i) Define f : ω1 + 1 → On so that f(0) = 0 , f(α + 1) is the least limit

ordinal > f(α) and for limit α , f(α) =
∪

γ<α f(γ) . Show that f(ω1) = ω1 .
(ii) Suppose that |a| = ω1 and every b ∈ a is countable. Show that |∪a| ≤ ω1 .

Hint: Use (i).
(iii) Show that if a is countable and < is a well-ordering of a , then there is

f : a→ ω1 such that for all x, y ∈ a , if x < y , then f(x) < f(y) .

1.5 Recursive definitions revisited

1.5.1 Definition. Suppose X is a set.
(i) Suppose α is an ordinal, f : Xα → X is a function and C ⊆ X . We say

that C is closed under f if for all x ∈ Cα , f(x) ∈ C .
(ii) Suppose Y ⊆ X and for all i ∈ I , αi is an ordinal and fi : X

αi → X is
a function. Then by C(Y, fi)i∈I we mean the ⊆ -least subset C of X such that
it contains Y and is closed under every fi , i ∈ I (if such C exists).

1.5.2 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition
1.5.1 (ii). Then C(Y, fi)i∈I exists.

Proof. Just let C(Y, fi)i∈I be the intersection of all sets C ⊆ X which
contain Y and are closed under every fi (notice that X is such a set).

1.5.3 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition
1.5.1 (ii). Suppose that ϕ is a property, every element of Y has it and for all
k ∈ I and x ∈ (C(Y, fi)i∈I)

αk the following holds: If every xj , j < αk , has the
property, then also fk(x) has the property. Then every element of C(Y, fi)i∈I has
the property ϕ .
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Proof. Let C be the set of all elements of C(Y, fi)i∈I that have the property
ϕ . Then C contains Y and is closed under every fi . Thus C(Y, fi)i∈I ⊆ C .

1.5.4 Definition. Let X , Y , I and αi and fi , i ∈ I , be as in Definition
1.5.1 (ii). For all ordinals α , we define Cα(Y, fi)i∈I as follows:

(i) C0(Y, fi)i∈I = Y ,

(ii) Cα+1(Y, fi)i∈I = Cα(Y, fi)i∈I ∪ {fi(x)| i ∈ I, x ∈ (Cα(Y, fi)i∈I)
αi} ,

(iii) if α is limit, then Cα(Y, fi)i∈I =
∪

β<α Cβ(Y, fi)i∈I .

1.5.5 Exercise. Show that α 7→ Cα(Y, fi)i∈I is a class function from On
to P (X) and that for all ordinals α < β , Y ⊆ Cα(Y, fi)i∈I ⊆ Cβ(Y, fi)i∈I ⊆
C(Y, fi)i∈I .

1.5.6 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii). Suppose further for all i ∈ I , αi < ω1 . Then C(Y, fi)i∈I = Cω1(Y, fi)i∈I .

Proof. By Exercise 1.5.5, it is enough to show that Cω1(Y, fi)i∈I is closed
under every fk , k ∈ I . For this let x ∈ (Cω1(Y, fi)i∈I)

αk . Since ω1 is regular,
there is γ < ω1 such that x ∈ (Cγ(Y, fi)i∈I)

αk (Exercise, think of function g :
αk → ω1 such that for all β < αk , g(β) is the least ordinal δ for which xβ ∈
Cδ(Y, fi)i∈I ). But then fi(x) ∈ Cγ+1(Y, fi)i∈I ⊆ Cω1(Y, fi)i∈I .

2. Polish spaces

Descriptive set theory is usually developed for Polish spaces i.e. topological
spaces that are homeomorphic to some complete separable metric space. In this
section we introduce some examples of these and study the connections between
them, especially the connection between the n-dimensional Euclidian space Rn ,
n < ω , and the Baire space ωω (in Section 3, another connection is established).
Later we usually develop the theory first for the Baire space and then use the
connection(s) to translate (most of) the results to the Euclidian spaces, which are
the most important polish spaces for the obvious reasons. Alternatively one can,
of course, modify the proofs to get (most of) the results also for the Euclidian
spaces (and other Polish spaces). If the result does not generalize to Euclidian
spaces, this is pointed out.

There are many reasons why we do not work directly with the Euclian spaces
(or Polish spaces in general): E.g. the topology of Euclidian spaces is a bit obscure
and all codings (and we will do a lot of them) are much more naturally done with
functions from ω to ω than with reals - what ever the reals are.

In fact, we do not bother to specify what reals are: one can take any of
the usual constructions of reals starting from natural number which we already
have (e.g. Dedekind cuts of rational numbers Q or equivalence classes of Cauchy
sequences in Q , and Q is the field of fractions of the ring of integers etc.), and
notice that the construction can be done in ZFC. Also the axiomatic approach to
reals works in ZFC (completely ordered field).

Let us start with the reals R : Open intervals (q, r) ⊆ R , q, r ∈ Q and q < r ,
are called basic open sets. Then open sets are unions (of any size) of these basic
open sets (notice that ∪∅ = ∅ and thus ∅ is open). This gives the same topology
as the one, we get from the usual metric of R .
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If X is a topological space and 0 < n ≤ ω , then by Xn we do not only
mean the set Xn but the topological space we get from the set Xn by equipping
it with the product topology in which open sets are unions of sets of the form
Πi<nUi = {f : n →

∪
i<n Ui| for every i < n, f(i) ∈ Ui} , where each Ui is an

open subset of X and (if n = ω ) all but finitely many of them are X . Notice
that then the topology of Rn , n < ω , is the same as that one gets from the usual
metric of Rn .

2.1 Exercise. Show that R and R2 are not homeomorphic. Hint: Suppose
they are, take one element away from each of them and study the outcome.

By Ir we denote the set R−Q of irrational numbers. We equip it with the
topology induced from R i.e. open sets are of the form Ir ∩ U where U is an
open subset of R .

The Baire space B is the set ωω equipped with the following topology: Basic
open sets are of the form Nη = {f ∈ ωω| η ⊆ f} , where η is a function from
some n < ω to ω . Open sets are unions of these basic open sets. Notice that this
topology is metrizable: The distance d(f, g) between f and g from ωω is 1/(n+1)
if n is the least natural number such that f(n) ̸= g(n). If there is no such n ,
then f = g and the distance is 0. Clearly this is a metric, even an ultrametric
i.e. d(f, h) ≤ max{d(f, g), d(g, h)} for any f, g, h ∈ ωω (and the equality holds
if d(f, g) ̸= d(g, h)). It is easy to see that the topology we defined for ωω , is the
same as the topology, one gets from this metric.

2.2 Lemma. For all 0 < n ≤ ω , Bn is homeomorphic with B .

Proof. We prove the claim in the case n = ω , the other cases are similar.
Let Xi , i < ω be as in Exercise 1.4.11 (ii). For all i < ω , we define fi : ω → Xi

as follows: fi(0) is the least element of Xi and fi(m + 1) is the least element
of Xi strictly greater than fi(m). Then fi is an order preserving function onto
Xi . We denote the element fi(m) by aim . Notice that for every x ∈ ω , there are
unique i and m such that x = aim .

Now we can define a homeomorphism F : Bω → B : For every g = (gi)i<ω ∈
Bω , we let F (g) = h if h : ω → ω is such that for all i,m < ω , h(aim) = gi(m).
Notice that then for all i < ω , gi = h ◦ fi .

2.2.1 Exercise. Show that F is one-to-one and onto.

We show that F is continuous, to show that F−1 is continuous is left as an
exercise. Let Nη , η : m → ω , be a basic open set and h ∈ Nη . It is enough to
find an open set U from Bω such that h ∈ F [U ] ⊆ Nη (because F is one-to-one).
Pick k < ω such that if i ≥ k , then aij ≥ m for all j < ω (i.e. Xi ∩ m = ∅
for all i ≥ k ). Notice that also for i < k , if j ≥ m , then aij ≥ m (fi was

order-preserving). Then for all i < k , choose ηi : m → ω so that ηi(j) = h(aij)
for all j < m . Now we let U = Πi<ωUi , where Ui = Nηi if i < k and otherwise
Ui = ωω . Then U is as wanted (exercise).

When we work in Bn for some 1 < n < ω and want to apply results proved
for B (which we can by Lemma 2.2) we should take as basic open sets the set
F−1(Nη), η ∈ ω<ω , where F is the homeomorphism constructed above. All these
are of the form Nη = {f ∈ Bn| η(i) ⊆ f(i) for all i < n} where η is a function
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from n to ω<ω . But all the sets of this form are not images of basic open sets of
B under F−1 . However, this does not really matter and so we take all of these
as basic open sets. (If one is not happy with this, then instead of (ω<ω)n , one
should work with a suitable subset of it.)

The following lemma can be proved also by using continued fractions.

2.3 Lemma. The Baire space is homeomorphic with Ir .

Proof. Let f be a one-to-one function from ω onto Q such that f(0) = 0.
We denote f(n) by q∗n . We also choose a one-to-one function g from ω onto
Z such that g(0) = 0. At least half of the time in this proof we think that ω
”is” Z (via this function). In particular, for every 0 < n < ω and ξ ∈ ωn ,
by ξ+ we mean the element of ωn such that ξ+ � (n − 1) = ξ � (n − 1) and
g(ξ+(n− 1)) = g(ξ(n− 1)) + 1.

By induction on 0 < n < ω , we define rational numbers qη for all η ∈ ωn

as follows (this definition may look complicated although what we do here is very
simple; in case of difficulties, draw a picture):

n = 1: qη = g(η(0)).
n = m+ 1 (and m > 0): We choose qη , η ∈ ωn , so that the following holds:

For every ξ ∈ ωm , let Iξ be the open interval (qξ, qξ+). Then the requirements
are:

(i) For all η ∈ ωn , qη ∈ Q ∩ Iη�m , qη < qη+ and qη+ − qη ≤ 2−m .
(ii) For every ξ ∈ ωm , inf{qη| η ∈ ωn, ξ ⊆ η} = qξ and sup{qη| η ∈ ωn, ξ ⊆

η} = qξ+ .
(iii) q∗m ∈ {qξ| ξ ∈ ω≤n} (recall: ω≤n =

∪
m≤n ω

m ).
Now we are ready to define a homeomorphism F : ωω → Ir : For every η ∈ ωω

we let F (η) be the unique element in
∩

0<n<ω Iη�n (i.e. F (η) = sup{qη�n| 0 <
n < ω} = inf{q(η�n)+ | 0 < n < ω}). Notice that F (η) ̸∈ {qξ| ξ ∈

∪
n<ω ω

n} and
thus by (iii) above, the case n = 1 and the fact that g(0) = 0 = q∗0 , F (η) ̸∈ Q
and thus F (η) ∈ Ir .

2.3.1 Exercise.
(i) Show that F is one-to-one and onto.
(ii) Show that F is continuous.
(iii) Show that F−1 is continuous.

We say that S′ ⊆ S is a subspace of a topological space S if the topology
of S′ is the same as that induced from S i.e. X ⊆ S′ is open if X = S′ ∩ U for
some open subset U of S .

2.4 Exercise.
(i) Show that Irn , 0 < n ≤ ω , is a subspace of Rn and conclude that as a

subspace of Rn , Irn is homeomorphic with the Baire space.
(ii) Show that |R| = 2ω .

If we equip 2ω with a topology much the same way we did in the case of the
Baire space, we get the Cantor space C . So the basic open sets are of the form
N c

η = {f ∈ 2ω| η ⊆ f} , where η ∈ 2n for some n < ω . Again open sets are unions
of these basic open sets. Notice that C is a subspace of B .
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2.5 Lemma. The Cantor space is homeomorphic with a bounded and closed
(i.e. compact) subspace of R .

Proof. This proof is very similar to the proof of Lemma 2.3, only much
simpler: For every η ∈ 2n , 0 < n < ω , we define qη by induction on n as follows:

n = 1: We let qη = 0 if η(0) = 0 and otherwise qη = 2/3.
n = m + 1 (and m > 0): We let qη = qη�m if η(m) = 0 and otherwise,

qη = qη�m + 2/3n .
Then we define F : 2ω → R so that F (f) = sup{qf�n| 0 < n < ω} .
Clearly rng(F ) ⊆ [0, 1]. It is also closed: For all η ∈ 2n , 0 < n < ω , by q+η

we mean qη + 1/3n and we let Iη be [qη, q
+
η ] . Now it is easy to see that F (f)

is the unique element of
∩

0<n<ω If�n and thus rng(F ) =
∩

0<n<ω(∪η∈2nIη), in
particular rng(F ) is closed.

2.5.1 Exercise.
(i) Show that F is one-to-one and continuous.
(ii) Show that if C = rng(F ) is equipped with the topology induced from R ,

then F−1 : C → 2ω is continuous.

2.6 Exercise.
(i) Show that the Cantor space is not homeomorphic with the Baire space nor

with Rn for any 0 < n ≤ ω . Hint: Compactness.
(ii) Show that B is not homeomorphic with R .
(iii) Show that C2 is homeomorphic with C .
(iv) Show that Cω is homeomorphic with C .

3. Borel sets and the property of Baire

In this section we define Borel sets and to get a feeling to the notion, prove
one of their basic properties, namely that they have the property of Baire and one
consequence of this.

For the rest of these notes, when we talk about a topological space without
specifying the space, we have in our mind (a subspace of) one from the set {B,C}∪
{Rn, Irn| 0 < n < ω} (keep in mind that Irn is homeomorphic with B). We talk
about topological spaces in general mainly only in the definitions.

3.1 Definition. Let S be a topological space. The class Borel(S) of all
Borel sets in S is the least collection of subsets of S which contains all open sets
and is closed under complements, countable unions and countable intersections. If
S = B , we may omit it from the notation.

3.2 Exercise.
(i) Show that Borel(B) is the least collection of subsets of B which contains

all open sets and is closed under complements and countable unions.
(ii) Show that Borel(B) is the least collection of subsets of B which contains

all open sets and is closed under countable unions and countable intersections.
(iii) Prove (ii) for R2 in place of B .
(iv) Show that if X,Y ∈ Borel(S) , S a topological space, then X × Y ∈

Borel(S2) .
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(v) Show that if S′ is a subspace of a topological space S (see the definition
just before Exercise 2.4) and S′ ∈ Borel(S) , then Borel(S′) ⊆ Borel(S) . Hint:
Show that if X ∈ Borel(S′) , then there is Y ∈ Borel(S) such that X = S′ ∩ Y .

(vi) Suppose that S′ is a subspace of S and Y ∈ Borel(S) . Show that
S′ ∩ Y ∈ Borel(S′) .

The following, so called Borel hierarchy, is studied more closely later but we
introduce it already now, because it is convenient in some proofs.

3.3 Definition. Let S be a topological space. We define classes Σα(S)
and Πα(S) for 0 < α < ω1 as follows:

(i) Σ1(S) is the class of all open sets and Π1(S) is the class of all closed sets,
(ii) For α > 1 , Σα(S) is the class of all countable unions of sets from∪

β<α Πβ(S) and Πα(S) is the class of all countable intersections of sets from∪
β<α Σβ(S) .

If S = B , we may omit it from the notation so e.g. Σ1 is the class of all open
subsets of B .

Π2(R
n) sets are often called Gδ sets and Σ2(R

n) sets are often called Fσ

set.

3.4 Exercise.
(i) Show for 0 < n < ω , that every countable subset of Rn is Σ2(R

n) .
(ii) Show that for all X ⊆ ωω and 0 < α < ω1 , X ∈ Σα iff ωω −X ∈ Πα .
(iii) Show that for all 0 < α < ω , Σα ⊆ Σα+1 (and thus for 0 < α < β < ω1 ,

Σα ⊆ Σβ ).
(iv) Show that Borel =

∪
0<α<ω1

Σα .
(v) Show that for all 0 < α < ω1 Σα and Πα are closed under finite unions

and intersection.
(vi) Suppose that X,Y ⊆ R are Σα(R) (Πα(R)). Show that X × Y is

Σα(R
2) (Πα(R

2)). Conclude that Irn is Π2(R
n) .

(vii) Let 1 < α < ω1 and 0 < n < ω . Show that if X ⊆ Rn is Πα(R
n) , then

X ∩ Irn is Πα(Ir
n) and that the opposite direction holds if n = 1 .

(viii) Show that |Borel| = 2ω . Hint: |2ω × ω1| ≤ |2ω × 2ω| ≤ |(2ω)ω| = 2ω .
(ix) Show, without using Theorem A.4, that there is a subset of ωω which is

not Borel.

3.5 Definition. Let S be a topological space. We say that a subset of S is
co-meager if it contains a countable intersection of open and dense subsets of S .
A subset of S is meager, if the complement of it is co-meager.

The following lemma is known in the literature as Baire’s theorem.

3.6 Lemma. Every co-meager subset of B is dense.

Proof. Suppose Di , i < ω , are open and dense. It is enough to show that∩
i<ωDi is dense. For this let η be a function from some n < ω to ω . It is enough

to show that Nη ∩
∩

i<ωDi ̸= ∅ .
But it is easy to find for all i < ω , ni < ω and ηi ∈ ωni such that for all

i < j < ω , Nηi ⊆ Di and η ⊆ ηi ⊆ ηj . (E.g. since D0 is dense, Nη ∩ D0 ̸= ∅ .
Let f ∈ Nη ∩D0 . Since D0 is open, there is m < ω such that Nf�m ⊆ D0 . Then
n0 = max{n,m} and η0 = f � n0 are as wanted.)
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Then f = ∪i<ωηi ∈ Nη ∩
∩

i<ωDi ,

3.7 Exercise.
(i) Show that Irn is co-meager in Rn and that X ⊆ Rn is co-meager in Rn

iff X ∩ Irn is co-meager in Irn .
(ii) Show that the family CM of all co-meager subsets of B is closed under

countable intersections. Conclude that the family M of all meager sets is a σ -ideal
i.e. it is closed under countable unions, B ̸∈M , ∅ ∈M , and if X ⊆ Y ∈M , then
X ∈M .

(iii) Let X ⊆ R2 be closed. Show that the boundary of X is meager. Con-
clude that there is an open set U ⊆ R2 such that X∆U = (X − U) ∪ (U −X) is
meager.

3.8 Definition. We say that a subset of a topological space has the property
of Baire (PB) if there is an open set U ⊆ B such that X∆U is meager.

3.9 Exercise.
(i) Show that a set A has PB iff there is an open set U and a co-meager set

X such that A ∩X = U ∩X .
(ii) Show that X ⊆ R has PB (in R) iff X ∩ Ir has PB (in Ir).

3.10 Lemma. Every Borel set X ⊆ B has PB. In fact, the family of
all subsets of B that have PB is a σ -algebra i.e. the family is closed under
complements, countable unions and countable intersections.

Proof. Clearly every open set has PB. Also closed sets C have PB. Let
int(C) be the set of those f ∈ B such that for some n < ω , Nf�n ⊆ C . Clearly
int(C) is open and C − int(C) is meager (see, Exercise 3.7 (iii)). And thus C
has PB. But from this we get more. For every X ⊆ B , if there is a closed C such
that X∆C is meager, then X has PB: int(C) witnesses this since X∆int(C) ⊆
(X − C) ∪ (C − int(C)) ∪ (C −X). Thus if X has PB, so does B−X .

So by Exercise 3.2 (i), it is enough to show that the set of subsets of B that
have PB is closed under countable unions. But this is clear by Exercise 3.7 (ii),
since if Xi , i < ω , have PB witnessed by Ui , i < ω , then U = ∪i<ωUi is open
and (

∪
i<ωXi)∆U ⊆

∪
i<ω(Xi∆Ui).

3.11 Definition. Suppose S and S′ are topological spaces. We say that
f : S → S′ is Borel (aka Borel measurable) if f−1[U ] is Borel for every open set
U ⊆ S′ .

3.12 Exercise.
(i) Let f : B → B . Show that the following are equivalent.
(a) f is Borel.
(b) f−1[Nη] is Borel for every η ∈ ω<ω .
(c) f−1[X] is Borel for every Borel set X ⊆ B .
(ii) Suppose S and S′ are topological spaces (in particular, S′ is, say, Ir ,

Rn or C) and f, g : S → S′ are Borel. Show that (x, y) 7→ (f(x), g(y)) is a Borel
function from S × S to S′ × S′ .

(iii) Suppose S , S′ and S′′ are topological spaces and f : S → S′ and
g : S′ → S′′ are Borel. Show that g ◦ f is Borel.
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3.13 Corollary. If f : B → B is Borel, then it is continuous in a co-meager
set i.e. there is a co-meager X ⊆ B such that f � X is continuous (when the
topology of X is that induced from B).

Proof. For all n < ω and η ∈ ωn , we construct co-meager sets Yη , Xn and
open sets Uη as follows:

(i) n = 0: We let Y∅ = X0 = U∅ = B .
(ii) n > 0: For all η ∈ ωn , by PB, let Yη be a co-meager set and Uη an open

set such that Yη ∩ Uη = Yη ∩ f−1[Nη] . Then we let Xn =
∩

η∈ωn Yη .

Notice that for all η ∈ ωn and X ⊆ Yη , (f � X)−1[Nη] is open in X (in the
induced topology witnessed by Uη ) and that Xn ⊆ Yη is co-meager. But then
clearly X =

∩
n<ωXn is the wanted co-meager set.

We finish this section by proving a lemma that gives further information on
the connection between B and Rn . We do not prove the best possible result (one
can choose X , Z and f so that X = Z ), only one that is good enough for Section
10 where it is needed.

3.14 Lemma. For all 0 < n < ω , there are a closed subspace Z of B ,
continuous f : Z → Rn and a Borel set X ⊆ Z such that f � X is a one-to-one
function from X onto Rn and (f � X)−1 is Borel.

Proof. We prove this for n = 1, the other cases are similar. Let qi , i < ω ,
be an enumeration of Q . We let Z be the set of those η ∈ B such that for all
i < j < ω , |qη(i) − qη(j)| ≤ 2−i + 2−j .

3.14.1 Exercise.
(i) Z is closed.
(ii) For all η ∈ Z , ((qη(i))i<ω is a Cauchy sequence and thus) f(η) =

limi→∞qη(i) exists.
(iii) For all η ∈ Z and i < ω , |f(η)− qη(i)| ≤ 2−i .
(iv) If f : Z → R is continuous.

For all r ∈ R , let ηr ∈ B be such for all j < ω , ηr(j) is the least i < ω such
that |r−qi| < 2−j . Notice that then ηr ∈ Z and f(ηr) = r . Let X = {ηr| r ∈ R} .
Clearly f � X is one-to-one and onto R .

3.14.2 Exercise. Show that for all open U ⊆ B , f(U ∩X) is Borel in R .
Hint: Show by induction on dom(η) , that f(Nη ∩X) is a (very simple) Borel set
for all η ∈ ω<ω .

So we are left to prove that X is Borel. Clearly, X = X0 ∩X1 , where
(1) X0 is the set of those η ∈ Z such that for all i < ω there are m < ω and

i < j < ω such that for all j < k < ω , |qη(i) − qη(k)| ≤ 2−i − 1/m .
(2) X1 is the set of those η ∈ Z such that for all n,m, i < ω there is i < j < ω

such that for all j < k < ω , if n < η(i), then |qn − qη(k)| > 2−i − 1/m .
If both of these sets are Borel, then X is Borel. As an example we show that

X0 is Borel, the other case is similar.

X0 =
∩
i<ω

∪
m<ω

∪
i<j<ω

∩
j<k<ω

∪
ξ∈Xi,m,k

(Nξ ∩ Z),

where Xi,m,k is the set of those ξ : k+1 → ω such that |qξ(i)−qξ(k)| ≤ 2−i−1/m .
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3.15 Exercise.
(i) Show that if f : Rm → Rn is Borel, then it is continuous in a co-meager

set. Hint: Lemma 3.14 together with Corollary 3.13.
(ii) Show that there is a Borel function f : B → B such that it is not

continuous at any point x ∈ B .

4. Borel* codes and the perfect set property

In this section we introduce Borel* sets. It may look that we are making a
simple thing complicated but in fact we do the opposite. Borel* codes will turn
out to be an important tool in our studies of Borel (and projective) sets. To
demonstrate the use of Borel* codes, in this section we will prove that continuum
hypotheses is true for Borel sets i.e. they are either countable or of the same size
as continuum (i.e. R).

Usually trees are non-empty, but, for some technical reasons, below we do not
require this.

4.1 Definition. Let X be a non-empty set.
(i) A (often non-empty) subset T ⊆ X<ω is called a tree if for all f ∈ T with

n = dom(f) > 0 and for all m < n , f � m ∈ T .
(ii) A non-empty tree T ⊆ X<ω is called an ω -tree if the following holds:
(a) If f : n → X is in T and n > 0 , then for all x ∈ X , f � (n− 1) ∪ {(n−

1, x)} ∈ T .
(b) There is no f : ω → X such that for all n < ω , f � n ∈ T (such a

function is called an ω -branch of T ).
(iii) We partially order trees T by ⊆ , call maximal elements leafs and denote

by L(T ) the set of leaves. The least element (i.e. ∅) of T is called the root of T
and if f : n → X is an element of T and not a root, then by f− we denote the
immediate predecessor of f i.e. f � (n − 1) . The elements of T are often called
also nodes.

(iv) A Borel* code is a pair (T, π) , where T ⊆ (ω×ω)<ω is an ω -tree and π
is a function from L(T ) to the basic open sets of B .

(v) For a Borel* code c = (T, π) and η ∈ B , the Borel* game GB∗(η, c) has
two players, I and II and the game is played as follows: At each move n < ω , a
function fn : n+1 → (ω×ω) from T is chosen as follows: Suppose fn−1 is chosen
(f−1 = ∅). If fn−1 is not a leaf of T , then first I chooses some i < ω and then II
chooses j < ω . This determines fn = fn−1 ∪ {(n, (i, j))} . If fn−1 is a leaf, then
the game ends and II wins if η ∈ π(fn−1) .

(vi) A function W : ω<ω → ω is a winning strategy of II in GB∗(η, (T, π)) ,
if II wins every game by choosing W (i0, ..., in) on every move n , where i0, ..., in
are the moves I has made on moves 0, ..., n .

(vii) A Borel* code c is a Borel* code of X ⊆ B , if for all η ∈ B , η ∈ X iff
II has a winning strategy in GB∗(η, c) .

(viii) A set X ⊆ B is a Borel* set if it has a Borel* code.

4.2 Theorem. Every Borel set is a Borel* set.

Proof. We start by showing that open sets are Borel*: Let U ̸= ∅ be open
and find ηi ∈ ω<ω such that U =

∪
j<ω Nηj . Then we let T = (ω × ω)≤1 and
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define π so that π({(0, (i, j))}) = Nηj
. Clearly, (T, π) is a Borel* code for U .

The case U = ∅ is left as an exercise.
Suppose then that for every i < ω , a set Xi has a Borel* code (Ti, πi). We

show that X =
∩

i<ωXi has a Borel* code. The proof for the union goes similarly
and is left as an exercise.

We let T be the set of those f : n → (ω × ω), n < ω , which satisfy: If
n > 0 and f(0) = (i, j), then there is g : n− 1 → (ω × ω) in Ti such that for all
0 < m < n , f(m) = g(m−1). We define π so that for all f ∈ L(T ), π(f) = πi(g)
if f(0) = (i, j) for some j < ω and g ∈ Ti is such that for all 0 < m < dom(f),
g(m− 1) = f(m).

We show that if η ∈ X , then II has a winning strategy W for GB∗(η, (T, π)).
The other direction is left as an exercise. Since η ∈ X , η ∈ Xi for all i < ω .
Thus for all i < ω , there is a winning strategy Wi for II in GB∗(η, (Ti, πi)). For
all i < ω , we let W (i) = 0 and for n > 0, we let W (i0, ..., in) = Wi0(i1, ..., in).
Clearly this is a winning strategy for II.

A closer study of the proof of Theorem 4.2 shows:

4.3 Corollary. For every α < ω1 , there is an ω -tree T such that for all
X ∈ Σα , there is a function π from L(T ) to the basic open sets such that (T, π)
is a Borel* code for X .

4.4 Exercise. We define Borel** sets exactly as Borel* sets were defined
except that we allow π to take any Borel sets as values. Show that Borel**=Borel*.

By Exercise 4.4 above (see also Exercise 4.6 (ii) below), when we prove that
some set is Borel by giving it a Borel code (T, π), we may use any Borel sets as
values of π , in particular π may take ∅ as a value.

In the next definition we define ranks also for elements that are not nodes of
the tree. Usually this is not done but it is convenient in Section 10 and thus we
do it.

4.5 Definition. Suppose X is a non-empty set and T ⊆ X<ω is a tree.
(i) If T does not have ω -branches, i.e there is no f : ω → X such that for

all n < ω , f � n ∈ T , we define a rank rk(η) = rk(η;T ) ∈ On ∪ {−1} for all
η ∈ X<ω as follows:

(a) if η ̸∈ T , then rk(η) = −1
(b) if η ∈ T is a leaf, then rk(η) = 0 ,
(c) if η ∈ T is not a leaf, then rk(η) = ∪{rk(ξ) + 1| ξ− = η} .
(ii) If T is non-empty and does not have ω -branches, then the rank of the

root of T is called also the rank of T and is denoted by rk(T ) . If T is empty,
then we write rk(T ) = −1 and if T has an ω -branch, we say that the rank of T
is ∞ . We also use convention that −1 < α and ∞ > α for all ordinals α .

4.6 Exercise.
(i) Show that if X is non-empty and countable and T ⊆ x<ω is a tree without

ω -branches, then every node of T has a rank and that it is < ω1 . Hint: Notice
that η < ξ if ξ ( η is a well-founded partial order on T .

(ii) Show that every Borel* set is Borel. Hint: Prove this by induction on
rk((T, π)) = rk(T ) .
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Now we have tools to prove that continuum hypothesis is true for Borel sets.
In fact we prove more.

4.7 Definition. We say that a subset X of a topological space S is perfect
if with the induced topology it is homeomorphic to the Cantor space C .

4.8 Theorem. Every uncountable Borel(B) set contains a perfect set (and
thus Borel sets are either countable or of the same size as R).

Proof. Let X be an uncountable Borel set. By Theorem 4.2 find a Borel*
code (T, π) for it. Let h : ω<ω → ω be one-to-one and onto. For every f ∈ ωω ,
let Wf : ω<ω → ω be the following strategy of II in the games GB∗(., (T, π)):
Wf (i0, ..., in) = f(h(i0, ..., in)). Let P be the set of (η, f) ∈ ωω × ωω such that
Wf is a winning strategy of II in GB∗(η, (T, π)). For all R ⊆ P , by pr(R) we
mean the set of those η ∈ ωω for which there is f ∈ ωω such that (η, f) ∈ R and
for u = (a, p) ∈ (ωn × ωn), n < ω , by R(u) we mean the set of those (η, f) ∈ R
for which a ⊆ η and p ⊆ f .

4.8.1 Exercise. Show that P is closed.

For all ordinals α we define sets Pα as follows:
(a) P0 = P ,
(b) Pα+1 = Pα − P ∗

α where P ∗
α is the union of all Pα(u), u ∈ (ωn × ωn),

n < ω , such that pr(Pα(u)) contains at most one element,
(c) for limit α , Pα =

∩
γ<α Pγ .

4.8.2 Exercise.
(i) Show that there is α∗ < ω1 such that Pα∗+1 = Pα∗ .
(ii) Show that for all α , pr(P ∗

α) is countable.
(iii) Show that Pα∗ is closed.

We show that Pα∗ ̸= ∅ . For a contradiction, suppose Pα∗ = ∅ . For every
η ∈ X , choose fη so that (η, fη) ∈ P . Since Pα∗ = ∅ , for all η ∈ X , there is
γ < α∗ such that (η, fη) ∈ P ∗

γ . Since α∗ < ω1 and X is uncountable, there is
uncountable Y ⊆ X and γ < α∗ , such that for all η ∈ Y , (η, fη) ∈ P ∗

γ . This
contradicts Exercise 4.8.1 (ii).

Now we are ready to construct a a perfect set C ⊆ X . For all ξ ∈ 2<ω we
define ηξ, fξ ∈ ωω and nξ < ω as follows:

(I) (η∅, f∅) is any element of Pα∗ and n∅ = 0.
(II) Suppose ηξ, fξ ∈ ωω and nξ < ω have been chosen for ξ ∈ 2n . We choose

them for ξ0 = ξ ∪ {(n, 0)} and ξ1 = ξ ∪ {(n, 1)} as follows: We let ηξ0 = ηξ and
fξ0 = fξ . By the choice of α∗ , Pα∗((ηξ � nξ, fξ � nξ)) must contain some (ηξ1 , fξ1)
such that ηξ1 ̸= ηξ0 (= ηξ ). We let nξ0 = nξ1 = m < ω be such that (m > nξ
and) ηξ0 � m ̸= ηξ1 � m .
For all ξ ∈ 2ω , we let ηξ =

∪
k<ω ηξ�k � nξ�k and f =

∪
k<ω fξ�k � nξ�k . Since

Pα∗ is closed, for all ξ ∈ 2ω , (ηξ, fξ) ∈ Pα∗ ⊆ P and thus ηξ ∈ X . It is easy to
see that C = {ηξ| ξ ∈ 2ω} is perfect (ξ 7→ ηξ is the required homeomorphism).

4.9 Exercise. (i) (Cantor-Bendixson theorem) For every Y ⊆ B , let the
derivative Y ′ of Y be the set of all non-isolated points of Y . Now suppose that
X ⊆ B is uncountable and closed and define:
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(a) X0 = X ,
(b) Xα+1 = X ′

α ,
(c) for limit α , Xα =

∩
γ<αXγ .

Let α∗ be the least such that Xα∗+1 = Xα∗ . Show, without using Theorem 4.8,
that (α∗ exists and) Xα∗ contains a perfect set.

(ii) Show that every uncountable Borel(Rn) , 0 < n < ω , set is either count-
able or contains a perfect set.

5. Universal relations and Borel hierarchy

In this section we study universal relations and as a corollary, we prove that
the Borel hierarchy is proper.

5.1 Definition. Let Γ be a collection of subsets of S for some topological
space S We say that R ⊆ (S × S) is universal for Γ if for all X ∈ Γ , there is
ξ ∈ S such that Rξ = {η ∈ S| (η, ξ) ∈ R} = X .

5.2 Theorem. For every α < ω1 , there is a Borel set R ⊆ (ωω × ωω) such
that it is universal for Σα .

Proof. Suppose α < ω1 and let T be the ω -tree from Corollary 4.3 for this
α . Let h : L(T ) → ω and h′ : ω → ω<ω be one-to-one and onto. For every
f ∈ ωω , let πf be the function from L(T ) to the basic open sets such that for all
t ∈ L(T ), πf (t) = Nh′(f(h(t))) (see the discussion after the proof of Lemma 2.2).
Then by Corollary 4.3, for all X ∈ Σα , there is f ∈ ωω such that (T, πf ) is a
Borel* code for X .

Now for all t ∈ L(T ) we let π(t) be the set of all (η, f) ∈ (ωω × ωω) such
that η ∈ πf (t). It is easy to see that π(t) is open (exercise). We let R ⊆ B×B
be the Borel set whose Borel* code (T, π) is. We show that R is as wanted.

Suppose X ∈ Σα . Then there is f ∈ ωω such that (T, πf ) is a Borel* code for
X . We show that X = Rf . For this we show that X ⊆ Rf , the other inclusion
is similar and is left as an exercise.

So suppose η ∈ X , We need to find a winning strategy for II in the game
GB∗((η, f), (T, π)). Since (T, πf ) is a Borel* code for X , we know that II has a
winning strategy W in the game GB∗(η, (T, πf )). But by the definition of π , W
is clearly also a winning strategy of II in the game GB∗((η, f), (T, π)).

By going through the proofs of Lemma 4.2 and Theorem 5.2 carefully, one
can see:

5.3 Corollary. For every 0 < α < ω1 , there is a Σα set R ⊆ (ωω × ωω)
such that it is universal for Σα .

5.4 Exercise. Show that for all 0 < α < ω1 , the following are equivalent:
(i) Σα = Πα ,
(ii) Σα+1 = Σα ,
(iii) Borel = Σα .

5.5 Theorem. For all 0 < α < ω1 , Σα ̸= Πα .

Proof. For a contradiction, suppose Σα = Πα . Let R be as in Theorem 5.2
for this Σα . Then X = {η ∈ B| (η, η) ̸∈ R} is Borel (exercise). Thus by Exercise
5.4 it is Σα and so there is f ∈ B such that for all η ∈ B , η ∈ X iff (η, f) ∈ R .
So f ∈ X iff (f, f) ∈ R iff f ̸∈ X , a contradiction.
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5.6 Exercise.
(i) Show that there is no Borel set R ⊆ B × B such that it is universal for

Borel sets.
(ii) Show that if R ⊆ B×B is Borel, then for all η ∈ B , Rη = {ξ ∈ B| (ξ, η) ∈

R} is Borel. Hint: Find a Borel* code for Rη by modifying π from a Borel* code
(T, π) of R .

6. Projective hierarchy

We are mostly interested only about Σ1
1 and Π1

1 sets but for completeness and
Section 14, we define the full hierarchy of projective sets already here. However,
because of some technical difficulties, we define these first only in the Baire space
B and then later for reals.

6.1 Definition.
(i) We let Σ1

0 = Π1
0 = Borel(B) ,

(ii) X ⊆ B is Σ1
i+1 if there is a Π1

i set Y ⊆ B×B such that X = pr(Y ) =
{η ∈ B| for some ξ ∈ B, (η, ξ) ∈ Y } (keep in mind that B×B is homeomorphic
with B and thus Π1

i subsets of B×B have already been defined),
(iii) X ⊆ B is Π1

i+1 if B−X is Σ1
i+1 ,

(iv) X ⊆ B is ∆1
i set if it is both Π1

i and Σ1
i .

(v) Σ1
1 sets are often called analytic and Π1

1 sets co-analytic.
(vi) A set is called projective if it is Σ1

i set for some i < ω .

6.2 Exercise.
(i) Show that if X ⊆ B is Borel, then there is a closed set Y ⊆ B × B

such that X = pr(Y ) . Conclude that Borel sets are ∆1
1 . Hint: See the proof of

Theorem 4.8.
(ii) Show that Σ1

n ∪Π1
n ⊆ ∆1

n+1 for all n < ω .

6.3 Lemma. The following are equivalent:
(i) X is Σ1

1 ,
(ii) X = pr(Y ) for some closed Y ⊆ B×B ,
(iii) X = pr(Y ) for some Σ1

1 set Y ⊆ B×B ,
(iv) X = f(Y ) for some closed set Y ⊆ B and continuous f : B → B ,
(v) X = ∅ or X = f [B] for some continuous f : B → B .
(vi) X = f(Y ) for some Σ1

1 -set Y ⊆ B and continuous f : Y → B .

Proof. Clearly, (ii)⇒(i), (i)⇒(iii), (iv)⇒(ii) (since {(η, ξ) ∈ B2| ξ ∈ Y, η =
f(ξ)} is closed) and (v)⇒(vi). So it is enough to show the following three impli-
cations:

(iii)⇒(iv): Suppose (iii) holds. Let Z ⊆ B3 be a Borel set such that Y is
the set of those (η, ξ) such that for some ξ′ , (η, ξ, ξ′) ∈ Z . Define f : B3 → B
so that f(η, ξ, ξ′) = η . Since B3 is homeomorphic to B and f is continuous, (iv)
follows from Exercise 6.2 (i) and the fact that the composition of two continuous
functions is continuous.

(iv)⇒(v): By (iv), it is enough to show that if C ⊆ B is closed and non-
empty then there is a continuous f : B → B such that rng(f) = C . For all
ξ ∈ ωn , n < ω , we choose ηξ ∈ ωn so that

(a) ξ∅ = ∅ ,
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(b) if ξ ⊆ ξ′ , then ηξ ⊆ ηξ′ ,
(c) Nηξ

∩ C ̸= ∅ ,
(d) for all g ∈ C and ξ ∈ ωn , n < ω , if g ∈ Nηξ

, then there is ξ′ ∈ ωn+1

such that ξ ⊆ ξ′ and g ∈ Nηξ′ .
By recursion on n it is easy to find these ηξ . Then we define f : B → B
so that for all ξ ∈ B , f(ξ) = ∪n<ωηξ�n . Clearly f is continuous, since C is
closed, (c) guarantees that f(ξ) ∈ C for all ξ ∈ B and finally (d) guarantees that
C ⊆ rng(f).

(vi)⇒(iv): Suppose (vi) holds. If X = ∅ , the claim is clear and thus we may
assume that X ̸= ∅ . Since we have already seen that (i) implies (iv) and Y is Σ1

1 ,
there are a closed Z ⊆ B and continuous g : B → B such that Y = g(Z). Now
Z and g ◦ f witness that (iv) holds.

6.4 Exercise.
(i) Show that every uncountable Σ1

1 set contains a perfect set. Hint: The
proof of Theorem 4.8 works.

(ii) Show that Σ1
1 sets are closed under countable unions and countable inter-

sections. Hint: For intersections, start by showing that if Ci ⊆ B2 are closed, then
so is the set of those (η, (ξi)i<ω) ∈ B×Bω such that for all i < ω , (η, ξi) ∈ Ci .

(iii) Show that if X,Y ⊆ B are Σ1
1 , then so is X × Y ⊆ B×B .

(iv) Prove (ii) and (iii) above for Σ1
n , n > 1 .

(v) Suppose f : B → B is Borel. Show that if X ⊆ B is Σ1
n , then f−1(X)

is Σ1
n .
(vi) Suppose X ⊆ B is Σ1

n and f ;B → B is continuous. Show that f(X) is
Σ1

n .

Now we are ready to define Σ1
n(R

m) and Π1
n(R

m).

6.5 Definition. Suppose 0 < m < ω and 0 < n < ω . We say that X ⊆ Rm

is Σ1
n(R

m) if X = f(Y ) for some continuous f : B → Rm and a Σ1
n set Y ⊆ B .

X is Π1
n(R

m) if Rm − X is Σ1
n(R

m) and X is ∆1
n(R

m) if it is both Σ1
n(R

m)
and Π1

n(R
m) . If used, Σ1

0(R
m) = Π1

0(R
m) = Borel(Rm) .

We start by a lemma that shows that our notion of analytic sets in Rn is the
usual one.

6.6 Lemma. Suppose that 0 < n < ω and X ⊆ Rn .
(i) If X is Borel(Rn) , then it is Σ1

1(R
n) .

(ii) The following are equivalent.
(a) X is Σ1

1(R
n) .

(b) X = ∅ or X = f(B) for some continuous f : B → Rn .
(c) X = pr(Y ) for some Borel(Rn ×R) set Y ⊆ Rn ×R .
(d) X = ∅ or there are 0 < m < ω , a Borel(Rm) set Y ⊆ Rm and continuous

f : Y → Rn such that X = f(Y ) .
(e) X = ∅ or there are 0 < m < ω , a Σ1

1(R
m) set Y ⊆ Rm and continuous

f : Y → Rn such that X = f(Y ) .

Proof. (i) is left as an exercise and we prove (ii):
The equivalence (a)⇔(b) and the implication (e)⇒(b) are clear by Lemma

6.3 (v). The implication (c)⇒(d) is immediate and (d)⇒(e) follows from (i).
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We are left to prove the implication (b)⇒(c). Clearly we may assume that
X ̸= ∅ . Then we notice that if f is as in (b) (equalizing Ir with B), then
Y = {(f(x), x)| x ∈ Ir} is a closed subset of Rn× Ir . Thus it is a Borel(Rn×R)
subset of Rn ×R (Y = Y ∩ (Rn × Ir), where Y is the closure of Y in Rn ×R).
Clearly, X = pr(Y ).

Next exercise lists some other basic properties of Σ1
i (R

n) set. Most of the
exercises can be solved simply by translating related results for Σ1

i sets.

6.7 Exercise. Suppose 0 < n,m < ω .
(i) Show that X ⊆ R is Σ1

n(R) (Π1
n(R)) iff X ∩ Ir is Σ1

n (Π1
n ).

(ii) Show that Borel(Rm) ⊆ ∆1
1(R

m) .
(iii) Let g = f � X be as in Lemma 3.14. Show that for all A ⊆ Rn and

i < ω , A is Σ1
i (R

n) (Π1
i (R

n)) iff g−1(A) is Σ1
i (Π1

i ).
Hint: We prove the implication from left to right in the case n = 1 : If A

is Σ1
1(R

n) , then there is closed C ⊆ Rn × Ir such that A = pr(C) . Then C is
Borel(Rn ×R) and letting h : X × Ir → Rn ×R be (g, id) , h is continuous and
thus h−1(C) is Borel in X × Ir and so also Borel in B × Ir , since X is Borel.
Clearly g−1(A) is a projection of h−1(C) and so it is Σ1

1 .
For the other direction, start by proving that there is a continuous h : B → Rn

such that h � X = g .
(iv) Show that Σ1

n(R
m) ∪Π1

n(R
m) ⊆ ∆1

n+1(R
m) .

(v) Show that Σ1
n(R

m) is closed under countable unions and intersections.
(vi) Show that every uncountable Σ1

1(R
m) set contains a perfect set.

(vii) Show that if Y ⊆ Rn ×Rm is Π1
i (R

n ×Rm) , then X = pr(Y ) = {x ∈
Rn| for some y ∈ Rm, (x, y) ∈ Y } is Σ1

i+1(R
n) .

The items (ii) and (iv) from Lemma 6.3 for Rn in place of B are not equiva-
lent with being Σ1

1(R
n). Next exercise (together with Exercise 6.2 and Theorem

5.5) explains why.

6.8 Exercise. Show that if X ⊆ R2 is closed and f : R2 → R is continuous
(e.g. f = pr ), then f(X) is in Σ2(R) . Hint: Show first that if in addition X is
bounded (i.e. compact), then f(X) is closed.

We finish this section by studying universal relations.

6.9 Theorem. There is a Σ1
1 set R ⊆ B ×B such that it is universal for

Σ1
1 .

Proof. Since Π1 ⊆ Π2 , every closed set is a countable intersection of open
sets. Fix a one-to-one function h from ω × ω onto ω and a one-to-one function
h′ from ω onto ω<ω × ω<ω . Then every η ∈ B can be thought as a code for
the set Cη =

∩
i<ω

∪
j<ω Nh′(η(h(i,j))) (so Nh′(η(f(i.j))) is a basic open set of B2 ).

Thus for every closed C ⊆ B × B , there is η ∈ B such that Cη = C . Also For
every η ∈ B , pr(Cη) is Σ1

1 . Thus we can think every η also a code for the Σ1
1 set

Xη = pr(Cη) and for every Σ1
1 set X ⊆ B , there is η ∈ B such that Xη = X .

Let S be the set of those (ξ, η, ξ′) ∈ B3 such that (ξ, ξ′) ∈ Cη and R be the
set of those (ξ, η) ∈ B × B such that for some ξ′ , (ξ, η, ξ′) ∈ S . Clearly R is
universal for Σ1

1 .
So it is enough to show that R is Σ1

1 . For this it is enough to show that S is
Borel. But this is the case since, S =

∩
i<ω

∪
j<ω Uij , where Uij is the union of all
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N(a,b,c) such that (a, b, c) ∈ (ω<ω)3 , dom(b) = h(i, j)+1 and (a, c) = h′(b(h(i, j)))
(exercise).

6.10 Exercise.
(i) Show that for all 0 < n < ω , there is a Σ1

n set R ⊆ B ×B such that it
is universal for Σ1

n . Hint: Use induction and show first that if R is universal for
Σ1

n , then B2 −R is universal for Π1
n .

(ii) Show that for all 0 < n < ω , Σ1
n ̸= Π1

n . Conclude that for all n < ω ,
Σ1

n ∪Π1
n ( Σ1

n+1 , in particular, Σ1
1 ̸= Borel . Hint: See the proof of Theorem 5.5.

(iii) Show that Σ1
1(R

n) ̸= Borel(Rn) .
(iv) Show that for all 0 < n < ω , there is a Σ1

n(R
m) set R ⊆ Rm×Rm such

that it is universal for Σ1
n(R

m) .

We finish this section with a ’geometric’ exercise. Items (i) and (ii) in the
exercise are hints for (iii).

6.11 Exercise.
(i) Let A = {(xi)i<3 ∈ R3| x1 = x2 = 0} . Show that there is a homeomor-

phism P from A (with the induced topology) onto R Conclude that for every
X ⊆ R , X is in Borel(R) iff P−1[X] is in Borel(R3) .

(ii) Let B = {(xi)i<3 ∈ R3| x21 + x22 = 1, x1 > 0} . Show that there is a
homeomorphism H from B (with the induced topology) onto R2 . Conclude that
for all X ⊆ R2 , X is in Borel(R2) iff H−1[X] is in Borel(R3) .

(iii) Show that there is a Borel(R3) set X ⊆ R3 such that Y =
∪

x∈X B(x, 1)

is not Borel(R3) , where B((xi)i<3, 1) = {(yi)i<3 ∈ R3| (x0 − y0)
2 + (x1 − y1)

2 +
(x2 − y2)

2 ≤ 1} . Hint: Use (i) and (ii) together with Exercise 6.10.

7. Separation

In this section we will show that if X,Y ⊆ B are Σ1
1 and X ∩ Y = ∅ , then

there is a Borel set Z such that X ⊆ Z ⊆ (B− Y ).
We start by making simple observations on trees.

7.1 Definition. Let T, T ′ ⊆ X<ω be trees.
(i) We write T ≤ T ′ if there is a function f : T → T ′ such that for all

η, ξ ∈ T , if η ( ξ , then f(η) ( f(ξ) (but not necessarily the other way round).
(ii) GC(T, T ′) is the following game: At each move n < ω , first player I

chooses tn ∈ T such that tm ( tn for all m < n and then II chooses t′n ∈ T ′ such
that t′m ( t′n for all m < n . The first who can not move looses and if both can
move on every round n < ω , II wins. Winning strategy for II is defined as in the
case of the game GB∗ .

7.2 Exercise. Let T, T ′ ⊆ X<ω be trees.
(i) T ≤ T ′ iff there is a function f : T → T ′ such that for all η, ξ ∈ T , if

η ( ξ then f(η) ( f(ξ) and in addition, for all η ∈ T , dom(η) = dom(f(η)) .
(ii) T ≤ T ′ iff II has a winning strategy in GC(T, T ′) .
(iii) T ≤ T ′ iff rk(T ) ≤ rk(T ′) (see Definition 4.5).

7.3 Theorem. Suppose X,Y ⊆ B are Σ1
1 and X ∩ Y = ∅ . Then there is

a Borel set Z ⊆ B such that X ⊆ Z ⊆ (B− Y ) .
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Proof. Choose closed X∗, Y ∗ ⊆ B×B so that X = pr(X∗) and Y = pr(Y ∗).
If X∗ or Y ∗ is empty, there is nothing to prove, and thus we assume that they
are not empty.

For all η ∈ B , let Xη be the set of all ξ ∈ ω<ω such that, letting n = dom(ξ),
there are η′, ξ′ ∈ B such that (η′, ξ′) ∈ X∗ , η′ � n = η � n and ξ ⊆ ξ′ . Yη is
defined similarly. Notice that for all n < ω and ξ ∈ ωn , whether ξ ∈ Xη or not,
depends on η � n only (and similarly for Y ). Thus if η, ξ ∈ ωn , we write also
ξ ∈ Xη meaning that for some η′ ∈ B , ξ ∈ Xη′ and η ⊆ η′ (and similarly for Y ).
Notice that for all η ∈ B , Xη =

∪
n<ωXη�n (and similarly for Y ).

7.3.1 Exercise.
(i) Xη and Yη are trees.
(ii) η ∈ X iff Xη contains an ω -branch i.e. there is f ∈ ωω such that for all

n < ω , f � n ∈ Xη . And similarly for Y .
(iii) If η ∈ X , then Yη ≤ Xη and if Yη ≤ Xη , then η ̸∈ Y .

So if we let Z be the set of those η ∈ B such that Yη ≤ Xη , then X ⊆ Z ⊆
(B− Y ). Thus we are left to show that Z is Borel*.

The idea in showing that Z is Borel, is to find a Borel* code (T, π) so that for
all η ∈ B , the game GB∗(η, (T, π)) is, via coding, the same game as GC(Yη, Xη).

We let T be the set of all f : n → ∪m<ω(ω
m)3 such that for all i < n the

following holds:
(a) f(i) ∈ (ωi)3 ,
(b) if j + 1 < n and f(j) = (ξi)i<3 , then ξ1 ∈ Xξ0 and ξ2 ∈ Yξ0 ,
(c) if j < k < n , f(j) = (ξi)i<3 and f(k) = (ξ′i)i<3 , then for all i < 3,

ξi ⊆ ξ′i .

7.3.2 Exercise.
(i) Show that T is a tree.
(ii) Show that T does not have an ω -branch.

Now the tree T is almost as required in Borel* codes, except that the elements
are not of the right form. It is easy to see that this can be fixed by an easy coding.
However, for the clarity, we use T as it is in a Borel* code. So we need to explain
how the players move: at each move n < ω , again if fn−1 : n → ∪m<n(ω

m)3

from T is chosen, it is not a leaf and fn−1(n − 1) = (ξ′i)i<3 (if n > 0), then I
chooses first some ξ2 ∈ ωn so that ξ′2 ⊆ ξ2 and then II chooses (ξ0, ξ1) ∈ (ωn)2 so
that ξ′i ⊆ ξi for i < 2. The play continues from fn = fn−1 ∪ {(n, (ξi)i<3)} ∈ T .
We choose the labeling π as follows: Suppose f : n + 1 → ∪m<n(ω

m)3 is a leaf.
Notice that then n > 0. Let f(n) = (ξi)i<3 . If ξ2 ̸∈ Yξ0 , we let π(f) be Nξ0 , and
otherwise we define π(f) = ∅ .

7.3.3 Exercise. Show that II has a winning strategy in GB∗(η, (T, π)) iff
II has a winning strategy in GC(Yη, Xη) . Conclude that (T, π) is a Borel* code
for Z .

7.4 Exercise. Show that ∆1
1 = Borel and ∆1

1(R
n) = Borel(Rn) .

Next exercise gives a modified way of proving Theorem 7.3.

26



7.5 Exercise. Let X,X∗, Y and Y ∗ be as in the beginning of the proof of
Theorem 7.3. Let h : ω → ω3 be one-to-one and onto. For f : n → ω , n ≤ ω ,
let fk : n → ω , k < 3 , be such that for all x < n , if h(f(x)) = (ai)i<3 , then
fk(x) = ak . We let T be the set of all f : n → ω , n < ω , such that there are
η, η′, ξ, ξ′ ∈ B for which f0 ⊆ η , f0 ⊆ η′ , f1 ⊆ ξ , f2 ⊆ ξ′ , (η, ξ) ∈ X∗ and
(η′, ξ′) ∈ Y ∗ . Let T ′ be the set of all f : n → ω , n < ω , such that if n > 0 ,
f(0) = 0 and f− ∈ T , where f− : n − 1 → ω is such that for all x < n − 1 ,
f−(x) = f(x+ 1) .

(i) Show that T , and thus T ′ , does not contain an ω -branch.

(ii) T ′ ̸≤ T .

(iii) If η ∈ X , then T ′ ≤ Xη and if T ′ ≤ Xη , then T ′ ̸≤ Yη .

(iv) Z = {η ∈ B| T ′ ≤ Xη} separates X and Y (i.e. X ⊆ Z ⊆ B− Y ).

(v) Z is Borel.

7.6 Exercise. Suppose f : B → B is such that graph(f) = {(x, f(x))| x ∈
B} is Borel. Show that f is Borel (i.e. Borel-measurable).

7.7 Exercise. Suppose f : B → B is continuous, A ⊆ B is closed and
f � A is one-to-one.

(i) Suppose n < ω . Show that for all η ∈ ωn , there are pairwise disjoint Borel
sets Bη such that f(Nη ∩ A) ⊆ Bη ⊆ f(Nη ∩A) (by X we mean the closure of
X ).

(ii) Show that in (i), we can choose the sets Bη so that if η ⊆ ξ , then
Bξ ⊆ Bη .

(iii) Show that f(A) is Borel.

In fact, Exercise 7.7 (iii) is a characterization of being Borel, i.e. it is also
true that if X ⊆ B is Borel then there are f and A as above so that X = f(A).

8. Suslin operation

In this section we look at the way of defining Σ1
1 sets that was used (by M.

Suslin) when Σ1
1 sets were introduced the first time (in 1917).

8.1 Definition. Let S be a topological space and that for all η ∈ ω<ω ,
Xη ⊆ S . Then by A{Xη| η ∈ ω<ω} we mean the set of those ξ ∈ S for which
there is f : ω → ω such that ξ ∈

∩
n<ωXf�n .

8.2 Exercise. Suppose that for all η ∈ ω<ω , Xη ⊆ B is Borel and that for
all η, ξ ∈ ωn if η ̸= ξ , then Xη ∩Xξ = ∅ . Show that A{Xη| η ∈ ω<ω} is Borel.

8.3 Lemma. If every Xη , η ∈ ω<ω is Σ1
1 , then so is A{Xη| η ∈ ω<ω} .

Proof. For all η ∈ ω<ω , let Yη = Xη × Nη . It is easy to see that Yη
is Σ1

1 (exercise). Thus by Exercise 6.4 (iii), for all n < ω , Yn =
∪

η∈ωn Yη is

still Σ1
1 . Thus still by Exercise 6.4 (iii), also Y = ∩n<ωYn is Σ1

1 . But clearly
A{Xη| η ∈ ω<ω} = pr(Y ) and thus, by Lemma 6.3, A{Xη| η ∈ ω<ω} is Σ1

1 .

8.4 Lemma. If X ⊆ B is Σ1
1 , then there are closed sets Xη ⊆ B , η ∈ ω<ω ,

such that X = A{Xη| η ∈ ω<ω} .
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Proof. If X = ∅ , the claim is clear. So we may assume that X ̸= ∅ . Then
by Lemma 6.3, there is continuous F : B → B such that X = F [B] . If Y ⊆ B ,
by Y we denote the closure of Y . If η, ξ ∈ B and ξ ̸= F (η), there is n < ω
such that ξ � n ̸= F (η) � n . By continuity of F , there is m < ω such that
F [Nη�m] ⊆ NF (η)�n . Since NF (η)�n is closed, also F [Nη�m] ⊆ NF (η)�n and thus

ξ ̸∈ F [Nη�m] . So
∩

m<ω F [Nη�m] = {F (η)} . Thus X = A{Xη| η ∈ ω<ω} by

letting Xη be F [Nη] for all η ∈ ω<ω .

8.5 Exercise.
(i) Prove that Lemma 8.3 holds for Rn in place of B .
(ii) Check that the proof of Lemma 8.4 works also for Rn in place of B .

The proof of the following lemma demonstrates the use of Suslin operation.
The lemma itself will be needed in Section 10.

8.6 Lemma. Let T ⊆ B2 be closed and for all η ∈ B , define Tη as Xη

was defined from X∗ in the beginning of the proof of Theorem 7.3. Let R ⊆ B2

be the set of those (η, ξ) such that Tη ≤ Tξ . Then R is Σ1
1 .

Proof. Recall that in the proof of Theorem 7.3, the sets Tw were defined also
for all w ∈ ω<ω and keep in mind that for η ∈ B , Tη =

∪
n<ω Tη�n .

Let ui , i < ω , be an enumeration of ω<ω such that if ui ⊆ uj , then i < j
(exercise: show that such enumeration exists). Notice that then dom(ui) ≤ i .

In the definition of Suslin operation, the sets Xη were needed for every η ∈
ω<ω . In this proof, we use (ω3)<ω in place of ω<ω . A simple coding shows that
this is harmless. Also for w : n → ω3 , we write wi , i < 3, for those functions
with domain n that satisfy: for all m < n , w(m) = (wi(m))i<3 .

For all w ∈ (ω3)<ω we let Xw = ∅ if (1), (2) or (3) below holds and otherwise,
Xw = N(w0,w1) .

(1) For some k < n , dom(uw2(k)) ̸= dom(uk).
(2) For some k < m < n , uk ( um but uw2(k) ̸⊆ uw2(m) or w2(k) = w2(m).
(3) For some m < n , um ∈ Tw0�dom(um) but uw2(m) ̸∈ Tw1�dom(um) .

Then R = A{Xw| w ∈ (ω3)<ω} : If f : ω → ω3 witnesses that (η, ξ) ∈ A{Xw| w ∈
(ω3)<ω} , then ∪n<ω(f � n)2 codes an order-preserving map which witnesses that
Tη ≤ Tξ . On the other hand, if g : Tη → Tξ witnesses that Tη ≤ Tξ , then we
find a witness f : ω → ω3 for (η, ξ) ∈ A{Xw| w ∈ (ω3)<ω} as follows: Clearly we
can choose g so that dom(g(u)) = dom(u) for all u ∈ Tη . But then we can find
g′ : ω<ω → ω<ω so that g′ � Tη = g and for all u,w ∈ ω<ω , dom(g′(u)) = dom(u)
and if u ⊆ w , then g′(u) ⊆ g′(w). Let h : ω → ω be such that for all n < ω ,
g′(un) = uh(n) . But then f(n) = (η(n), ξ(n), h(n)) is the witness.

Thus by Lemma 8.3, R is Σ1
1 .

Σ1
1 sets can also be defined in a Borel* style:

8.7 Exercise. We say that (T, π) is a Vaught code if T is the tree (ω2)<ω

and π : T → P (B) . We define the Vaught game GV (η, (T, π)) exactly as GB∗

was defined except that now the game lasts ω moves and at the end II wins if
η ∈ π(f � n) for all n < ω , where f : ω → ω2 is such that if on move n , I
chose i and II chose j , then f(n) = (i, j) . We say that (T, π) is a Vaught code
for X ⊆ B , if for all η ∈ B , η ∈ X iff II has a winning strategy in the game
GV (η, (T, π)) . Show that
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(i) Every Σ1
1 set X has a Vaught code (T, π) such that for all t ∈ T , π(t) is

a basic open set.
(ii) If a Vaught code (T, π) is such that for all t ∈ T , π(t) is Σ1

1 , then the
set whose Vaught code (T, π) is, is Σ1

1 .

Notice that by (the proof of) Exercise 14.2 (i) below, GV (η, (T, π)) is deter-
mined i.e. always one of the players has a winning strategy.

8.8 Exercise. Let (T, π) be a Vaught code and U ⊆ ω<ω a non-empty tree
without ω -brances. The gane GVU (η, (T, π)) is played as GV (η, (T, π)) except
that at each round I chooses in addition to i ∈ ω also k ∈ ω . If at first n + 1
rounds I has chosen km, im and II has chosed jm , m ≤ n , then we write g for
the function g : n + 1 → ω , g(m) = km and f for the function f : n + 1 → ω ,
f(m) = (im, jm) . The gane ends if g ̸∈ U and II wins if η ∈ π(f � m) for all
m ≤ n .

(i) Show that if the values of π are Borel, then the set of those η for which
II has a winning strategy in GVU (η, (T, π)) is Borel.

(ii) Show that if I has a winning strategy in GV (η, (T, π)) , then there is a
non-empty tree U ⊆ ω<ω without ω -branches such that I has a winning strategy
in GVU (η, (T, π)) .

(iii) Prove Lemma 9.2 below using (i) and (ii) above. Hint: See Exercise 9.1
(i) and (ii).

8.9 Exercise. Show that if every Xη ⊆ B , η ∈ ω<ω , is Π1
2 , then so is

X = A{Xη| η ∈ ω<ω} . Hint: Choose Σ1
1 sets X∗

η ⊆ B2 so that ξ ∈ Xη iff for
all h ∈ B , (ξ, h) ∈ X∗

η . Then show that ξ ̸∈ X iff there is h : ω × ω → ω for
which the following holds: for all f ∈ B , there exists n < ω and m < ω such that
(ξ, hm) ̸∈ X∗

f�n , where hm : ω → ω is such that hm(x) = h(m,x) .

9. Cardinality of Π1
1 sets

In this section we show that if the cardinality of a Π1
1 set is > ω1 , then the

cardinality is 2ω .
Let X ⊆ B be Π1

1 and choose closed X∗ ⊆ B×B so that B−X = pr(X∗).
And again for all η ∈ B , let X∗

η be the set of those ξ ∈ ωn , n < ω , such that for
some η′, ξ′ ∈ B , (η′, ξ′) ∈ X∗ , η � n ⊆ η′ and ξ ⊆ ξ′ . Again we think X∗

η as a
tree and notice that η ∈ X iff X∗

η does not contain an ω -branch.
For all α < ω1 , let Xα = {η ∈ B| rk(X∗

η ) < α} . (for rk , see Definition 4.5).
Notice that by Exercise 4.6 (i), X =

∪
α<ω1

Xα .
For every ordinal α , let Tα be the tree of all f : n → α , n < ω , such that

for all i < j < n , f(j) < f(i).

9.1 Exercise.
(i) Show that rk(Tα) = α .
(ii) Show that rk(X∗

η ) ≥ α iff Tα ≤ X∗
η .

(iii) Show that for every α < ω1 , Xα is Borel. Hint: See the proof of Theorem
7.3.

So we have proved:

9.2 Lemma. Every Π1
1 set is a union of ω1 many Borel sets.
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9.3 Theorem. If X ⊆ B is Π1
1 and not countable, then |X| ∈ {ω1, 2

ω} .

Proof. We suppose that the cardinality of X is > ω1 and show that it is
2ω . For this it is enough to show that |X| ≥ 2ω .

By Lemma 9.2, let Xα , α < ω1 be such Borel sets that X =
∪

α<ω1
Xα .

By Exercise 1.4.17 (ii), there must be α < ω1 such that |Xα| > ω . But then by
Theorem 4.8, |Xα| = 2ω . Since Xα ⊆ X , |X| ≥ 2ω .

9.4 Lemma. Every Π1
1 set X is an intersection of ω1 many Borel sets.

Proof. Let Y ∗ ⊆ B2 be closed such that pr(Y ∗) is the complement Y of
X . For all η ∈ B , let Y ∗

η be as before and by Y u
η , u ∈ ω<ω , we mean the set of

those ξ ∈ Y ∗
η such that u ⊆ ξ . For α < ω1 and u ∈ ω<ω , by Bα

u we mean the
set of those η ∈ B such that rk(Y u

η ) = α . Then Bα
u is Borel (as in Exercise 9.1

(iii)) and thus also Eα = (
∪

β≤αB
β
∅ ) ∪ (

∪
u∈ω<ω Bα

u ) is Borel. Thus it suffices to
show that X =

∩
α<ω1

Eα .
Suppose first that η ∈ X . Then rk(Y ∗

η ) < ω1 and thus for all α < ω1 , either
rk(Y ∗

η ) ≤ α or for some u ∈ ω<ω , rk(Y u
η ) = α . In both cases η ∈ Eα .

Suppose then that η ̸∈ X and for a contradiction, suppose that η ∈ Eα for all
α < ω1 . Since rk(Y ∗

η ) = ∞ , for all α < ω1 , there is uα such that rk(Y uα
η ) = α .

This gives a one-to-one function from ω1 to ω<ω , a contradiction.

9.5 Exercise. Show that every Σ1
2 set is a union of ω1 many Borel sets.

Conclude that uncountable Σ1
2 sets have cardinality ω1 or 2ω .

10. Uniformization

Suppose that R ⊆ B×B . Then by Choice, there is a function f : pr(R) → B
such that for all η ∈ pr(R), (η, f(η)) ∈ R . In uniformization questions one asks
that if R is simple, can one choose f so that it(s graph i.e. {(η, f(η))| η ∈ pr(R)})
is also simple.

In the low end of topological complexity, without additional assumption, the
answer is no:

10.1 Fact. There is closed R ⊆ B×B such that if f : pr(R) → B is such
that for all η ∈ pr(R) , (η, f(η)) ∈ R , then {(η, f(η))| η ∈ pr(R)}) is not Σ1

1 .

However, for Π1
1 things are different.

10.2 Definition. Suppose that S is a topological space and R ⊆ S × S .
We say that R∗ ⊆ S × S uniformizes R if R∗ ⊆ R and for all η ∈ pr(R) = {η ∈
S| for some ξ ∈ S, (η, ξ) ∈ R} , there is unique ξ ∈ B such that (η, ξ) ∈ R∗ .

In the proof of the next theorem, one further observation on trees is needed
(this is a variant and a strengthening of what was done in Exercise 7.5). Let
T ⊆ X<ω be a tree. By σ(T ) we mean the tree U ⊆ T<ω such that t : n→ T is
in σ(T ) if for all i < j < n , t(i) ( t(j).

10.3 Exercise. Let T and T ′ be trees.
(i) Show that rk(σ(T )) = rk(T ) + 1 (where ∞+ 1 = ∞ and −1 + 1 = 0).
(ii) Show that T ′ ̸≤ T iff σ(T ) ≤ T ′ .
(iii) There are no trees Ti ⊆ ω<ω , i < ω , such that for all i < ω , Ti ̸≤ Ti+1 .
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10.4 Theorem. If R ⊆ B×B is Π1
1 , then there is a Π1

1 set R∗ ⊆ B×B
such that it uniformizes R .

Proof. Let T ⊆ B3 be closed and such that (η, ξ) ∈ R iff there is no ξ′ ∈ B
such that (η, ξ, ξ′) ∈ T . As in the proof of Theorem 7.3, for η, ξ ∈ B let Tη,ξ be
the tree of those f ∈ ω<ω such that letting n = dom(f), for some η′, ξ′ and f ′

from B , (η′, ξ′, f ′) ∈ T , η � n ⊆ η′ , ξ � n ⊆ ξ′ and f ⊆ f ′ . Again (η, ξ) ∈ R iff
Tη,ξ does not contain an ω -branch.

The idea in this proof is to define R∗ so that for every η ∈ pr(R), R∗ pics ξ
so that Tη,ξ is ≤ -minimal (notice that by Exercise 7.2 (iii), this is possible) and
among those, ξ is chosen so that for all n , ξ(n) is the least possible. However, to
make this really work, some polishing is needed.

As in the proof of Lemma 8.6, let ui , i < ω , be an enumeration of ω<ω such
that if ui ⊆ uj , then i < j . By T i

η,ξ we mean the tree of those t ∈ ω<ω such

that ti ∈ Tη,ξ , where t
i ∈ ω<ω is such that dom(ti) = dom(ui) + dom(t), for all

k < m = dom(ui), t
i(k) = ui(k), and for k < dom(t), ti(m + k) = t(k). Notice

that T 0
η,ξ = Tη,ξ . Notice also that rk(T i

η,ξ) = rk(ui;Tη,ξ).

Now we define a set S ⊆ B3 so that we can choose R∗ = R∩(B2−S∗) where
S∗ is the set of those (η, ξ) such that for some ξ′ , (η, ξ, ξ′) ∈ S .

We let S be the set of those triples (η, ξ, ξ′) ∈ B3 for which (∗)n(η, ξ, ξ′) or
(∗∗)n(η, ξ, ξ′) below holds for some n < ω :

(∗)n(η, ξ, ξ′): ξ′ � n = ξ � n , for all i ≤ n , T i
η,ξ′ ≤ T i

η,ξ and Tn
η,ξ ̸≤ Tn

η,ξ′ ,

(∗∗)n(η, ξ, ξ′): ξ′ � n = ξ � n , ξ′(n) < ξ(n) and for all i ≤ n , T i
η,ξ′ ≤ T i

η,ξ .

Recall that by Exercise 10.3 (ii), T i
η,ξ ̸≤ T i

η,ξ′ is equivalent with σ(T i
η,ξ′) ≤

T i
η,ξ . Then R∗ = R ∩ (B2 − S∗) is Π1

1 , since

10.4.1 Exercise. Show that S is Σ1
1 . Hint: Lemma 8.6.

We are left to prove that R∗ uniformizes R . We show first that if η ∈ pr(R),
then there is ξ ∈ B such that (η, ξ) ∈ R∩ (B2−S∗). For all n < ω , by induction,
we determine ξ(n) by choosing first ξn ∈ B and then letting ξ(n) = ξn(n). We
do this as follows (these ξn exist, because we minimalize in a well-founded partial
order by Exercise 10.3 (iii)):
n = 0: We let ξ0 be any element of B such that for all ξ′ , neither (∗)0(η, ξ0, ξ′)
nor (∗∗)0(η, ξ0, ξ′) hold.
n = m+1: We let ξn be any element of B such that ξn � n = ξm � n and neither
(∗)n(η, ξn, ξ′) nor (∗∗)n(η, ξn, ξ′) hold for any ξ′ .
Finally we let ξ = limn→∞ξn =

∪
n<ω ξn � (n+ 1).

Now we need to show that (η, ξ) ∈ R and (η, ξ) ∈ B2 − S∗ . The proofs of
these are based on the same observation.

Let us define f : ω<ω → ω1 ∪ {−1} so that f(un) = rk(Tn
η,ξn

). Recall that
the rank was defined so that if un ̸∈ Tη,ξn , then f(un) = −1.

10.4.2 Exercise.
(i) For all n < m < ω , if un = (um)− , then f(um) < f(um) or f(un) =

f(um) = −1 .
(ii) If f(un) = −1 , then un ̸∈ Tη,ξ .
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(iii) For all n < ω , rk(un;Tη,ξ) ≤ rk(un;Tη,ξn) (in fact, equality holds here
but we do not need that information). Hint: By induction on the ordering u < w
iff w ⊆ u show that for all u ∈ {w ∈ ω<ω| f(w) ≥ 0} , rk(u;Tη,ξ) ≤ f(u) .

(iv) (η, ξ) ∈ R .

(v) (η, ξ) ̸∈ S∗ . Hint: Suppose first that there are ξ′ and n < ω such that
(∗)n(η, ξ, ξ′) holds. Choose these so that n is minimal. Then notice that for all
i ≤ n , T i

η,ξ′ ≤ T i
η,ξ ≤ T i

η,ξn
and Tn

η,ξn
̸≤ Tn

η,ξ′ .

So we are left to prove that if (η, ξ) ∈ R∗ and (η, ξ′) ∈ R∗ , then ξ = ξ′ .
Suppose not. Let n < ω be the least such that ξ(n) ̸= ξ′(n). Without loss of
generality, we may assume that ξ′(n) < ξ(n). Since (η, ξ, ξ′) ̸∈ S and (η, ξ′, ξ) ̸∈
S , for all m ≤ n , both (∗)m(η, ξ, ξ′) and (∗)m(η, ξ′, ξ) fail. It follows that

(***) for all m ≤ n , Tm
η,ξ′ ≤ Tm

η,ξ and Tm
η,ξ ≤ Tm

η,ξ′ .

But for the same reason also (∗∗)n(η, ξ, ξ′) fails and thus using (***), ξ′(n) can
not be strictly smaller than ξ(n), a contradiction.

10.5 Exercise. Show that if R ⊆ R2 is Π1
1 , then there is a Π1

1 set R∗ ⊆ R2

such that it uniformizes R . Hint: Use Lemma 3.13 (for n = 1) and Theorem 10.4.

10.6 Exercise. Show that if R ⊆ B × B is Σ1
2 , then there is a Σ1

2 set
R∗ ⊆ B×B such that it uniformizes R .

10.7 Exercise. Suppose that R ⊆ B ×B is Borel and that for all η ∈ B
there are exactly two elements ξ ∈ B such that (η, ξ) ∈ R . Show that there is a
Borel set R∗ ⊆ B×B such that it uniformizes R .

11. Measurability

In this section we show that Σ1
1 (and thus Π1

1 ) sets are measurable. We will
prove the result for the Lebesgue measure on R but from the proof it is clear
that the result holds also for many other measures. For more on this, see the next
section.

For X ⊆ R , the outer measure µ∗(X) ∈ R≥0∪{∞} of X is the infimum of the
sums Σ∞

n=0v(In) such that each In is a closed interval with rational endpoints,
v(In) is the length of the interval and X ⊆

∪
n<ω In . A set X is Lebesgue

measurable, if for all Y ⊆ R , µ∗(Y ∩X)+µ∗(Y −X) = µ∗(Y ). If X is Lebesgue
measurable, we write µ(X) for µ∗(X) and call it the Lebesgue measure of X . A
set X is null if µ∗(X) = 0.

For Rn , n > 1, Lebesgue measure is defined exactly the same way, only that
instead of closed intervals we look at n-products of closed intervals with rational
endpoints and v(I1×...×In) is the product of the lengths of the the closed intervals
Ii , 1 ≤ i ≤ n .

When there is no risk of confusion, we call Lebesgue measure just measure.

11.1 Exercise.

(i) Show that all closed intervals and null sets are measurable.

(ii) Show that if I is a closed interval, then µ(I) = v(I) .

(iii) Let N be the family of all null subsets of R . Show that N is a σ -ideal
(see, Exercise 3.7 (ii)).
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(iv) Show that measurable sets form a σ -algebra and so by (i), Borel(R) sets
are measurable. (recall: A family is a σ -algebra if it is closed under complements,
countable unions and countable intersections).

(v) Show that for every X ⊆ R , X is measurable iff X ∩ Ir is measurable.

(vi) Show that if Xi , i < ω , are disjoint and measurable, then µ(
∪

i<ωXi) =
Σi<ωµ(Xi) . Conclude that if Xi , i < ω , are measurable and form an increasing
sequence, then µ(

∪
i<ωXi) = supi<ωµ(Xi) .

11.2 Lemma. There exists a set X ⊆ [0, 1] such that it is not measurable.

Proof. By Exercise 11.1, it is enough to find X ⊆ [0, 1] such that µ∗(X),
µ∗([0, 1] − X) ≥ 2/3 (since then µ∗(X) + µ∗([0, 1] − X) ≥ 4/3 > 1 = µ([0, 1])).
For this we choose closed intervals Ii,j ⊆ [0, 1] with rational endpoints, i < 2ω

and j < ω , so that for all i < 2ω ,
∑∞

j=0 v(Ii,j) ≤ 2/3 and if Jj ⊆ [0, 1], j < ω ,

are closed intervals with rational endpoints and
∑∞

j=0 v(Jj) ≤ 2/3, then for some
i < 2ω , Jj = Ii,j for all j < ω . (This is possible since the number of closed interval
with rational endpoints is countable and so the number of possible sequences
(Ji)i<ω is |ωω| = 2ω .) Then it is enough to find X ⊆ [0, 1] such that for all
i < 2ω , X ̸⊆

∪
j<ω Ii,j and [0, 1]−X ̸⊆

∪
j<ω Ii,j . This is easy:

For all i < 2ω , we choose sets Xi, Yi ⊆ [0, 1] so that

(i) X0 = Y0 = ∅ ,
(ii) for all i < 2ω , Xi+1 = Xi ∪ {xi} and Yi+1 = Yi ∪ {yi} where xi ∈ [0, 1]

and yi ∈ [0, 1] are such that they do not belong to
∪

j<ω Ii,j ,

(iii) for all i < 2ω , Xi ∩ Yi = ∅ ,
(iv) for limit i < 2ω , Xi =

∪
j<iXj and Yi =

∪
j<i Yj .

To see that the sets Xi and Yi exists, it is enough to show that for all i < 2ω ,
the elements xi and yi can be found so that the requirement in (ii) holds and
Xi+1 ∩ Yi+1 = ∅ . We start by noticing that for all i < 2ω , the cardinality of Xi

and Yi is < 2ω (exercise). Since for all i < 2ω , the set Z = [0, 1] −
∪

j<ω Ii,j is
Borel(R), and not null (and thus not countable), by Theorem 4.8 (and Exercise
3.4 (vii)), the cardinality of it is 2ω . Thus for all i < 2ω , the set Z − (Xi ∪ Yi)
contains more that one element. So xi and yi can indeed be found.

Now
∪

i<2ω Xi is as wanted.

11.3 Lemma. For every X ⊆ R there is a Borel(R) (and thus measurable)
set Y such that X ⊆ Y and every measurable Z ⊆ Y − X is null. Thus if in
addition X is measurable, there is a Borel(R) set (in fact Σ3(R) set, see the
proof) Y such that X ⊆ Y and Y −X is null i.e. µ(X) = µ(Y ) .

Proof. By Exercise 11.1, it is easy to see that it is enough to prove the claim
under the additional assumption that X is bounded (exercise). So we suppose
that X ⊆ [−r, r] for some r ∈ R>0 . But then by the definition of µ∗ one can
find countable unions Un of closed intervals ⊆ [−r, r] , 0 < n < ω , such that for
all 0 < n < ω , X ⊆ Un and µ(Un)− µ∗(X) < 1/n . Then Y =

∩
0<n<ω Un is as

wanted: Clearly, it is Borel(R). Also if Z ⊆ Y −X is measurable, then Y −Z is
measurable and since it contains X , µ(Y −Z) ≥ µ∗(X) = µ(Y ). So µ(Z) = 0.

11.4 Theorem. Every Σ1
1(R

n) set is measurable.
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Proof. We prove the claim for n = 1, the other cases are similar. Let X ⊆ R
be Σ1

1(R) set. Since it is enough to show that X∩Ir is measurable, we may assume
that X ⊆ Ir . Then, as in the proof of Lemma 8.4, choose continuous F : B → Ir
so that X = F (B) and for all η ∈ ω<ω , let Xη = F [Nη] . Then (by the proof of
Lemma 8.4)

(*) X = A{Xη| η ∈ ω<ω} = A{Xη| η ∈ ω<ω} .
Notice also that

(**) for all η ∈ ωn , Xη = ∪{Xξ| ξ ∈ ωn+1, η ⊆ ξ} .
By Lemma 11.3 and since the sets Xη are measurable, for every η ∈ ω<ω ,

there is a measurable set Yη such that Xη ⊆ Yη ⊆ Xη and every measurable
Z ⊆ Yη −Xη is null. By (*),

(***) X = A{Yη| η ∈ ω<ω} .
Since Y∅ is measurable, it is enough to show that Y∅ −X is measurable. For this
it is enough to show that it is null.

11.4.1 Claim. For all n < ω and η ∈ ωn , let Zη = ∪{Yξ| ξ ∈ ωn+1, η ⊆ ξ} .
Then Y∅ −X ⊆

∪
n<ω

∪
η∈ωn(Yη − Zη) .

Proof. So suppose a ∈ Y∅ but a ̸∈
∪

n<ω

∪
η∈ωn(Yη −Zη). We need to show

that a ∈ X . For this, by (***), it is enough to find f ∈ ωω such that for all
n < ω , a ∈ Yf�n . We choose the values f(n) by induction on n < ω as follows:
Since a ∈ Y∅ but a ̸∈ Y∅ − Z∅ , there is ξ ∈ ω1 such that a ∈ Yξ . Let f(0) = ξ(0)
(i.e. f � 1 = ξ ). Then we just keep on repeating this argument: Since a ∈ Yf�1
but a ̸∈ Yf�1 − Zf�1 , there is ξ′ ∈ ω2 such that a ∈ Yξ′ and f � 1 ⊆ ξ′ . Let
f(1) = ξ′(1) (i.e. f � 2 = ξ′ ) etc.

Thus to show that Y∅ − X is null, it is enough to show that for all n < ω
and η ∈ ωn , the set Yη − Zη is null. But by (**), Yη − Zη ⊆ Yη −Xη and since
Yη − Zη is measurable, it null by the choice of Yη .

11.5 Fact.
(i) ZFC does not prove that ∆1

2(R) sets are measurable (again assuming ZFC
is consistent).

(ii) If there are infinitely many Woodin cardinals, then every projective set is
measurable (see Section 14).

(iii) If ZFC+”there is an inaccessible cardinal” is consistent, then so are ZF+
”every subset of reals is measurable” as well as ZFC+”every projective set is
measurable”.

11.6 Exercise.
(i) Show that there is X ⊆ [0, 1] such that µ∗(X) = µ∗([0, 1]−X) = 1 .
(ii) Show that for all X ⊆ R , there is Borel(R) set Y ⊆ X such that every

measurable Z ⊆ X − Y is null and that if in addition X is measurable, then
µ(X) = µ(Y ) .

(iii) Suppose f : R → R is measurable i.e. for all open sets U ⊆ R , f−1(U)
is measurable. Show that there exists a Borel(R) set X and a Borel function
g : R → R such that R −X is null and f � X = g � X . Hint: See the proof of
Corollary 3.13 and use Lemma 11.3.

11.7 Exercise. Let V = {(x, y) ∈ R2| 0 < x, y < 1} . Suppose X ⊆ V ,
a ∈ X and b ∈ R2 . We say that a is visible from b if the line segment (a, b) does
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not contain points from X . By Xb we denote the set of all points of X that are
visible from b . Show that there is X ⊆ V such that for all b = (x, y) ∈ R2 , if
y > 2 , then µ∗(Xb) = 1 (in particular, Xb has Hausdorff dimension 2). Hint: Use
the idea from the proof of Lemma 11.2, Theorem A.1 from Appendix and Fubini’s
theorem.

12. Universal measurability

As pointed out in the previous section, the proof of Theorem 11.4 goes through
for many measures other than the Lebesgue measure. However, behind this there
is a more general fact: measurability is a very robust notion, natural notions of
measure tend to give roughly the same notion of measurability. In this section we
look at this phenomenon. For simplicity we restrict to continuous Borel measures
on R such that all bounded intervals get a finite measure.

12.1 Definition. A function µ∗ : Borel(R) → [0,∞] is called a Borel
measure on R if µ∗(∅) = 0 and µ∗ is σ -additive i.e. µ∗(

∪
i<ωXi) = Σi<ωµ

∗(Xi)
for any pairwise disjoint members Xi of Borel(R) . If in addition all singletons
get measure 0 , we say that µ∗ is continuous.

12.2 Definition. Let µ∗ be a Borel measure on R . We say that X ⊆ R is
µ∗ -null if there is a Borel(R) set Y such that X ⊆ Y and µ∗(Y ) = 0 . We say that
X ⊆ R is µ∗ -measurable if there is a µ∗ -null set Y such that X ∪Y ∈ Borel(R) .

Let µ be the Lebesgue measure from the previous section. Then from µ , we
get a continuous Borel measure µ � Borel(R) which we also denote by µ .

12.3 Exercise.
(i) Show that X ⊆ R is null (in the sense of Section 11) iff X is µ -null.

(ii) Show that X ⊆ R is measurable (in the sense of Section 11) iff X is
µ -measurable.

12.4 Theorem. Suppose that µ∗ is a continuous Borel measure on R and
x, y ∈ R are such that x < y and µ∗([x, y]) < ∞ . Then there is a continuous
f : [x, y] → [0, 1] such that for all X ⊆ [x, y] , X is µ∗ -measurable iff f(X) is
µ -measurable.

Proof. As in Section 11, it is easy to see that it is enough to prove this claim
for [x, y] = [0, 1]. Also we may assume that µ∗([0, 1]) = 1 (if µ∗([0, 1]) = 0, there
is nothing to prove, choose f to be constant 0). We define f : [0, 1] → [0, 1] so
that f(x) = µ∗([0, x]) .

12.4.1 Exercise. Show that f is increasing (not necessarily properly),
continuous and onto.

Let B be the set of those y ∈ [0, 1] such that f−1(y) contains more than one
point. We let Y =

∪
y∈B f

−1(y).

12.4.2 Exercise.

(i) Show that B is countable, Y is Borel and µ∗(Y ) = 0 .
(ii) Show that f � ([0, 1]− Y ) is a homeomorphism onto [0, 1]−B .
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12.4.3 Exercise.
(i) Show that X is µ∗ -measurable iff X − Y is µ∗ -measurable.
(ii) Show that f(X) is µ -measurable iff f(X − Y ) is µ -measurable.

Thus it is enough to prove that X − Y is µ∗ -measurable iff f(X − Y ) is µ -
measurable. We notice first that for all x ∈ [0, 1], µ∗([0, x]) = f(x) = µ([0, f(x)]) .
Thus for all intervals (closed or not) I ⊆ [0, 1], µ∗(I) = µ(f(I)) (exercise). Thus
for all countable unions U of intervals, µ∗(U) = µ(f(U)) (notice that we may
assume that the intervals in the union are pairwise disjoint).

12.4.5 Claim. For all Σn([0, 1]−Y ) sets U , 0 < n < ω , µ∗(U) = µ(f(U)) .

Proof. We prove this by induction on n > 0. From what is above the claim
follows for n = 1. So suppose it holds for n . We prove it for n + 1. Clearly
from the induction assumption it follows that the claim holds for Πn([0, 1] − Y )
sets. Since Πn is closed under finite unions, it is enough to show that if the
claim holds for Πn([0, 1]−Y ) sets Ui ⊆ [0, 1]−Y and (Ui)i<ω form an increasing
sequence, then the claim holds for U =

∪
i<ω Ui . But µ∗(U) = supi<ωµ

∗(Ui) =
supi<ωµ(f(Ui)) = µ(f(U)). Claim 12.4.5

12.4.6 Exercise.
(i) Show that for all X ⊆ [0, 1]− Y , X is µ∗ -null iff f(X) is µ -null.
(ii) Show that for all X ⊆ [0, 1] − Y , X is µ∗ -measurable iff f(X) is µ -

measurable.

12.5 Corollary. Suppose that µ∗ is a continuous Borel measure on R
such that for all x, y ∈ R , µ∗([x, y]) < ∞ . If X ⊆ R is Σ1

1(R) , then X is
µ∗ -measurable.

Proof. Exercise.

12.6 Exercise. Prove Corollary 12.5.

12.7 Exercise. What changes one needs to make to the proof of Theorem
12.4 to prove the theorem without the assumption that µ∗ is continuous?

13. The property of Baire revisited

Often, in the context of topologically simple sets, if one can prove something
on measurability (ideal of null sets) the same holds for the sets with PB (ideal of
meager sets) and vice versa. And, in fact, the same proof works in both cases. (In
the context of arbitrary sets this connection is broken.) In this section we give an
example of this. We observe that the proof of Theorem 11.4 shows also that every
Σ1

1 (and thus Π1
1 ) set has PB.

13.1 Lemma. For every X ⊆ B there is a set Y such that it has PB,
X ⊆ Y and every Z ⊆ Y −X with PB is meager.

Proof. If X is meager, there is nothing to prove (choose Y = X ). So we
may assume that X is not meager. Let X ′ be the set of all η ∈ B such that for
all n < ω , X ∩Nη�n is not meager.
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13.1.1 Exercise. Show that X ′ is closed and X −X ′ is meager.

Let Y = X ∪ X ′ . Then Y is a union of a closed set and a meager set and
thus it has PB. Clearly X ⊆ Y .

Now suppose Z ⊆ Y −X has PB. For a contradiction suppose that Z is not
meager. Since Z has PB, there is ξ ∈ ω<ω such that Nξ − Z is meager and so
also Nξ ∩X is meager. Also since Nξ − Z is meager, Nξ ∩ Z ̸= ∅ and so there is
η ∈ B such that ξ ⊆ η and for all n < ω , Nη�n ∩X is not meager. In particular,
Nξ ∩X is not meager, a contradiction.

13.2 Theorem. Every Σ1
1 set has PB.

Proof. Let X ⊆ B be Σ1
1 set. Then as in the proof of Lemma 8.4, choose

continuous F : B → B so that X = F (B) and for all η ∈ ω<ω , let Xη = F [Nη] .
Then (by the proof of Lemma 8.4)

(*) X = A{Xη| η ∈ ω<ω} = A{Xη| η ∈ ω<ω} .
Notice also that

(**) for all η ∈ ωn , Xη = ∪{Xξ| ξ ∈ ωn+1, η ⊆ ξ} .
By Lemma 13.1 and since the sets Xη have PB, for every η ∈ ω<ω , there is

a set Yη such that it has PB, Xη ⊆ Yη ⊆ Xη and every Z ⊆ Yη −Xη with PB is
meager. By (*),

(***) X = A{Yη| η ∈ ω<ω} .
Since Y∅ has PB, it is enough to show that Y∅ −X has PB. For this it is enough
to show that it is meager.

13.2.1 Claim. For all n < ω and η ∈ ωn , let Zη = ∪{Yξ| ξ ∈ ωn+1, η ⊆
ξ}) . Then Y∅ −X ⊆

∪
n<ω

∪
η∈ωn(Yη − Zη) .

Proof. See the proof of Claim 11.4.1.
Thus to show that Y∅ −X is meager, it is enough to show that for all n < ω

and η ∈ ωn , the set Yη − Zη is meager. But by (**), Yη − Zη ⊆ Yη − Xη and
since Yη − Zη has PB, it is meager by the choice of Yη .

13.3 Exercise. Show that there is a null set Z ⊆ R such that R − Z is
meager. Hint: Show that for all n < ω , there is an open and dense subset D of
R such that µ(D) < 1/n .

14. Determinacy

In this section we study determinacy. We start with a consequence of Σ1
1 -

determinacy, namely that Σ1
1 -determinacy implies that all Σ1

2 sets are Lebesgue
measurable. And then we show that the existence of a Ramsey type cardinal
implies Σ1

1 -determinacy.

14.1 Definition.
(i) Let X ⊆ B . The game G(X) is defined as follows: At each move i < ω ,

first the player I chooses ai ∈ ω and then II chooses bi ∈ ω . The outcome of this
play is the function η ∈ B such that for all i < ω , η(2i) = ai and η(2i+ 1) = bi .
I wins if η ∈ X .

(ii) The winning strategies in this game are defined as before and we say that
X ⊆ B is determined if either one of the players has a winning strategy in the
game G(X) .
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(iii) Σ1
n -determinacy is the assumption that every Σ1

n set X ⊆ B is deter-
mined.

(iv) Projective determinacy (PD) is the assumption that every projective
X ⊆ B is determined.

Item (i) in the following exercise is known as Gale-Steward theorem.

14.2 Exercise.
(i) Show that every closed set is determined. Hint: Suppose that II does not

have a winning strategy and show that I can play so that after each of his move,
the player II still does not have a winning strategy in the rest of the play and that
this is a winning strategy.

(ii) Show that Σ1
1 -determinacy implies that every Π1

1 set is determined. Hint:
Notice that Nη is homeomorphic with B for all η ∈ ω<ω .

(iii) Show that there is a non-determined set. Hint: See the proof of Lemma
11.2.

14.3 Fact. Every Borel set is determined.

In the proof of the next theorem, it is convenient to work in the Cantor space.
We start by defining a (Haar) measure to C : We define an outer measure as in
the case of Lebesgue measure letting the outer measure of basic open sets N c

η be

1/(2dom(η)). Then measurability and measure are defined exactly as in the case
of Lebesgue measure. We denote this measure also by µ , it will be clear from the
context whether we mean this measure or the Lebesgue measure. By repeating
proofs from the case of Lebesgue measure, one can see that µ is σ -additive, all
Borel sets are measurable and that Lemma 11.3 holds also for this µ and so we
may think µ also as a continuous Borel measure.

14.4 Lemma. Denote Ir∗ = Ir ∩ (0, 1) . Then there is F : Ir∗ → C such
that the following holds:

(i) F is a homeomorphism between Ir∗ and rng(F ) .
(ii) C− rng(F ) is countable.
(iii) For all X ⊆ Ir∗ , X is measurable iff F (X) is measurable. (In fact, if X

is measurable, then µ(X) = µ(F (X)) .)

Proof. For all η ∈ 2<ω , define qη ∈ Q by recursion on dom(η) as follows:
If dom(η) = 0, then qη = 0 and if dom(η) = n + 1, then qη = qη�n if η(n) = 0
and otherwise qη = qη�n +1/2n+1 . Then for every x ∈ Ir∗ , there is unique η ∈ C
such that x = sup{qη�n| n < ω} . We let this η be F (x).

14.4.1 Exercise.
(i) Show that the set {qη| η ∈ 2<ω} is dense in [0, 1] .
(ii) Show that F is one-to-one.
(iii) Show that F is continuous.
(iv) Show that F−1 : rng(F ) → Ir∗ is continuous.
(v) Show that C− rng(F ) is countable.

We define a linear order < to 2≤ω as follows: η < ξ if η ( ξ or there is
n ∈ dom(η) ∩ dom(ξ) such that η � n = ξ � n and η(n) < ξ(n).
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14.4.2 Exercise. Show that < is a linear order and that for all x, y ∈ Ir∗ ,
x < y iff F (x) < F (y) .

By Exercise 14.4.1, for all X ⊆ [0, 1], X is Borel(R) iff F (X ∩ Ir∗) is
Borel(C) and so we can define a Borel measure µ∗ to [0, 1] by letting µ∗(X) =
µ(F (X ∩ Ir∗)).

14.4.3 Exercise.
(i) Show that for all η, ξ ∈ 2<ω , η < ξ , the set {ν ∈ C| η < ν < ξ} is a

(countable) union of basic open sets.
(ii) Show that for all η, ξ ∈ 2<ω , η < ξ , µ∗({x ∈ Ir∗| qη < x < qξ}) = qξ−qη .
(iii) Show that for all X ⊆ Ir∗ , X is Lebesgue measurable iff it is µ∗ -

measurable. Hint: The proof of Theorem 12.4.
(iv) Show that for all X ⊆ Ir∗ , X is Lebesgue measurable iff F (X) is µ -

measurable (in C).

Also the following exercise is needed in the proof of the next theorem.

14.5 Exercise. Show with an easy proof, that Ir∗ is homeomorphic with
B (i.e. Ir).

Notice that from the proof of the following theorem, it follows that for all
n ≥ 1, Σ1

n -determinacy implies that every Σ1
n+1 set is measurable.

14.6 Theorem. Σ1
1 -determinacy implies that every Σ1

2 subset of Rn ,
n < ω , is Lebesgue measurable.

Proof. We prove the claim for n = 1, the other cases are similar. Clearly it
is enough to show that every Σ1

2 subset X∗ of Ir∗ is Lebesgue measurable. Then
there is a Π1

1 subset Y ∗ ⊆ Ir∗ × Ir∗ such that X∗ = pr(Y ∗). Let F be as in
Lemma 14.4. By F we denote also the function (x, y) 7→ (F (x), F (y)) from Ir2 to
C2 . Let X = F (X∗) and Y = F (Y ∗) = {(F (η), F (ξ))| (η, ξ) ∈ Y } . By Lemma
14.4, it is enough to show that X is µ -measurable.

For all A ⊆ C , let

µb(A) = sup{µ(B)| B ⊆ A Borel}

and
µb(A) = inf{µ(B)| A ⊆ B Borel}.

Now choose a Borel set B ⊆ X such that µ(B) = µb(X). Let A = X − B .
Now if µb(A) = 0, X is measurable since then there is a Borel set C such that
B ⊆ X ⊆ C and µ(B) = µ(C). Since F−1(A) is still Σ1

2 , it is enough to prove
that if µb(X) = 0, then µb(X) = 0.

For this, let us define the following game GC(Y, ϵ) for ϵ > 0 (C is for cover-
ing): For all i < ω , let Wi be the set of all finite unions of basic open sets U such
that µ(U) < ϵ/(23i) and for all i < ω , n 7→ U i

n be an enumeration of Wi . Then
at each move i , first I chooses a pair (ai, bi) ∈ 2× 2 and then II chooses ci < ω .
Let η, ξ ∈ C be such that for all i < ω , η(i) = ai and ξ(i) = bi . Then II wins if
either (η, ξ) ̸∈ Y or η ∈

∪
i<ω U

i
ci .
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14.6.1 Exercise. Show that GC(Y, ϵ) is determined. Hint: Find a Σ1
1 -set

A ⊆ B such that I has a winning strategy in GC(Y, ϵ) iff II has it in G(A) and II
has a winning strategy in GC(Y, ϵ) iff I has it in G(A) .

We show that II has a winning strategy in the game GC(Y, ϵ). Suppose
not. Then by Exercise 14.6.1, I has a winning strategy τ . Define a function
f : B → C × C as follows: f(h) = (η, ξ) if for all i < ω , (η(i), ξ(i)) = τ(h �
i). Clearly f is continuous and rng(f) ⊆ Y and thus A = pr(rng(f)) ⊆ X .
Since pr(F−1(rng(f))) = pr((F−1 ◦ f)(B)), pr(F−1(rng(f))) is Σ1

1 and thus by
Theorem 11.4, it is Lebesgue measurable and so also A = F (pr(F−1(rng(f)))) is
µ -measurable by Lemma 14.4. So C−A is µ -measurable and thus by Lemma 11.3
for µ , there is a Borel(C) set B such that C − A ⊆ B and µ(B) = µ(C − A).
So letting D = C − B , D is Borel(C), D ⊆ A ⊆ X and µ(D) = µ(A). So
µ(pr(rng(f))) = µ(D) ≤ µb(X) = 0. Thus there are ci < ω , i < ω , such that
rng(f) ⊆

∪
i<ω U

i
ci (exercise). But then II wins τ by playing ci at each move

i < ω , a contradiction.
So II has a winning strategy σ . For all n < ω and (η, ξ) ∈ 2n+1 × 2n+1 , let

Uη,ξ = Un
c , where c = σ((η(0), ξ(0)), ..., (η(n), ξ(n))). Now

X ⊆ Z =
∪
n<ω

∪
(η,ξ)∈2n+1×2n+1

Uη,ξ

and an easy calculation shows that µ(Z) ≤ 8ϵ and thus µb(X) ≤ 8ϵ . Since this
happens with every ϵ > 0, µb(X) = 0.

By combining Theorem 14.6 with Fact 11.5 (i), one gets:

14.7 Fact. ZFC does not prove Σ1
1 -determinacy.

By taking a closer look at the proof of Theorem 14.6, one gets the item (i)
below:

14.8 Fact.
(i) As pointed out above, PD implies that all projective subsets of Rn are

Lebesgue measurable.
(ii) Σ1

1 -determinacy implies that Σ1
2 subsets of Rn have PB and PD implies

that projective subsets of Rn have PB.
(iii) PD implies that all projective subsets of Rn are either countable or

contain a perfect set.

Let us now turn to look when Σ1
1 -determinacy holds. For a set X and n < ω ,

we write [X]n for the set all subsets of X of size (i.e. cardinality) n . Notice that
if X is a linearly ordered set, then [X]n is essentially the same set as the set of
all strictly increasing functions from n to X . And, indeed, for all subsets X of
On , by [X]ω we mean the set of all strictly increasing functions from ω to X .

For cardinals κ, λ, µ and ξ , we write κ →λ (µ)<ω
ξ if the following holds: If

fi , i < λ , are functions from [κ]ni , ni < ω , to ξ , then there is X ⊆ κ of power
µ such that for all i < λ , fi � [X]ni is constant. E.g. by Ramsey’s theorem, for
all n,m < ω , ω →n (ω)<ω

m and e.g. so called measurable cardinals κ have the
property κ→λ (κ)<ω

µ for any λ, µ < κ .
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14.9 Exercise. Show that for all infinite cardinals κ , κ →1 (ω)ω2 fails
i.e. that there is F : [κ]ω → 2 such that for no infinite X ⊆ κ , F � [X]ω is
constant. Hint: Look at the following equivalence relation E on [κ]ω : gEh if
rng(g)∆rng(h) is finite. For each g ∈ [κ]ω pick hg ∈ [κ]ω so that gEhg and for
all g, g′ ∈ [κ]ω , gEg′ iff hg = hg′ . Now define F (g) = 0 iff rng(g)∆rng(hg) is
even.

To the tree ω<ω we define the following ordering: η <∗ ξ if ξ ( η or there
is n ∈ dom(η) ∩ dom(ξ) such that η � n = ξ � n and η(n) < ξ(n). Notice the
difference between this definition and the definition for the ordering we defined to
2≤ω above.

14.10 Exercise.
(i) <∗ is a linear ordering of ω<ω .
(ii) For every X ⊆ ω<ω , if X is downward closed (i.e. ξ ⊆ η ∈ X implies

ξ ∈ X ), then the following are equivalent:
(a) there is no ηi ∈ X , i < ω , such that for all i < ω , ηi ( ηi+1 ,
(b) restricted to X , <∗ is a well-ordering of X .
(iii) Suppose X ⊆ ω<ω is finite, κ is a cardinal and f : X → κ is order-

preserving i.e. for all η, ξ ∈ X , if η <∗ ξ , then f(η) < f(ξ) . Then f is uniquely
determined by rng(f) .

14.11 Theorem. If there exists a cardinal κ such that κ→ω (ω1)
<ω
ω , then

Σ1
1 -determinacy holds.

Proof. Let X ⊆ B be Σ1
1 . So there is a closed X∗ ⊆ B2 such that X =

pr(X∗). For all η ∈ B , Xη is defined as in the proof of Theorem 7.3. Thus η ∈ X
iff Xη contains an ω -branch, which by Exercises 14.10 (ii), 1.4.17 (iii) and 1.3.7
is the same as saying that there is no order preserving f : Xη → κ , where the
ordering of Xη is <∗� Xη (see above).

Fix an enumeration ηi , i < ω , of ω<ω so that for all i < ω , dom(ηi) ≤ i .
Let us look at the following game GO(X∗): At each move i < ω , first I

chooses ai < ω and then II chooses bi < ω and ci ∈ κ∪{−1} . When all ω moves
are played the winner is determined as follows: Let η ∈ B be such that for all
i < ω , η(2i) = ai and η(2i + 1) = bi and f : Xη → κ ∪ {−1} be such that for
all ξ ∈ Xη , f(ξ) = ci if ξ = ηi . Then II wins if rng(f) ⊆ κ and f is order
preserving.

14.11.1 Exercise. Show that GO(X∗) is determined i.e. one of the players
has a winning strategy. Hint: See the hint for Exercise 14.2 (i).

So it is enough to show that if I has a winning strategy in GO(X∗) then he
has it is G(X) and if II has a winning strategy in GO(X∗) then she has it is
G(X).

14.11.2 Exercise. Show that if II has a winning strategy in GO(X∗) then
she has it in G(X) .

So we are left to prove the following claim.

14.11.3 Claim. If I has a winning strategy in GO(X∗) then he has it in
G(X) .
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Proof. Let τ be the winning strategy. For η ∈ ω2n , n < ω , by X(η) we
denote the set of those ηi such that i < n and ηi ∈ Xξ , where ξ is some element
of B such that η ⊆ ξ . Notice that by our choice of the enumeration of ω<ω ,
X(η) does not depend on the choice of ξ . For all η ∈ ω2n , n < ω , let nη be
the cardinality of X(η). Also for all a0, b0, a1, ..., bn < ω , by X(a0, b0, a1, ..., bn)
we mean X(η), where η ∈ ω2n+1 is such that for all i ≤ n , η(2i) = ai and
η(2i+ 1) = bi .

For n < ω , a ∈ [κ]m , m < ω , and X ⊆ {ηi| i < n} , if m = |X| , then
by a∗(n,X) we mean the function from {ηi| i < n} to κ ∪ {−1} such that
a∗(n,X) � X is order preserving and onto a and for x ∈ {ηi| i < n} − X ,
a∗(n,X)(x) = −1. If n and X are clear from the context, we drop them from the
notation.

For all η ∈ ω2n , n < ω , we define a coloring Fη : [κ]nη → ω as follows:
let a ∈ [κ]nη and let a∗ = a∗(n,X(η)). Then Fη(a) = τ((η(2i + 1), a∗(ηi))i<n).
Since κ →ω (ω1)

<ω
ω , there is uncountable Y ⊆ κ such that every Fη is constant

on [Y ]nη .

14.11.3.1 Subclaim. For all n < ω and b0, ..., bn−1 < ω (i.e. if n = 0 ,
then there are no bi ’s), there are a0, ..., an < ω such that (*)(n, b0, ..., bn−1) holds,
where
(*)(n, b0, ..., bn−1) : letting η ∈ ω2n be such that for all i < n , η(2i) = ai
and η(2i + 1) = bi , the following holds: For any a ∈ [Y ]nη and i ≤ n , ai =
τ((b0, a

∗(η0)), ..., (bi−1, a
∗(ηi−1))) , where a

∗ = a∗(n,X(η)) .
Furthermore, if a′i < ω , i ≤ k ≤ n , are elements such that they satisfy the
condition (*)(k, b0, ..., bk−1) , then a′i = ai for all i ≤ k .

Proof. We prove this by induction on n .
n = 0: We let a0 = τ(∅) (I chooses first). Clearly this is as wanted.
n = k + 1: Let a0, ..., ak be such that they satisfy (*)(k, b0, ..., bk−1). Let

η ∈ ω2k be such that for all i < k , η(2i) = ai and η(2i+ 1) = bi . We notice that
dom(ηk) ≤ 2k by the choice of our enumeration and so

(**) ηk ∈ X(η) iff ηn ∈ X(ξ) for some (any) ξ ∈ ω2n such that η ⊆ ξ .
There are two cases: the case when ηk ̸∈ X(η) and the case when ηk ∈ X(η). We
leave the former case as an exercise and give the proof in the latter case.

Let p = nη + 1 and a ⊆ [Y ]p . Let x ∈ a be such that |{y ∈ a| y <
x}| = |{ξ ∈ X(η)| ηi <∗ ηk}| and b = a − {x} . Let a∗ = a∗(n,X(η) ∪ {ηk})
and b∗ = b∗(k,X(η)). Notice that for all i < k , a∗(ηi) = b∗(ηi). Now we let
an = τ((b0, a

∗(η0)), ..., (bk, a
∗(ηk))

Now by the induction assumption for every i < n ,

ai = τ((b0, b
∗(η0)), ..., (bi−1, b

∗(ηi−1)) = τ((b0, a
∗(η0)), ..., (bi−1, a

∗(ηi−1))

and so by the induction assumption and the choice of Y , for every i ≤ n and a ∈
[Y ]p , ai = τ((b0, a

∗(η0)), ..., (bi−1, a
∗(ηi−1)). Finally, since by (**) p = nξ , where

ξ ∈ ω2n is such that η ⊆ ξ , ξ(2k) = ak and ξ(2k+1) = bk , the elements a0, ..., an
satisfy (*)(n, b0, ..., bn−1). The furthermore part follows from our choice of Y and
the requirements for a0, ..., ak (notice that if a′0, ..., a

′
k−1 satisfy (*)(k, b0, ..., bk−1),

then for all i < k , a′i = ai ). Subclaim 14.11.3.1.
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Now we can define a strategy τ∗ for I in the game G(X). At each move n ,
if II has played on earlier move b0, ..., bn−1 , then I chooses a0, ..., an so that they
satisfy (*)(n, b0, ..., bn−1) and then I plays an .

We are left to show that τ∗ is winning. For a contradiction suppose that by
choosing bi , i < ω , II can beat τ∗ . Let η ∈ B be such that for all i < ω , η(2i) =
τ∗(b0, ..., b2i−1) and η(2i+ 1) = bi . Then η ̸∈ X and thus Xη is well-ordered by
<∗ . So there is an order preserving g : Xη → Y . But then in the game GO(X∗)
II can beat τ by choosing at every move i < ω , bi and g(ηi) if ηi ∈ Xη and if
ηi ̸∈ Xη , then II chooses bi and −1. This is a win for II, because by Subclaim
14.11.3.1, for every i < ω , τ((b0, g(η0)), ..., (bi−1, g(ηi−1))) = τ∗(b0, ..., bi−1), a
contradiction. Claim 14.11.3

14.12 Corollary. If there exists a cardinal κ such that κ→ω (ω1)
<ω
ω , then

every Σ1
2 (and thus Π1

2 ) subset of R
n is Lebesgue measurable.

Item (i) in the following fact follows from Corollary 14.12 together with Fact
14.7.

14.13 Fact.
(i) ZFC does not prove the existence of a cardinal κ with the property κ→ω

(ω1)
<ω
ω .
(ii) If there are infinitely many Woodin cardinals, then PD holds.

15. Borel model classes and Lω1ω

In this section we look at the connection between being Borel and being
definable in the infinitary language Lω1ω . We fix a language L i.e. a collection of
relation, function and constant symbols. We could let L be any countable language
but for simplicity we let L = {R} , where R is a binary relation symbol (i.e. just
some symbol with a fancy name). An L -structure is a pair M = (U(M), RM ),
where U(M) is a non-empty set and RM ⊆ U(M)2 . In this section we look only
those L-structure M in which U(M) = ω . We fix a one-to-one and onto function
F : ω2 → ω such that

(*) for all i, j ∈ ω , F (i, j) ≥ max{i, j} .
Then every η ∈ B codes a model Mη = (ω,RMη ), where RMη is such that
(n,m) ∈ RMη if η(F (n,m)) > 0. Also for every M = (ω,RM), there is η ∈ B
such that M =Mη .

We pick some symbols vi , i < ω , and call them variables.
In the item (iii) in Definition 15.1 below, one usually requires that (

∧
i<ω ϕi)

contains only finitely many free variables (see Definition 15.2). However, this
requirement is not needed here. But notice that for sentences and their subformulas
the requirement is automatically satisfied.

15.1 Definition. The set of Lω1ω -formulas is defined by recursion as fol-
lows:

(i) R(vi, vj) and vi = vj are Lω1ω -formulas (these are called atomic formu-
las),

(ii) if ϕ is an Lω1ω -formula, then ¬ϕ is an Lω1ω -formula,
(iii) if ϕi , i < ω , are Lω1ω -formulas, then (

∧
i<ω ϕi) is an Lω1ω -formula,

(iv) if ϕ is an Lω1ω -formula, then ∃viϕ is an Lω1ω -formula.
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Since all the formulas we look, are Lω1ω -formulas, we call them just formulas.
The following notation is used:∨

i<ω

ϕi = ¬(
∧
i<ω

¬ϕi)

∀viϕ = ¬∃vi¬ϕ.

15.2 Definition. The notion vi is free in ϕ is defined as follows:
(i) ϕ is atomic: vi is free in ϕ if vi appears in ϕ ,
(ii) ϕ = ¬ψ : vi is free in ϕ if it is free in ψ ,
(iii) ϕ =

∧
i<ω ψi : vi is free in ϕ if it is free in some ψi ,

(iv) ϕ = ∃vjψ : vi is free in ϕ if it is free in ψ and i ̸= j .

We say that a formula ϕ is a sentence if no vi appear free in ϕ . Now we are
ready to define the truth of a formula in a structure with an interpretation:

15.3 Definition. For a formula ϕ , s : ω → ω and a structure M with
U(M) = ω , M |=s ϕ is defined as follows:

(i) ϕ = vi = vj : M |=s ϕ if s(i) = s(j) ,
(ii) ϕ = R(vi, vj) : M |=s ϕ if (s(i), s(j)) ∈ RM ,
(iii) ϕ = ¬ψ : M |=s ϕ if M ̸|=s ψ ,
(iv) ϕ =

∧
i<ω ψi : M |=s ϕ if M |=s ψi for all i < ω ,

(v) ϕ = ∃viψ : M |=s ϕ if there is b ∈ ω such that M |=s(b/i) ψ where
s(b/i) : ω → ω is such that s(b/i)(j) = b if j = i and otherwise s(b/i)(j) = s(j) .

15.4 Exercise. Show that if ϕ and s, s′ : ω → ω are such that s(i) = s′(i)
for all i < ω such that vi appears free in ϕ , then M |=s ϕ iff M |=s′ ϕ .

So if ϕ is a sentence, the truth does not depend on the choice of s , and thus
we write just M |= ϕ meaning that for some (every) s , M |=s ϕ . And if this is
the case we say that M is a model of ϕ . Similarly, if X ⊆ ω contains all i such
that vi is free in ϕ and u : X → ω , we write M |=u ϕ for some (every) s ⊇ u ,
M |=s ϕ .

15.5 Exercise.
(i) Let ϕ be a formula and Xϕ be the set of those (η, ξ) ∈ B2 such that

Mη |=ξ ϕ . Show that Xϕ is Borel. Hint: For all n, i < ω , the function Si
n : B2 →

B2 , Si
n(η, ξ) = (η, ξ(n/i)) is continuous.

(ii) Let ϕ be a sentence and Yϕ ⊆ B be the set of those η such that Mη |= ϕ .
Show that Yϕ is Borel.

We will look at an alternative way of defining the semantics for sentences and
an alternative way of showing that Yϕ is Borel.

15.6 Definition. Semantic game GS(M,ϕ, v) for an L -structure M =
(ω,RM ) , Lω1ω -formula ϕ and v : X → ω where X is such that it contains all
i such that vi is free in ϕ , is defined the following way: The game start at the
position (II, v, ϕ) . At each round n , if the position is (X,u, ψ) , then the players
moves as follows (by Y we denote the element Y ∈ {I, II} − {X}):

(i) if ψ = ¬θ , then the players do nothing and the game continues from the
position (Y, u, θ) ,
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(ii) if ψ =
∧

i<ω ψi , then Y chooses some i < ω and the game continues from
the position (X,u, ψi) ,

(iii) if ψ = ∃vjθ , then X chooses i < ω and the game continues from the
position (X,u(i/j), θ) ,

(iv) if ψ = R(vi, vj) , then the game ends and II wins if either (u(i), u(j)) ∈
RM and X = II or (u(i), u(j)) ̸∈ RM and X = I ,

(v) if ψ = vi = vj , then the game ends and II wins if either u(i) = u(j) and
X = II or u(i) ̸= u(j) and X = I .

15.7 Exercise. Show that M |=s ϕ iff II has a winning strategy for
GS(M,ϕ, s) .

Now fix an Lω1ω -sentence ϕ . For all n < ω , we define sets Tn ⊆ (ω × ω)n

and a labeling Ln the following way: T0 = {∅} and L0(∅) = (II, ∅, ϕ). Then
suppose that Tn and Ln are defined. Then the elements of Tn+1 are got as
follows: Suppose η ∈ Tn and Ln(η) = (X,u, ψ).

(i) If ψ = ¬θ , then for all i, j < ω , ξ = η∪{(n, (i, j))} ∈ Tn+1 and Ln+1(ξ) =
(Y, u, θ) where Y ∈ {I, II} − {X} ,

(ii) if ψ =
∧

i<ω ψi , then for all i, j < ω , ξ = η ∪ {(n, (i, j))} ∈ Tn+1

and Ln+1(η ∪ {(n, (i, j))}) = (X,u, ψi) if X = II and otherwise Ln+1(η ∪
{(n, (i, j))}) = (X,u, ψj),

(iii) if ψ = ∃vkθ , then for all i, j < ω , ξ = η ∪ {(n, (i, j))} ∈ Tn+1 and
Ln+1(η ∪ {(n, (i, j))}) = (X,u(j/k), θ), if X = II and otherwise Ln+1(η ∪
{(n, (i, j))}) = (X,u(i/k), θ).

If none of (i)-(iii) hold, then no ξ ∈ Tn+1 extend η . We let T = ∪n<ωTn .

15.8 Exercise. Show that there is no branch in T of length ω .

Now we define a labeling π to the leafs of T . Let η ∈ (ω × ω)n be a leaf
of T and let Ln(η) = (X,u, ψ). Then ψ must be atomic and thus there are two
possibilities:

(i) ψ = R(vi, vj): if X = II , then we let π(η) be the set of all ξ ∈ B such
that ξ(F (u(i), u(j))) ≥ 1 and otherwise we let π(η) be the set of all ξ ∈ B such
that ξ(F (u(i), u(j))) = 0,

(ii) ψ = vi = vj : we let π(η) be B if either X = II and u(i) = u(j) or
X = I and u(i) ̸= u(j) and otherwise we let π(η) = ∅ .

15.9 Exercise. Show that (T, π) is a Borel∗ -code for Yϕ (see Exercise
15.5 (ii)).

15.10 Definition.
(i) Suppose M and N are L -structures. We say that M and N are iso-

morphic, if there is a one-to-one function f from M onto N such that for all
a, b ∈M , (a, b) ∈ RM iff (f(a), f(b)) ∈ RN .

(ii) We say that η, ξ ∈ B are isomorphic if Mη and Mξ are isomorphic.
(iii) We say that X ⊆ B is closed under isomorphisms if for all isomorphic

η, ξ ∈ B , η ∈ X iff ξ ∈ X .

15.11 Exercise. Let ϕ be a sentence. Show that Yϕ is closed under
isomorphisms. (For Yϕ , see Exercise 15.5.)
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15.12 Theorem. Suppose X ⊆ B is closed under isomorphisms. Then X
is Borel iff there is an Lω1ω -sentence ϕ such that X is the set off all η ∈ B such
that Mη |= ϕ .

Proof. From right to left, the claim is proved in Exercise 15.5 (ii). So we
prove the other direction.

15.12.1 Exercise. Show that the set Sω of those η ∈ B , which are per-
mutations of ω (i.e. one-to-one and onto), is Borel but not dense.

For all u ∈ ω<ω , by Su we mean the set {p ∈ Sω| u ⊆ p−1} . Then Su is a
topological space with the induced topology. Notice that if u is not one-to-one,
then Su = ∅ . Since we do not want to keep repeating all the time that u is
one-to-one, we use in this proof a convention, that when we talk about elements
u, v etc. from ω<ω , we mean those elements of ω<ω that are one-to-one.

15.12.2 Exercise. Show that Baire’s theorem (Lemma 3.6) holds for Su .

So when we say that Y ⊆ Su is co-meager, we mean that it is co-meager in
Su (by Exercise 15.12.1, it can not be co-meager in any other sense).

We notice that for all η ∈ B , there is ξ ∈ C such that Mξ is isomorphic
with Mη . Thus it is enough to show that if A ⊆ C is Borel(C) and closed
under isomorphisms, then there is a sentence ϕ such that for all η ∈ C , η ∈ A iff
Mη |= ϕ .

Sω acts on C by pη = ξ , p ∈ Sω and η, ξ ∈ C , if p is an isomorphism from
Mη onto Mξ (i.e. if F (i, j) = n , then ξ(n) = η(F (p−1(i), p−1(j)))). For every
A ⊆ C and u ∈ ω<ω , by A∗u we mean the set of those η ∈ C such that the set
{p ∈ Su| pη ∈ A} is co-meager. We say that A∗u is Lω1ω -definable if there is a
formula ϕ in which only vi , i < dom(u) appear free and for all η ∈ C , η ∈ A∗u

iff Mη |=u ϕ .
Let Z be the set of all Borel sets A ⊆ C such that A∗u is Lω1ω -definable for

all u ∈ ω<ω .

15.12.3 Exercise. Show that it suffices to show that Z = Borel(C) .

We prove that Z = Borel(C) by induction i.e. that Z contains all basic
open sets, is closed under complements and countable intersections. To keep the
induction going, we prove a bit stronger claim: We show that for all Borel sets
A ⊆ C , the formulas ϕAu that define A∗u can be chosen so that if dom(u) =
dom(u′), then ϕAu = ϕAu′ i.e. that the formula depends on u only upto dom(u).
So we denote ϕAu also by ϕAn , where n = dom(u).

We start by showing that every basic open set Nw , w ∈ 2<ω , is in Z : Fix
some u ∈ ω<ω . We need to show that (Nw)

∗u is Lω1ω -definable (with the extra
requirement). For all n < dom(w), let i, j be such that F (i, j) = n and ψn

be R(vi, vj) if w(n) = 1 and otherwise ψn = ¬R(vi, vj). Let I the set of all
i < ω such that for some j < ω , F (i, j) < dom(w) or F (j, i) < dom(w). Let
J = I − dom(u).

15.12.4 Exercise.
(i) Show that η ∈ (Nw)

∗u iff for all distinct ai ∈ ω − rng(u) , i ∈ J , the
following holds: If s ∈ ωω is such that u ⊆ s and for all i ∈ J , s(i) = ai , then
for all n < dom(w) , Mη |=s ψn .
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(ii) Show that the required ϕAu exists.

Let us then look at the case when A =
∩

i<ω Ai and each Ai ∈ Z satisfies
our claim. Let u ∈ ω<ω be arbitrary. Clearly it suffices to show that A∗u =∩

i<ω(Ai)
∗u .

By the definition of A∗u , for all η ∈ 2ω , η ∈ A∗u iff
(1) {p ∈ Su| pη ∈

∩
i<ω Ai} is co-meager.

Since countable intersections of co-meager sets are co-meager and the set of co-
meager sets is closed upwards, (1) is equivalents with

(2) for all i < ω , {p ∈ Su| pη ∈ Ai} is co-meager.
By the definition of (Ai)

∗u , (2) is equivalent with
(3) for all i < ω , η ∈ (Ai)

∗u

i.e. η ∈
∩

i<ω(Ai)
∗u .

Finally, suppose that A = 2ω−B and B ∈ Z satisfies our claim. Let u ∈ ω<ω .
For all X ⊆ 2ω , we will write Xc for 2ω −X . With this notation, we will prove
that

(4) A∗u =
∩

u⊆v∈ω<ω (B∗v)c .

15.12.5 Exercise. Show that it is enough to prove (4).

We start by noticing that for all η ∈ 2ω , the function p 7→ pη is a continuous
function from Su to 2ω . Thus, since B is Borel(C), the set {p ∈ Su| pη ∈ B} is
Borel(Su), in particular

15.12.6 Exercise. Show that the set X = {p ∈ Su| pη ∈ B} has PB in the
space Su i.e. there is an open U ⊆ Su such that X∆U is meager in Su .

Suppose first that η ̸∈ A∗u i.e. the set {p ∈ Su| pη ∈ B} is not meager (in
Su ). By Exercise 15.12.6, there is v ∈ ω<ω such that Sv − {p ∈ Su| pη ∈ B} is
meager (in Su ) i.e. {p ∈ Sv| pη ∈ B} is co-meager (in Sv ). So η ∈ B∗v and thus
η ̸∈

∩
u⊆v∈ω<ω (B∗v)c .

Suppose then that η ∈ A∗u i.e. {p ∈ Su| pη ∈ B} is meager. But then for
all u ⊆ v ∈ ω<ω , {p ∈ Sv| pη ∈ B} is also meager (in Sv ) i.e. η ̸∈ B∗v and so
η ∈

∩
u⊆v∈ω<ω (B∗v)c .

15.13 Exercise. Let X ⊆ B2 be closed and W ⊆ B be the set of all η ∈ B
such that Mη is isomorphic with (T,⊆) for some tree T ⊆ ωω such that it does
not contain an ω -branch. By X∗

η we mean Xη ∪ ω≤1 .
(i) Show that there is a continuous f : B → B such that for all η ∈ B , if

ξ = f(η) , then Mξ is isomorphic with (X∗
η ,⊆) .

(ii) Show that W is not Borel and thus not Lω1ω -definable.
(iii) Why in (i) we used X∗

η instead of Xη ?
(iv) Show that the set WO of those η ∈ B such that Mη is a well-order, is

not Lω1ω -definable.

15.14 Exercise. Show that there is E ⊆ B2 such that it is an equivalence
relation, Σ1

1 and the number of E -equivalence classes is ω1 . Hint: Think countable
ordinals.

15.15 Fact. If E ⊆ B2 is a Σ1
1 equivalence relation, then the number of

E -equivalence classes is either ≤ ω1 or 2ω .
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A famous open question asks, is it true that the number of countable models
of an Lω1ω -sentence is up to isomorphism always either ≤ ω or 2ω ? By Fact 15.15,
the number is always either ≤ ω1 or 2ω . If in this question one replaces Lω1ω -
sentence by a countable complete first-order theory, one gets even more famous
open question known as Vaught’s conjecture.

Appendix: Cardinals revisited

A.1 Theorem. For all non-empty sets a and b , if one of them is infinite,
then |a× b| = max{|a|, |b|} .

Proof. Clearly, it is enough to prove that for all infinite cardinals κ , |κ×κ| =
κ . For this it is enough to find a one-to-one function from κ× κ to κ . We order
the elements of On×On so that (α, β) < (γ, δ) if one of the following holds:

(i) max{α, β} < max{γ, δ} ,
(ii) α < γ ≤ max{α, β} = max{γ, δ} ,
(iii) α = max{α, β} = max{γ, δ} = γ and β < δ .

A.1.1 Exercise. Show that < is a well-ordering of On×On .

Using Theorem 1.2.3, define Γ : On×On→ On so that for all x ∈ On×On ,
Γ(x) is the least ordinal (strictly) greater than every element in rng(Γ � (On ×
On)x) (for this notation, see Theorem 1.2.3).

A.1.2 Exercise. Show that F is strictly increasing and that if Γ(α, β) = γ
and γ′ < γ , then there is (α′, β′) < (α, β) such that Γ(α′, β′) = γ′ .

By Exercise A.1.2, it is enough to show that for infinite cardinals κ , rng(Γ �
(κ × κ)) ⊆ κ . We do this by induction. The case when κ = ω is left as an
exercise. So suppose κ > ω . For a contradiction suppose that there are α, β < κ
such that Γ(α, β) ≥ κ . Let λ = max{|α|, |β|} < κ . Then by Exercise A.1.2,
Γ−1 � κ : κ → (On × On)(α,β) is one-to-one and by the induction assumption
(from which it follows that if |a|, |b| ≤ λ , then |a × b| ≤ λ), |(On × On)(α,β)| ≤
|max{α, β} ×max{α, β}| = |λ× λ| = λ , a contradiction.

A.2 Exercise.
(i) Suppose κ is an infinite cardinal and a is a set of cardinality ≤ κ such that

also every element of it is of cardinality ≤ κ . Show that | ∪ a| ≤ κ . In particular,
for all sets a and b , if one of them is infinite, then |a ∪ b| = max{|a|, |b|} .

(ii) For all infinite cardinals κ , show that there are sets Xi ⊆ κ , i ∈ κ , such
that for all i , the cardinality of Xi is κ and for all i ̸= j , Xi ∩Xj = ∅ .

A.3 Lemma. For all cardinals κ , |P (κ)| = |2κ| and if κ is infinite, then
|2κ| = |(2κ)κ| = |2(κ×κ)| = |κκ| .

Proof. As in the case κ = ω .

A.4 Theorem. For all sets a , |P (a)| > |a| .

Proof. Clearly it is enough to prove the claim in the cases when a is some
cardinal κ , i.e. that 2κ > κ . For finite cardinals the claim is clear and for infinite
this can be proved as in the case κ = ω .
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A.5 Definition. If κ is a cardinal, then the least cardinal λ greater that κ
is denoted by κ+ . If κ is λ+ for some cardinal λ , it is called a successor cardinal
and otherwise it is a limit cardinal.

A.6 Exercise.
(i) Show that for all ordinals α , there is a cardinal κ > α .
(ii) Show that every infinite successor cardinal is regular.
(iii) Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1 (ii).

Suppose further that κ is a regular cardinal such that for all i ∈ I , αi < κ . Then
C(Y, fi)i∈I = Cκ(Y, fi)i∈I .
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