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In these notes I will look at that part of ”pre-Morley’s theorem era” model
theory that I feel is most relevant for the current trends in model theory. Some of
the topics are not chosen because of the theorems but because of the methods behind
the proofs. Only the surface of each topic chosen is scratched, for more see [CK] or
[Ho]. When we attach some names of persons to theorems, we just indicate the name
of the theorem commonly used, the person(s) is not always the one(s) that actually
proved the theorem originally. For the history, see the historical notes in [CK].
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1. First-order logic

In this section we recall the basic definitions of the first-order logic. Most of the
definitions are recursive. The basic theory of recursive definitions is recalled in the

appendix.

1.1 Definition.

A vocabulary L is a collection of relation, function and

constant symbols. FEach relation symbol R and function symbol f come with the
arity #R,#f € IN — {0}. Relation symbols are also called predicates.

We let L = {R;, fj,cx| @ € I*, j € J*, k € K*} be a fixed but arbitrary
vocabulary. So when we say e.g. a function symbol f; we mean the symbol from L.
By e.g. a function symbol f € L we obviously mean f; for some i € J*.

1.2 Definition.

The collection of (L-)terms is defined as follows:

(i) variables v;, © € IN, are terms,

(ii) constant symbols cj are terms,

ii) if n = i and tq1,...,t, are terms, then f;(t1,...,t,) Is a term.
( ) J Y ) ) J 9 9

1.3 Definition.

The collection of atomic (L-)formulas is defined as follows:

(i) if t and w are terms, then t = u is an atomic formula,
(ii) if n = #R; and tq,...,t, are terms, then R;(t1,...,t,) is an atomic formula,
(iii) T is an atomic formula.

The formula T is needed for the elimination of quantifiers in the case L does
not contain constant symbols, see section 5.

1.4 Definition.

The collection of (L-)formulas is defined as follows:

() atomic formulas are formulas,

(ii) if ¢ is a formula, then —¢ is a formula,

(iii) if ¢ and 1 are formulas, then (¢ A1) is a formula,
(iv) if ¢ is a formula and i € IN, then Jv;¢ is a formula.
By L. we denote the set of all L-formulas.

The following notation is used:

1.5 Definition.

VP ==(=d A Y)
¢ ="9Vi
P P=(=>P) A —9)
sz-(b:ﬁﬂvi—@.

The notion v; is free in ¢ is defined as follows:

(i) ¢ is atomic: v; is free in ¢ if v; appears in ¢,

(ii) ¢ = —p: v; is free in ¢ if it is free in 1,

(iii) ¢ = AN @: v; is free in ¢ if it is free in ¢ or 0,

(iv) ¢ = Jvjvp: v; is free in ¢ if it is free in 1 and i # j.
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A sentence is a formula in which no v; is free. A(n L-)theory is a collection of
( L-)sentences.

If © = (x1,...,x,) is a sequence of variables (when we write like this we assume
that for k # m, xp # =, ), then the notation ¢(z) means that if v; is free in ¢ then
v; € {x1,...,xy}. Similarly for a term ¢, ¢(x) means that if v; appears in ¢, then
v; € {x1,...,x,}. Often we split = into two or more (disjoint) sequences y and z
and write ¢(y, z) in place of ¢(z).

1.6 Definition. A (L-)structure (i.e. model) is a sequence
A= (A7 R§4, fjAaCkA)ieI*,jeJ*,kEK*

where

(i) A is a non-empty set (the universe of A, when we want to make a distinction
between the model and its universe, we write dom(.A) for the universe),

(i) R C A#H:,

(i) f*: A# — A,

(iv) et € A.

When there is no risk of confusion, we write just R; = R;“ etc.

1.7 Definition. For a term t(x), x = (x1,...,x,), structure A and a =
(ai,...,an) € A", t*(a) is defined as follows:

(i) t = v;: t*(a) = am, where m is such that v; = x,,,

(ii) t = cx: t4(a) = cft,

(iii) t = fi(t1, .. tm): t4(a) = [t (a), ...t (a)).

1.8 Definition (Tarski). For a formula ¢(z), z = (z1,...,z,), structure A
and a = (a1, ...,a,) € A", A |= ¢(a) is defined as follows:

(i) d(z) = t(x) = u(z): AE ¢(a) if t(a) = u?(a),

(i) ¢(z) = Ri(t1 (@), ..., tm(2)): Al dla) if (t{'(a), ..., t;(a)) € RF,

(iii) ¢(z) = T(z): A= ¢(a) always,

(iv) ¢(x) = ~p(z): Al= ¢(a) if A~ Y(a),

(v) $(x) = 9(2) AO(x): A dla) it A= (a) and A | 0a),

(vi) ¢(x) = Fvip(vi,x): A = ¢(a) if for some b e A, A= 1(b,ay,....an).

For a theory T', by A =T, we mean that A |= ¢ for every ¢ € T'. For ¢(z,y),
x=(x1,....,xn) and y = (Y1, ..., Ym ), and b € A™, we write ¢(A,b) ={a € A" AE
¢(a,b)}.

1.9 Remark. In Definition 1.8 (vi) we assumed that v; & {x1,...,x,}. This

can be done without loss of generality, see the course Matemaattinen logiikka. This
sloppy notation will be used regularly in these notes.

1.10 Fact.
(i) For all ¢(z), x = (x1,...,2n), ¥ = (Y1, -, Yn) and z = (21, ...,z ), there is
Y(y) such that for all A and a € A", A |= ¢(a) iff A }=1(a). Further more, we
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can choose 1 so that no z;, 1 <i < m, is bounded in ¢ (i.e. Jz; does not appear
in ).

(ii) For all ¢(z), = = (x1,...,xy), and terms t1(y), ..., tn(y), ¥ = (Y1,--, Ym)
there is 1(y) such that for all A and a € A™, A = ¢(a) iff A | ¢(b), where
b= (t{*(a), ..., t2(a)). We write ¢(ty,...,t,) for such formula.

Proof. See the course Matemaattinen logiikka. o

1.11 Definition. For a structure A, a relation R C A™ is definable (in the
vocabulary L), if there are a formula ¢(x,y), © = (z1,...,xn) and y = (Y1, ..., Ym),
and b € A™ such that for all a € A", a € R iff A ¢(a,b) (i.e. R = ¢(A,Db)).
The elements of b are called the parameters of the definition. If the parameters are
not needed, we say that R is definable without parameters. A function f: A" — A
is definable if the relation {(a1,...,an+1) € A" f(ai,...,an) = ant1} is definable.
An element a € A is definable if the relation {a} is definable.

1.12 Exercise. Show that the set of integers is definable without parameters
in (C,+, x,exp,0,1), where + and x are the addition and multiplication of complex
numbers and exp(x) = e*.

In Section 6 we will see that the set of integers is not definable in (C, +, x,0,1)
without parameters.

1.13 Definition. Suppose L' C L, A is an L-structure and X C A.

(i) We say that X is L'-closed if ¢* € X for all constants ¢ € L' and for all
n € IN—{0}, ay,...,a, € X and n-ary function symbols f € L', fA(ai,...,a,) € X .

(ii) Suppose X is L'-closed. By A | X,L' we mean the L'-structure B such
that dom(B) = X, for all constants ¢ € L', ¢® = ¢A, n-ary function symbols f € L',
fB = fA | X™ and n-ary relation symbols R € L', RB = RANX". If X = A, we
write just A | L' for A| X,L' and if L' = L we write just A | X for A| X,L’.

So €.g. (C7+a X,ea:p,O,l) er{—i_? X7071} = (R’+a X,O,].)-

1.14 Exercise. Let A be an LU {R}-structure, #R =n, and X C A™ be
definable in A. Show that if R* is definable in A | L, then X is definablein A | L.

1.15 Exercise. Let L' C L be vocabularies, ¢(vg) be an L-formula and T an
L-theory such that for all Al=T, ¢(A) is L' -closed. Show that for all L'-formulas
Y(x), there is an L-formula *(x), x = (x1,...,x,), such that for all A =T and

a € (¢(A)", A (a) il AT @(A), L = (a).

1.16 Definition. Let A and B be L-structures. We say that F : A — B is
an isomorphism if F is one-to-one and onto, for all constants ¢ € L, F(c*) = cB,
for all n-ary function symbols and a = (ay,...,a,) € A", F(fA(a)) = fB(F(a)) (=
fB((F(ay), ..., F(ay)))) and n-ary relation symbols R € L and a € A", a € R* iff
F(a) € RB. Isomorphisms F : A — A are called automorphisms (of A). The set of

all automorphisms of A is denoted by Aut(A).
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1.17 Fact.

(i) Suppose F : A — B is an isomorphism. Then for all formulas ¢(z), © =
(1,...,2), and a € A", A= ¢(a) iff B = ¢(F(a)).

(i) If F: A — B and G : B — C are isomorphisms, then so are F~! : B — A
and GoF: A—C.

Proof. See the course Matemaattinen logiikka. o

1.18 Exercise. Suppose F : A — A is an automorphism. Show that X C A"
is definable iff F(X)(= {F(a)| a € X}) is definable and that if X is definable
without parameters, then F(X) = X. Conclude that 2mi is not definable without
parameters in (C,+, X,exp,0,1) (see Exercise 1.12).

1.19 Exercise. Suppose L consists of unary predicates P and S and a binary
predicate I. Let A(= A3(R)) be an L-structure such that its universe is P4 US4,
PA = R?*, SA = {lae| (a,b) € R? — {(0,0)}, ¢ € R}, where Iy = {(z,y) €
R?| ax +by+c =0} and (p,l) € I* if pe PA, 1€ S and p € l. Let I, = lpio
and 0 = (0,0). Show that using I, and 0O as parameters the relation

R ={((a,0),(,0),(c,0)) € 3| c=a+ b}

can be defined. Show also that R is not definable using just [, as a parameter.

1.20 Exercise.

(i) Let X be the power set of natural numbers and R be the subset relation.
Show that f: X? — X, f(a,b) =aUb is definable in (X, R).

(ii) Let A = (Z,+), where Z is the set of integers and + their usual addition
and B = (Z x Z,+), where (a,b) + (¢,d) = (a + ¢,b+ d). Show that A and B are
not isomorphic.

1.21 Definition. Let A be L-structure and B L’-structure. We say that A
is definable in B if there are n and one to one function F' : A — B™ such that

(i) rng(F') is definable in B,

(i) for all R € L, F(R*) = {(F(a1), ..., F(an))| (a1,...,am) € RA} is defin-
able in B (strictly speaking by (F(a1),..., F(a,,)) we mean the concatenation of the
elements),

(iii) for all f € L, {(F(ay), ..., F(ams1))| fAa1,...,am) = ams1} is definable in
B,

(iv) for all c € L, {F(c*)} is definable in B (this holds always when parameters
are allowed, see below).

If parameters are not needed in the definitions, we say that A is definable in B
without parameters.

So by Exercise 1.19, the additive group of reals is definable in A3(R). In fact
the real field (R, +, x,0,1) is definable in A3(R) (exercise).

1.22 Exercise. Show that A(R) is definable in (R, 4+, x,0,1) without pa-
rameters.



There is also a more general notion of interpretability. Assuming L is relational
(i.e. contains no fuction or constant symbols) we can define this as follows: An L-
stucture A is interpretable in an L’-structure B if there is LU{E}-structure C such
that it is definable in B, E€ is a congruence relation on C | L and A is isomorphic
to (C | L)/E (we will not use this notion in these lectures).

2. On ordinals and cardinals

In this section we recall some facts from set theory that are needed throughout
these notes. When set theory is applied, we think that all mathematics is developed
inside a universe of all sets (usually denoted by V = (V,€)) allowing us to look
everything as sets. And yes, this can be done.

So the elements of V' are called sets and definable subsets of V are called
classes. Two classes C' and D are considered the same if they have the same elements
ie. if ¢(vg,a) defines C' and ¥ (vg,b) defines D then C and D are the same if
V' = Yu,(é(vo, a) <> ¥(vg,b)). Similarly the class C' and a set d are considered the
same if they have the same elements (i.e. V = Yu,(¢(vo,a) <> vg € d)). So all sets
are classes and if C' is a class, d is a set and C' C d, then C is a set (by separation
axiom).

If C, D and F C C x D are classes (C' x D is a class) such that for all d € C
there is a unique e € D for which (d,e) € F', we say that F is a class function from
C to D (we write e = F'(d)). If in addition F' is a set, we say that F' is a function
from C to D (then also C' must be a set). If d is aset and d C C, then F [ d is a
function (by reqularity and separation axioms).

2.1 Definition. Suppose X and R C X? are classes. We say that (X, R) is
a well-ordering and alternatively that R well-orders X if

(i) (X, R) is a linear ordering i.e. for all x,y,z € X, (a)-(c) below holds:

(a) if (z,y) € R and (y,z) € R then (z,2) € R,

(b) if (z,y) € R, then (y,x) ¢ R,

(c) (z,y) € R or x =y or (y,x) € R,

(ii) If C C X is a non-empty class, then C has R-least element.

In cases like above we often write z Ry instead of (z,y) € R.

A linear order (X, <) is a well-order iff there are no z;, i € IN (= w, see below),
such that for all i € IN, ;41 < x;. (If you try but can not find a proof from right to
left, here is a hint: Suppose the left hand side fails and C' witnesses this. Then find
a such that C NV, is non-empty and does not have <-least element. Since C'NV,
is a set, the usual argument applies.)

2.2 Definition. We say that a set « is an ordinal if («, €) is a well-ordering
and « is transitive i.e. for all x and y, if y € x € «, then y € «. The class of all
ordinals is denoted by On.

2.3 Fact.



(i) € well-orders the class On (for ordinals o and (3, instead of writing a € [
we write o < 3).

(ii) If v is an ordinal and x € «, then x is an ordinal i.e. a = {8 € On| < a}.

(iii) For every well-ordering (X, R) there are a unique ordinal o and a unique
bijection m: X — « such that for all x,y € X, (z,y) € R iff n(x) < 7(y).

(iv) For ordinals o and 3, a« C 8 iff a« = or a < f3.

(v) 0 is an ordinal (usually denoted by 0), if o is an ordinal then o U {a} is
the least ordinal strictly greater than « (usually denoted by v+ 1) and if o;, i € I,

are ordinals, then | J,.; a; Is the least ordinal greater or equal to every a;.

Proof. Basic set theory course (e.g. [Ya]) or [Je]. o

Finite ordinals and natural numbers are often thought as the same, i.e. 0 =10,
1=0+1=0U{0} ={0},2=14+1={0}U{{0}} = {0,{0}} etc. The set of all finite
ordinals is called w (by Fact 2.3 (v), w is an ordinal) and so w = IN. An ordinal «
is a successor ordinal if there is an ordinal 3 such that a« = f+ 1. Otherwise « is
called a limit ordinal.

Many of our constructions and proofs are based on the following recursion and
induction principles.

2.4 Fact.

(i) Suppose G is a class function from sets to sets (i.e. from V to V). Then
there is a unique class function F' from On to sets such that for all ordinals «,
Fla)=G(F | a).

(ii) Suppose that P and X C On are classes. Then X C P if for all ordinals
a € X the following holds:

(*) if for all B € X Na, B € P, then a € P.

Proof. Basic set theory course (e.g. [Ya]) or [Je]. o

2.5 Fact (Schroder-Bernstein). If there are one-to-one functions (injec-
tions) f : X — Y and g : Y — X, then there is a one-to-one and onto function
(bijection) m: X — Y.

Proof. Basic set theory course (e.g. [Ya]) or [Je]. o

2.6 Definition. We say that an ordinal « is a cardinal if for all § < «, there
is no injection (< bijection by Schréder-Bernstein) from « to 3.

Notice that every finite ordinal is a cardinal as well as w and that infinite
cardinals are limit ordinals.

2.7 Definition. For all ordinals «, a cardinal w, (often also called X, ) is
defined to be the least infinite cardinal strictly greater than wg for any 3 < o.

Notice that the class function a — w, exists by Fact 2.4 (i) and that wy = w
(= IN). For a cardinal x, by kT we denote the least cardinal > x (so if kK = wq,
KT = wai1)-



2.8 Fact.

(i) For every set X there are a cardinal k and a bijection 7 : X — k. Further-
more such k is unique and is denoted by |X| and called the cardinality of X (or just
the size or power of X ).

(ii) Suppose that at least one of X and Y is infinite and that neither is empty.
Then | X UY| = |X x Y| = max{|X]|,|Y|} (usually this cardinal is denoted by
[ XT+[Y]).

(iii) Suppose I is infinite and X;, i € I, are non-empty and distinct. Then
Uses Xil = mas, 1}, where x = Uy | X1,

(iv) Suppose X is infinite and let P(X) be the set of all subsets of X and XX
be the set of all function from X to X. Then |P(X)| = |X*X| > |X|. We denote
|P(X)| by 21X! (so 2¢ is the cardinality of the continuum).

(v) If k is a cardinal and « < k™, then there is no function f : « — k% such
that U;<o f(i) = k't (i.e. successor cardinals are regular).

Proof. Basic set theory course (e.g. [Ya]) or [Je]. o

If A is a structure, then by the cardinality |.A| of A we mean the cardinality of
the universe of A.

For an L-structure A, by Th(A) we mean the set of all L-sentences true in A.

2.9 Exercise. Let A= (IN,S,0), where S : IN — IN is such that S(z) = z+1,
for all x € IN and T' = Th(A). Show that if B,C =T and |B| = |C| > w, then
B and C are isomorphic. Hint: Think the equivalence classes of the equivalence
relation xzEy if for some n € IN, S"(x) = y or S"(y) = x (where S° = id and
Sl = Go8m).

2.10 Exercise. Let A = (w? R), where (w? = w x w and) R C (w?)? is a
binary relation on w? such that (n,m)R(n',m') if m < m’'. Show that there is a
unary relation X C w? such that it is not definable in A but for all F € Aut(A),
F(X) = X. Hint: Start by calculating the number of definable relations in A.

2.11 Exercise. We define a class function from sets to sets as follows: G(0)) =
1,if0 <n<wand x:n— w, then G(z) = nxx(n—1) (here x is the multiplication
of natural numbers) and otherwise G(x) = 0. Let F be as in Fact 2.4 (i) for this G.
What is F [w?

3. Compactness

3.1 Definition. Let F'C P(X).

(i) F has the finite intersection property if for all X; € F, i <n, (), X; # 0.

(ii) F isafilterif X € F, 0 ¢ F,if Z)Y € F, then ZNY € F and if Z € F
and Z CY C X, thenY € F.

(iii) F' is an ultrafilter if it is a filter and for all Y C X, either Y € F or
X-YekF.

3.2 Lemma. Suppose F' C P(X) has the finite intersection property. Then
there is an ultrafilter U C P(X) such that F C U.
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Proof. Let X;, i < o, enumerate all elements of P(X). By recursion we define
an increasing sequence of subsets U; of P(X) with the finite intersection property:

1=0: U; =F.

i =j+1: If U;U{X,} has the finite intersection property, we let U; = U;U{X,}.
Otherwise U; U{(X — X;)} has the finite intersection property and we let this be U .
((bIg (Mien Y5)NX; =0 and (Nyep Z5)N(X —X;) = 0 then (Mo, V)N (N Z5) =

1 is limit: UZ = Uj<i Uj.

It is easy to see that U = J,_, U; is as wanted (exercise) o

Suppose A,,, n € X, are models and U C P(X) is an ultrafilter. By IL,ex A,
we mean the set of all f: X — U,ex A, such that for all n € X, f(n) € A,,. Then
f=gmod U if {ne X| f(n) =g(n)} € U is an equivalence relation (exercise). By
f/U we mean the equivalent class of f and let II,cx.A,/U be the set of all these
equivalence classes. We make II,cx.A,/U into an L-structure A (also denoted by
II,exA,/U) by adding the following interpretations:

(1 /U,...;g,/U) € R;“ if {n e X| (g1(n),...,gn(n)) € Rfl”} € U, where n =
#Ri

JA(91/Us e, 90/U) = g/U, where n = 4#f; and g(n) = ;" (g1(1), ., 9u ().

cit = g/U, where g(n) = cﬁ".

We notice that these definitions do not depend on the representatives of the equiva-
lence classes ¢g1/U,...,g,/U (exercise).

3.3 Lemma. For all terms t = t(z), z = (z1,...,2,), A = HyexAy/U
and a; € Myex Ay, 1 <i <n, t*a1/U,...,a,/U) = g/U, where g is such that
g(n) = t*(ai(n), .. an(n)).

Proof. By induction on t: For variables and constants the claim is the definition
of the interpretation. So suppose t(x) = f(t1(z),...,tm(x)), f € L a function symbol.
By the induction assumption, for 1 < k < m, t{(a1/U,...,a,/U) = gi/U, where
ge(n) = 1" (a1(n), — an(n)). Then t4(a1/U, ...,a,/U) = fA(g1/U,....gn/U). By
the definition of f#,

fA91/U,...,g./U) = g/U, where

g(n) = fA1(g1(n), ., gm(n)) =

A @1 (0), ey @n () o tin” (@1 (1), oy @ () = 49 (@5 (0), s (). 0

3.4 Theorem (Los). For all formulas ¢(x) and g1,...,9n € HyexA,, the
following are equivalent:

(1) HUEX‘AW/U ): ¢(91/U7 7gn/U)
(i) {n € X| Ay = ¢(91(n), ., gn(m)} € U.

Proof. Easy induction on ¢ (exercise)o

3.5 Definition. We recall that a collection of sentences is called a theory. If
T is a theory, we say that it is consistent if it has a model i.e. there is a structure A
such that A =T. If v = (z1,...,2,) and ¥ is a collection of formulas of the form
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Y(x), then we write that ¥ |= ¢(x) if for all A and a € A", A= ¢(a) if AE=(a)
for all ¢ € .. In particular, for a theory T and a sentence ¢, we write T = ¢ if
every model of T is a model of ¢. If T = (), we write just = ¢. We say that ¢ and

¢ are equivalent if {¢} =1 and {Y} = ¢.

3.6 Compactness theorem. If every finite T' C T is consistent, then T is
consistent.

Proof. We prove this by induction on |T'|. For finite T the claim is trivial.
So we may assume that x = |T'| is infinite. Let ¢;, ¢ < k, enumerate T'. By the
induction assumption, for all ¢ < &, there is A; such that A; = ¢; for all j < 3.
Let FF = {k —a] @ < k}. Then F has the finite intersection property and thus
there is an ultrafilter U extending F' by Lemma 3.2. By Los, since for all a < &,
k—aCli<k|l A Eoot and K —a e U, e, A;/U E ¢ D

Alternatively one can prove Compactness theorem as follows: Let X be the set
of all finite subsets of (non-empty) 7', for all a € X, let A, be such that for all
p€a, A, E ¢ and U C P(X) such that for all ¢ € T, {a € X| ¢ € a} € U. Then
Myex Ay /U =T (exercise).

Notice that compactness theorem implies the following: if ¥ |= ¢, then there is
finite ¥’ C ¥ such that ¥’ | ¢ (exercise, see Definition 3.5 and Fact 4.4 below).

In the following example, we let L = {4+, x,—,0,1}, where + and x are 2-ary
function symbols, — is 1-ary function symbol and 0 and 1 are constant symbols. In
stead of +(x,y) we write x +y and the same for x. (The function symbol — is
included for convenience for section 6, it is not really needed.) We let T consist of
the following sentences:

VuoVu1 Vs (vo + (v1 +v2) = (vo + v1) + v2),

YooV (Uo +vy =01+ Uo),

Vg (vo + 0 = vg),

Vl}o(’l}o + (—Uo) = 0),

YueVu1 Vv (vg X (v1 X v2) = (vg X v1) X v2),

V’Uovvl (’Uo X vy =v1 X 1}0),

VUQ(UO x 1= Uo),

-0=1,

Vog3vy ((vg = 0) V (vg x v1 = 1)),

VUOVU1VU2<UO X (’Ul + UQ) = (’UO X Ul) + ('UO X Ug)) .

So ATy iff A is a field.

For n € IN, the notation nt, ¢ a term, is defined as follows: 0t = 0 (here the
first 0 is the natural number and the second is the constant) and (n + 1)t = nt + ¢.
Similarly ¢ =1 and t"t! =" x t. Then we let

Ty, =Ty U{-pl =0| p a prime}
and for primes p,

Tfp =Ty U{pl :0}.

Then A |= Ty, iff A is a field of characteristic 0 and A |= T}, iff A is a field of
characteristic p.
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3.7 Example. For all L-sentences ¢, if Ty, = ¢ then there is n such that
Ty, = ¢ for all p>n.

Proof. Suppose not. Let ¢ witness this. Then X = {p € IN| T}, % ¢} is
infinite. For all p € X choose A, |= Ty, so that A, [~ ¢. Let F consist of sets
{p € X| p>m}, m € IN. Then F has the finite intersection property and can be
extended to an ultrafilter U. By Los, A =1l,exA,/U =Ty and A }= ¢. Also for
all primes ¢, the set of p € X such that A, |= ¢l = 0 contains at most ¢g. Thus by
Los, A }= —q1 =0 for all primes ¢ i.e. A =T}, , a contradiction. o

3.8 Exercise (Finite Ramsay’s theorem). Show using infinite Ramsay’s
theorem (Theorem 10.3 below, see also Definition 10.2) that for all n,k,p € IN—{0},
there is m € IN such that for all f :[m]™ — k, there is X C m such that f | [X]"
is constant and |X| > p. Hint: Suppose that the claim is not true for some n, k and

p and use compactness to construct a counter example for w — (w)}.

The claim in the following exercise is not provable in Peano arithmetic.

3.9 Exercise (Paris-Harrington). We say that a non-empty set X C IN is
fat if | X| > min(X). Show using infinite Ramsay’s theorem that for all n,k,p €
IN — {0}, there is m € IN such that for all f : [m]™ — k, there is fat X C m such
that f | [X]™ is constant and |X| > p. Hint: As Exercise 3.8.

3.10 Exercise. Let B be a set, a an ordinal and for all i < «, let A; be a
finite set and F; a finite non-empty set of functions f : A; — B. Let A = UKa A;
and suppose

(1) lchZ QAJ and fEFj, then f rAz GFZ‘,

(ii) for all i,j < a there is k < o such that A; UA; C Ay, (ie. the sets form a
directed system).

Show that there is a function g : A — B such that for all i < «, g [ A; € F;. Hint:
Start by choosing an ultrafilter U C P(«) sothat forall i < a, {j < a| A; CA;} €U
and then for all i < w, pick some f; € F;.

3.11 Exercise. Suppose that for all n < w, A, = (R,+,x,—,0,1) and U
is an ultrafilter on w such that for all n < w, w —n € U. Show that Ay is not
isomorphic with T, <,A,/U.

We will see that if for all n € w, A,, = (C,+, x,—,0,1) and U is as above then
Ayg is isomorphic with IT,,.,A,/U.

3.12 Exercise. If © = (z1,...,x,) and ¥ is a collection of formulas of the
form (xz) and ¥ |= ¢(x), then for some finite 3’ C 3, ¥ | ¢(x).
4. Tarski-Vaught

4.1 Definition. Suppose A and B are structures, X C A and f: X — B.
(i) We say that f is a partial isomorphism from A to B if for all atomic ¢(z),
x=(x1,....,x,) and a € X", A= ¢(a) iff BE ¢(f(a)).
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(ii) We say that f is a partial elementary map from A to B if for all formulas
B(z), T = (21, 20) and a € X", A= ¢(a) iff B = 6(f(a)).

(iii) f is embedding if it is a partial isomorphism and X = A.

(iv) f is elementary embedding if it is a partial elementary map and X = A.

(v) A is a submodel of B (denoted A C B) if the identity function id, is
an embedding. A is an elementary submodel of B (denoted A < B) if id4 is an
elementary embedding.

Abusing the notation, if 4.1 (i) (4.1 (ii)) holds we write also that f: A — B is
a partial isomorphism (elementary map) although the domain of f may not be the
whole A. Notice that if f : A — B is a partial isomorphism (partial elementary
map), then also f~!: B — A is a partial isomorphism (partial elementary map).

4.2 Exercise. Let A and B be L-structures.

(i) A is a submodel of B iff dom(A) C dom(B) is L-closed in B and A= B |
dom(A).

(ii) Suppose f : A — B is onto. Show (using Fact 1.17) that the following are
equivalent

(a) f is an isomorphism,

(b) f is an elementary embedding,

(c) [ is an embedding.

(iii) Show that f : A — B is an (elementary) embedding iff f is an isomorphism
between A and some (elementary) substructure of 5.

(iv) Show that if A C B and a € A" and ¢(x), © = (x1,...,x,) is quantifier
free (i.e. no quantifier appear in ¢ ), then A |= ¢(a) iff B = ¢(a).

(v) Suppose A C A, A+ or L contains a constant and

B = {t*(a)| t(x1,...,x,) is a term and a € A"}.

Show that A | B is the least submodel of A containing A (i.e. the submodel
generated by A).

(vi) Suppose U C P(X) is an ultrafilter and for all i € X, A; = A for some
structure A. Show that A is isomorphic with an elementary submodel of 11;c x A; /U .

(vii) Suppose f : B — A is a partial isomorphism, L contains a constant or
dom(f) is not empty, C is the submodel generated by dom(f) and define g :C — A
so that for all terms t(x,...,x,) and a € dom(f)", g(t®(a)) = t*(f(a)). Show that
g is well-defined and an embedding.

4.3 Definition. Let A be a structure and A C A. By L(A) we mean a
vocabulary we get from L by adding new constants a for all a € A. (A, A) means
an L(A)-structure we get from A by interpreting a* = a. Recall that by Th(A)
we mean the set of all L-sentences true in A and so by Th(A, A) we mean the set
of all L(A)-sentences true in (A, A).

For a formula ¢ and constant c, ¢(c/x;) is defined as follows:

(i) if ¢ is atomic then ¢(c/x) is what we get from ¢ by replacing x by c
everywhere,
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(ii) if ¢ == then ¢(c/x) = =(Y(c/x)),

(iii) if ¢ =1 A0 then ¢(c/x) = p(c/x) N O(c/x),

(iv) if ¢ = Ju, then ¢(c/x) = ¢ if v; = x and otherwise ¢(c/x) = Jv;(YP(c/x)).
For ¢(y,x), © = (x1,...,z,) and a = (ay,...,a,) € A", we write ¢(y,a) instead

of p(ar/x1)...(an/xy).

4.4 Fact. For all formulas ¢(z), v = (x1,...,x,), and a € A", A |= ¢(a) iff
(A, A) = ¢(a).

Proof. The course Matemaattinen logiikka. o

4.5 Lemma. If A is infinite and k is a cardinal, then there is B of cardinality
> k such that A < B. (In particular, the Hanf number of the first-order logic is w.)

Proof. Let L* = L(A) U{¢;| i < k}, where ¢; are new constant symbols. Let
T* = Th(A, A)UT where T = {—¢; = ¢j| i < j < k}. Since A is infinite, for all
finite 77 C T, we can interpret the constants ¢; in (A,.A) so that 7" is true in that
model. Since (A, A) = Th(A, A), by the compactness theorem T* has a model B*.
Clearly |B*| > k. By renaming the elements of B* (i.e. by taking an isomorphic
copy of B*), we may assume that for all a € A, a® = a. Let B = B* | L (see
Definition 1.13). We are left to show that A < B. But A |= ¢(a) iff (A,.A) E ¢(a)
ift ¢(a) € T* iff B* = g(a) iff B = ¢(a). o

4.6 Theorem (Tarski-Vaught). A < B if A C B and for all formulas
¢(vi,z), x = (21,...,x) and a € A" the following holds: If B |= Jv;¢(vi,a), then
there is b € A such that B |= ¢(b,a).

Proof. By induction on ¥(y), v = (y1,..-,Ym), we show that for all b € A™,
A (b) iff B = y(b).

1. % is atomic: Immediate since A C B.

2. Y =-=¢ or ¢ AB: Immediate by the induction assumption.

3. ¥ = Fv;p(v;,y): Two directions:

"= It A= 1(b), then there is ¢ € A such that A = ¢(c,b). By the induction
assumption, B = ¢(c,b) and thus B |= ¢(b).

7<7: If B = 1(b), then by the assumption, there is ¢ € A such that B |= ¢(c, b).
By the induction assumption, A = ¢(c¢,b) and thus A = (b). o

Suppose that for all v < 8 < «a, A, € Ag. Then U6<a Ap is the structure B

such that dom(B) = Ug., As, R =Ugcq Rf‘ﬂ, 7 =Usca ffﬁ and 8 = ¢/,
We say that (Ag)s<q is an elementary chain if for all v < f < a, A, < Az.
4.7 Corollary. Suppose that (Ag)s<q is an elementary chain and let B =

Ug<caAs- Then for all v < a, A, < B. Furthermore, if for all 8 < a, Ag < C,
then B <C.

Proof. We repeat the proof of Tarski-Vaught and proof by induction on ¢(z),
x = (21, ...,2,), that for all a € B, B |= ¢(a) iff A, = ¢(a) for all v < o such that
a € AZ. We prove the case ¢ = Jv;1p(v;, ), the other cases are left as an exercise:
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”=": Then there is b € B such that B |= ¢(b,a). But then we can find
7 < B < a such that b € Ag. By the induction assumption, Ag = ¢ (b,a) and thus
Ag = ¢(a). Since A, < Ag, A, = ¢(a).

7 «<": Exactly as the direction ”=-" in the proof of Tarski-Vaught.

For the furthermore part, we notice that B |= ¢(a) iff Ag = ¢(a) for large
enough B (so that a € Aj) iff C = ¢(a). o

Notice that by Corollary 4.7, (Ag)g<q is an elementary chain if for all 5 such
that 8+ 1 < a, Ag = Ag41 and for all limit § < a, Ag = Uy A, (exercise).

Recall that L, is the set of all ( L-)formulas. Notice that |L.,| = |L| + w.

4.8 Lemma. Suppose A C A. Then there is A C B < A such that |B| <
|A| + |Lww!| (i-e. the Lowenheim-Skolem number of the first-order logic is |Ly| ).

Proof. For every formula ¢(v;,x), x = (21, ..., 2,) we define a function gey, )
A" — A so that if A |= Jvi¢(vs,a), then A = ¢(gg(v,,2)(a),a). (Such functions
are called Skolem functions, see Section 12.) Then we close C = AU {c¢?| ¢ €
L, c is a constant symbol} under these function and under the functions f4, for
all function symbols f € L (we could drop the elements ¢* from C and forget the
functions f# and still get the same set) i.e. we let B C A be the intersection of all
D C A such that C C D and if a € D™ and ¢ is an n-ary function as above, then
g(a) € D (see Appendix). Then |B| < |A|+ |Luw| (use Fact 2.8 or see [Je]). Then
we let B=A | B. By Tarski-Vaught, B < A. o

4.9 Lowenheim-Skolem theorem. If T is a theory and it has an infinite
model, then it has a model in every cardinality & > |Lg.]|.

Proof. By Lemma 4.5 T has a model A of cardinality > k. By 4.8 we can find
B < A of cardinality x. Then BE=T. o

4.10 Exercise. Assume A is a structure.

(i) Suppose ¢(vo,x), © = (xg,...,xn), Is a formula, a € A" and ¢(A,a) is
infinite. Show that there is B = A such that ¢(B,a)  A.

(ii) Suppose X C A is infinite. Show that there is B =~ A such that X is not
definable in B. Hint: Using (i), build a suitable elementary chain.

We say that a formula is V3-formula if it is of the form Vxg...Va,3yg...3ymo,
where ¢ is quantifier free. V-, 3- and JV-formulas are defined similarly. Notice that
all these classes are closed under disjunctions and conjunctions i.e. if e.g. ¢ and
Y are V3-formula, then ¢ A ¢ and ¢ V1) are equivalent to V3-formulas (exercise,
contrary to what one might think, if ¢ # j (w.o.l.g.), then e.g. Vv;¢(v;) VVv;9(v;) is
equivalent to Vv;Vv;(¢(v;) V ¢(v;))). Also a negation of a V3-formula is equivalent
to a dV-formula and similarly for the other classes.

We say that a theory T is V-axiomatizable if there is a theory T’ that consists
of V-sentences and has exactly the same models as T has. Vd-axiomatizability is
defined similarly. We say that T is closed under submodels if A C B = T implies
AET.
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4.11 Exercise. Show that T is closed under submodels iff T is V-axiomati-
zable. Hint: For the non-trivial direction, show that if T" is the set of all V-sentences
true in every model of T', then every model of T' is a submodel of a model of T .

4.12 Theorem. The following are equivalent:
(i) T is closed under unions, see Definition 5.3 below,
(ii) T' is V3-axiomatizable.

Proof. . (ii)=(i): Easy (exercise).
(i)=(ii): Let T" be the set of all V3-sentences true in every model of T'. For a
contradiction suppose that there are Ay =T and 6 € T such that A = —6.

4.12.1 Claim. There is B =T such that for all 3V-sentences ¢, if Ay |= ¢,
then B = ¢.

Proof. If not, by compactness, there are JV-sentences ¢y, ..., ¢, true in Agy
such that T |= —¢g V ... V =g . Since this disjunction is equivalent to a V3-formula,
this contradicts the choice of Aq. o Claim 4.12.1.

4.12.2 Claim. There are Ay C By C Ay such that Ay < Ay and By = B (i.e.
Th(By) = Th(B))

Proof. Let Ty be the set of all V-sentences in vocabulary L(Ap) true in the
model (Ap, Ap). Then by Claim 4.12.1, T, U Th(B) is consistent and we let By be
a model of this theory. As before we can choose By so that Ay C By, even for all
a € Ay, a®? = a. Let T} be the set of all quantifier free sentences in the vocabulary
L(By) true in (Bg,By). Then by the choice of By, 17 U Th(Ap, Ap) is consistent
(exercise) and we let A; be a model of this theory. Again we can choose A; so that
By C A1, in fact so that for all b € By, b = b, and then Ay < A;. o Claim 4.12.2.

By applying Claim 4.12.2 w many times we can find A;, B;, i < w, so that for
all i <w, A, CB; C Ajy1, A, R Ay and B, = B. Let C = Ujc,B; = Ui, A;
Then C =T by (i) and the fact that T' C Th(B) but by Corollary 4.7, C = -0, a

contradiction. o

4.13 Exercise. Show that there is A such that the following holds:
(i) (Z,+,0) < A
(ii) there is an embedding f : (Q,+,0) — A.

4.14 Exercise. Suppose that {A;| i € I} is a directed system i.e. for all
i,j € I. thereis k € I such that A; X Ay, and A; X Ay,. We define | J,.; A; exactly
as for chains above. Show that for all j € I. A; = |J,c; Ai and that if for all i € I,
A; < B, then UieIAi < B.

4.15 Exercise.  Suppose A C B (is non-empty) and for all a € A™ and
formulas ¢(v;,x) the following holds: If B |= Jv;¢(v;,a), then there is b € A such
that B |= ¢(b,a). Show that there is A =< B such that dom(A) = A.
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5. Completeness and elimination of quantifiers

5.1 Definition.

(i) We say that a theory T is complete if for all sentences ¢, either T |= ¢ or
T E —¢.

(ii) We say that T is k-categorical if upto isomorphisms T has exactly one
model of cardinality k.

Often when one talks about complete theories, one assumes also that T is con-
sistent (inconsistent theories are not usually considered interesting). In fact unless
otherwise stated, whenever we talk about a theory 7', T is assumed to be consistent.

5.2 Lemma (Los-Vaught). If T is k-categorical for some k > |Ly,| and T
does not have finite models, then T is complete.

Proof. Suppose not. Let ¢ be a sentence that witnesses this. Then by Lowen-
heim-Skolem both T'U {—¢} and T'U {¢} have a model of size k. This contradicts
the assumption that T is k-categorical. o

5.3 Definition. = We say that T is closed under unions if for all A; = T,
i < «, the following holds: If for all i < j < o, A; C Aj, then |J,.,Ai FT.

5.4 Exercise. Give an example of an 3V-axiomatizable theory that is not
closed under unions.

5.5 Definition.

(i) T' has quantifier free set amalgamation (AP for short) if for all A, B =T and
partial isomorphism f : A — B there are B C C =T and an embedding g : A — C
such that g [ dom(f) = f.

(ii) T has quantifier free joint embedding (JEP for short) if for all A,B =T
there are B C C =T and an embedding f: A — C.

5.6 Lemma. If T has AP and either L does not contain constants or there
is A (not necessarily a model of T ) such that for all B |= T there is an embedding
f: A— B, then T has JEP.

Proof. Exercise. o

5.7 Lemma. Suppose k > |Ly,| and T has JEP and is closed under unions.
Then there is a model A of T' such that for all B =T of power < k, there is an
embedding f: B — A.

Proof. Let B;, i < a, list all models of T' of power < k i.e. if B is a model of
T of power < k, then B is isomorphic with some B;, ¢ < a. By recursion on i < a,
we define models A; of T as follows:

1 =20: .AZ = BO .

i =7+ 1: By JEP we choose A; C A; =T such that there is an embedding
f;j : Bj = A;. Notice that earlier constructed embeddings fi : By — Agy1, kK < J,
are also embeddings to A; since A1 C A; (see also the limit case below).
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¢ is limit: A; = U; ;A
Clearly A = A, is as wanted. o

5.8 Lemma. Suppose T has AP and is closed under unions and A = T.
Then there is A C B =T such that for all partial isomorphisms f : A — A there is
an embedding g : A — B such that g [ dom(f) = f.

Proof. Let f;, i < a, list all partial isomorphism from A to A. We define
models B; of T', 1 < «, as follows:

i =j+1: Now f; is a partial isomorphism from A also to B; since A C B;
and thus by AP there is B; C B; =T and an embedding g¢; : A — B; such that
g; | dom(f;) = f;j. As in the proof of Lemma 5.7, notice that the embeddings
gk : A — Biy1 constructed earlier for £ < j, are also embeddings from A to B;
since Biy11 C B;.

i is limit: B; = U;_,; B;.

Clearly B = B,, is as wanted. o

5.9 Definition. We say that A =T is existentially closed if for all A C B =
T, atomic or negated atomic formulas ¢;(vg,z), i < n and © = (x1,...,2Zy), and
a € A™, the following holds: if B |= Jvg Ni<n ¢i(vk,a) then A= Jug Ajcr ¢i(vg, a).

5.10 Lemma. If A |= T is existentially closed, then for all A C B = T,
quantifier free formula ¢(vy,x), © = (x1,...,2y), and a € A™, the following holds:
if B = Jukp(vk,a) then A | Jupd(vg,a).

Proof. Exercise. (Hint: By e.g. the course Logiikka I, every quantifier free
formula ¢(z) is equivalent with a formula of the form V<, Aj<m ¢ij(x), where each
¢;; is atomic or negated atomic formula.) o

5.11 Theorem. Suppose k > |L,,| and T has AP, JEP and is closed under
unions. Then there is a model A of T such that for all B =T of power < k, there
is an embedding f : B — A and for all partial isomorphisms f : A — A of power
< k, there is an automorphism g of A such that g | dom(f) = f. Furthermore,
such a model is existentially closed.

Proof. By recursion on 7 < k* we define models A; of T' as follows:

1 =0: We let A; be as given by Lemma 5.7.

i =j+1: By Lemma 5.8 we can find A; C A; = T such that every partial
isomorphism from A; to A; extends to an embedding from A; to A;.

i is limit: A; = UJ; ;A

We show that A = A,+ is as wanted. Clearly A has the first of the required
properties. For the second, let f: A — A be a partial isomorphism of power < k.
Then by Fact 2.8 (v), there is a < k™ such that dom(f) Urng(f) € A.. By
recursion on o < i < kT we define an increasing sequence of partial isomorphism
fi  Aiy1 — Aiq1 as follows:

1= fz:f
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i = j+ 1: Since f; is a partial isomorphism from 4; — A;, by the choice of
Ait1, there is an embedding f; : A; — A;y1 extending f;.

¢ is limit: Let f7 =U,<;<; fj- Then (ff)~! is a partial isomorphism from A;
to A; and thus there is an embedding g : A; — A;11 such that g | rng(fF) = (fF)!.
We let f; =g '.

Then g = J,<;<.+ fi is a partial isomorphism, dom(g) = A and rng(g) = A
i.e. ¢ is an isomorphism and clearly it extends f.

To prove the furthermore part, let B, a = (a1, ...,a,,) and ¢;(vg, x), i < n, be
as in the definition of existentially closed. Choose b € B such that B = A<, ¢:(b,a)
and by Lemma 4.8 choose C < B of power < k such that a € C™ and b € C. Then
C E T and there is an embedding f : C — A. Now g = (f | {a1,...,an})"! is a
partial isomorphism from A to A and thus there is an automorphism h’ of A such
that h' | dom(g) = g. Let h = b’ [ rng(f). Then ho f is an embedding of C to
A and for all 1 <j <m, (ho f)(a;) =a;. Since ¢;, i < n, are atomic or negated

atomic, A = ¢;((ho f)(b), (ho f)(a)). Thus A E Jug Nicn ¢i(vg,a). O

5.12 Definition. Let K be a class of L-structure. We say that K has the
elimination of quantifiers if for all formulas ¢(x), x = (x1, ..., ), there is a quantifier
free formula 1 (z) such that for all A € K, A |= Vz1..Va,(¢(x) < ¢(z)). If the
class of all models of T has the elimination of quantifiers, we say that T has the
elimination of quantifiers.

5.13 Theorem. Suppose T has AP, JEP and is closed under unions. If T* is
such a theory that its models are exactly the existentially closed models of T', then
T* is complete and it has the elimination of quantifiers.

Proof. Let k > |L.,| and A be as in Theorem 5.11. Since A is existentially
closed, A = T*. The completeness of T* follows easily from the elimination of
quantifiers and the existence of A (exercise). To prove the elimination of quantifiers,
we prove by a simultaneous induction on ¢(z), x = (z1, ..., x,) that

(i)if BC A, BET* and a € B", then B | ¢(a) iff A} ¢(a),

(ii) there is quantifier free 1 (x) such that T™ = Va;..Va,(¢(z) <> P(z)).

The steps ¢ atomic, ¢ = =0 and ¢ = § A 6§ are trivial. So we assume that
o(x) = Fv;0(v;, x).

Proof of (i): If B |= ¢(a) then for some b € B, B |= 0(b,a) and so by (i) of the
induction assumption, A = 6(b,a), so A = ¢(a). Then suppose A = ¢(a). By (ii)
in the induction assumption, let @ be quantifier free such that

(*) T* = VYoV, Vo, (0(v, x) < (v, x)).

Now A = Jv;¢(v;,a) and since B is existentially closed B = Jv;¢(vi,a). By (%),
B = ¢(a).

Proof of (ii): For a € A™ and z = (x1,...,z,), let
t2.(a/0; A) = {&(x)| £ atomic or negated atomic, A = &(a)}.
We write (B,b) = t%,(a/0; A) if B £(b) for all £(x) € t%,(a/0; A).
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1 Claim. Suppose A = ¢(a), B E T* and (B,b) = t*,(a/0; A). Then
B = ¢(b).

Proof of Claim 1: Suppose not. Let B and b witness this. By Lemma 4.8 we
may assume that |B| < k. By the choice of A, there is an embedding of B to A
and so we may assume that B C A. Then (A,b) = t%,(a/0;A) and thus b; — a;,
1 <1 < n,is a partial isomorphism and thus there is an automorphism f of A such
that f(b;) =a; for all 1 <i <n. But then A= —¢(a), since A = —¢(b) by (i) and
the choice of B and b, a contradiction. o Claim 1.

2 Claim. Suppose A = ¢(a). Then there is finite ¢ C t*,(a/0; A) such that
T* EVri. ¥z, ((Aq) — ¢).

Proof of Claim 2: By Claim 1, T* U t%,(a/0; A) = ¢(z) and thus the claim
follows from compactness. o Claim 2.

Let p;, i < o, enumerate the set {t7,(a/0; A)| A= ¢(a)}. Let ¢; C p; be as in
Claim 2 and v;(z) = Ag;.

Claim 3. If B=T* and B = ¢(b), then for some i < a, B = 1;(b).

Proof of Claim 3: Suppose not. Then as in the proof of Claim 1, we can find
B and b witnessing this so that B C A. Then A = —;(b) for all i < a and
by (i), A E ¢(b). This contradicts the fact that p;, ¢ < «, enumerates the set
{tZ,(a/0; A)| A= ¢(a)}. o Claim 3.

So T* U{—i(z)] i < a} E —¢(x). By compactness, there is finite X C «
such that T* | Vzi..Vo,(Niexi(x) = —¢(z)) ie. T* | Vri.Ve,(o(x) —
Viex®i(x)). Since for all i € X, T* = V..V, (Yi(z) = ¢(x)),

T EVri. Ve, (o) < Viexi(z)).

5.14 Definition. We say that T is model complete if for all A, B\ =T, ACB
implies A < B.

5.15 Lemma. If T has the elimination of quantifiers, then T is model com-
plete.

Proof. Exercise. o

5.16 Exercise.

(i) Show that T* in Theorem 5.13 is complete.

(ii) In section 1 we said that the atomic formula T is needed in the proof of
Theorem 5.13. Where was it needed in the proof?”

(iii) Show that in Lemma 5.2 the assumption that T does not have finite models
iS necessary.

(iv) Show that T has AP iff the following holds: Suppose B,C =T and A is
any L-structure. Then for all partial isomorphisms f : A — B and g : A — C
such that dom(f) = dom(g), there are D |= T and embeddings ' : B — D and
g :C— D such that f'of =g og.
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5.17 Exercise. Let L ={<}, < is a 2-ary predicate symbols, and let T}, (lo
for linear ordering) consist of the following sentences:

VUOVU1VU2<(’UO <v Avr < UQ) — vy < ’UQ)

YvoVup (’Uo <V = < ’Uo)

Yoy (’U() <vmVypy=v1Vr < ’Uo) .
Show that Tj, has AP, JEP and is closed under unions and find a theory T" so that
the models of T are exactly the existentially closed models of Ty, .

5.18 Exercise. Let L = {E}, E is a 2-ary predicate symbols, and let T,
(gr for graph) consist of the following two sentences:

V’UO _\E(Uo, Uo)

VU(JV’Ul (E(’Uo, 'Ul) — E(’Ul, ’Uo)) .
Show that T, has AP, JEP and is closed under unions and find a theory T so that
the models of T' are exactly the existentially closed models of T, .

Next example shows that from AP, JEP and closed under unions alone one can
not deduce that the class of existentially closed models of T' has the elimination of
quantifiers. And so there may not be a theory T whose models are exactly the
existentially closed models of T'.

5.19 Example. Let L consist of unary relation symbols P;, © < 3, binary
relation symbols R and () and constants c¢;, ¢ < w. Let T be an L-theory such
that A =T if

(a) PA, i <3, form a partition of dom(A),

(b) ¢i*, i < w, are distinct and belong to P§*,

(c) if (a,b) € Q*, then a € Ps* and b € P{*,

(d) if (a,b) € RA, then a € P{* and b € P,

(e) for all i < w and a € P{t, if (c*,a) € Q*, then (a,b) € RA for all b € Ps*.
It is easy to see (exercise) that T has AP, JEP and is closed under unions. Also
if A is an existentially closed model of T and a € A, then a satisfies the formula
¢ = Y1 (Pa(v1) — R(vo,v1)) iff for some i < w, (ci*,a) € Q* (exercise). But then,
in the class of existentially closed models of T', one can not eliminate quantifiers from
¢ (exercise).

5.20 Exercise. Let L = {P,, P1, R} be a vocabulary such that P, and P;
are unary relation symbols and R is a binary relation symbol. Let A be an L-
structure such that dom(A) = w, Py = {0}, PA = {1} and R* = {(n,0)] 1 <n <
weven} U{(n,1)] 1 <n < w odd}. Show that Th(A) is model complete but does
not have the elimination of quantifiers.

5.21 Exercise. Find a theory T such that it is model complete but not
complete.

Suppose A C B. We say that A is strongly existentially closed in B if for all
J-formulas ¢(x) the following holds: if a € A" and B = ¢(a), then A = ¢(a). We
say that A is a strongly existentially closed model of a theory T, if A =T and for
all AC BET, A is strongly existentially closed in 5.
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5.22 Exercise. Suppose T and T* satisfy the assumptions of Theorem 5.13.
Show that every existentially closed model of T' is a strongly existentially closed
closed model of T'.

5.23 Exercise.

(i) Suppose A C B and C are models of T', A is strongly existentially closed
in B and f: A — C is an embedding. Show that there are C C D = T and an
embedding g : B — D such that f C g.

(ii) Show that if A C B are models of T', B is a strongly existentially closed
model of T and A is strongly existentially closed in B, then A is a strongly exis-
tentially closed model of T'.

(iii) Suppose T is closed under unions, B =T and A C B is strongly existen-
tially closed in B. Show that A }=T.

(iv) Show that there are A C B such that A is not strongly existentially closed
in B but for all a € A" and singleteons b € B there is ¢ € A such that for all
quantifier free ¢, A = ¢(c,a) iff B = ¢(b,a). Hint: Think equivalence relations.

(v) Show that there are T and A |= T such that A is an existentially closed
model of T' but not strongly existentially closed.

We say that A = T is k-existentially closed model of T ifforall AC ACBET
and A C C C B the following holds: if |C| < &, then there is an embedding f:C — A
such that f [ A =1ida. Notice that if kK > |L.,|, then rk-existentially closed models
of T are strongly existentially closed models of T'.

5.24 Exercise. Suppose k > |Ly,| and T is closed under unions and has
JEP. Show that there is A |=T such that:

(i) A is a k-existentially closed model of T,

(ii) for all B =T of power < k, there is an embedding f: B — A,

(iii) if B,C C A are strongly existentially closed models of T" of power < k and
f : B — C is an isomorphism, then there is an automorphism g of A such that
f<yg.
Hint: Notice that for every B |= T, there is B C C = T such that C is a k-
existentially closed model of T'. Then just repeat the proof of Theorem 5.11.

5.25 Exercise. Let k, T and A be as in Exercise 5.24. Suppose that f :
A — A is a partial isomorphism such that |dom(f)| < k and for all 3-formulas ¢(z)
and a € dom(f)", A= ¢(a) iff A= ¢(f(a)). Show that there is an automorphism
g of A such that f C g. Hint: Find first a strongly existentially model C C A such
that rng(f) C C and |C| < k. Then using compactness, find A C B =T such that
there are D C B and an isomorphism h : D — C such that f C h.

6. Example: Algebraically closed fields

We return to the example from section 3. So in this section L = {+, x, —,0,1},
and we study the theory T}, . Instead of 0 we could work also with any positive
characteristic p, only changes needed would be that we should replace Q and Z by
the p element field F),.
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6.1 Lemma. For all polynomials P € Z[zy, ..., z,] there is a term t(x1, ..., zy)
such that for all A =Ty, and a € A", P(a) = t*(a) and vice versa.

Proof. Exercise. o

So for every atomic formula ¢(x), = (z1,...,z,), there is a polynomial P €
Z[x1,...,xy,] such that for all A =Ty, and a € A", A= ¢(a) iff P(a) = 0.

Tucf, is the theory we get from T, by adding the sentences

Yvg.. Vo, (mv, = 0 = Fu, 1 D50, ¥ U%+1 =0),
for all n € IN — {0}. Then A = T,4, if A is an algebraically closed closed field of
characteristic 0.

We need few facts from algebra.

6.2 Fact.

(i) Every field A can be extended to an algebraically closed field B. Furthermore,
this can be done so that there is a € B such that for all non-zero P € A[X], P(a) # 0
(i.e. a is not algebraic over A ).

(i) If A\ BE=Ty,CC A, DCB (ie. C and D are subrings) and f:C — D
is an isomorphism, then there is an isomorphism g between the fields generated by
C and D such that g [C = f.

(iii) If A,B,C,D =1Ty,, CC A, DC B, a€ A and b € B are algebraic over
C and D, respectively, P € C|X] is the minimal polynomial of a, f :C — D is an
isomorphism and f(P)(b) = 0, then there is an isomorphism g : C(a) — D(b) such
that g | C = f and g(a) = b. (Here C(a) is the field generated by C U {a} and
F(SiZReXP) = S8 f(e) X )

(iv) If A,B,C,D =Ty ,CC A, DCB,ac Aandb e B are not algebraic
over C and D respectively and f : C — D is an isomorphism, then there is an
isomorphism g : C(a) — D(b) such that g | C = f and g(a) =b.

Proof. See the course Algebra II. o
6.3 Lemma. T}, has AP, JEP and is closed under unions.

Proof. T}, is closed under unions by Lemma 4.12 and since for all A |= T¥%,,
there is an embedding f : (Z,+, x,—,0,1) — A, JEP follows from AP and Lemma
5.6. So we are left to prove AP.

So suppose A, B =Ty, and f: A — B is a partial isomorphism. By recursion
on ordinals ¢ we define subfields A; of A, algebraically closed fields C; 2 B and
embeddings f; : A; — C; as follows:

i = 0: We start by letting C = {tA(a)| t(z1,...,7,) a term, a € dom(f)"} and
D = {t5(b)| t(z1,...,z,) a term, b € rng(f)"}. When equipped with the induced
structure, C' and D are subrings of A and B, respectively, and since f is a partial
isomorphism g¢(t(a)) = t8(f(a)) is an isomorphism from C to D such that g |
dom(f) = f (by Exercise 4.2 (vii)). Let A be the subfield generated by C' and D
be the subfield generated by D. By Fact 6.2 (ii), there is an isomorphism f; : A9 — D
such that fo | C = g. By Fact 6.2 (i), we let Cy be any algebraically closed field
containing B.
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i=7+1:If A; = A, then f; is the require embedding of A to C; 2 B.

So suppose a € A — A;. There are two cases:

(a) a is algebraic over A;: We let C; =C;, A; = Aj(a) and P € A;[X] be the
minimal polynomial of a over 4;. Since C; is algebraically closed, there is b € C;
such that f(P)(b) = 0. By Fact 6.2 (iii) there is an isomorphism f; : A; — rng(f;)(b)
such that f; [ A; = f;.

(b) @ is not algebraic: Let A; = A;(a) and choose an algebraically closed
Ci D C; such that some b € C; is not algebraic over C;. Then b is not algebraic over
rng(f;) and thus by Fact 6.2 (iv) there is an isomorphism f; : A; — rng(f;)(b) such
that fl [.AJ = fj.

i is limit: Let A; = U; ., Aj, fi=U;o; f5: G =U;;Cj. o

6.4 Theorem. 7Ty, is complete and has the elimination of quantifiers.

Proof. By Lemma 6.3 and Theorem 5.13, it is enough to show that for all
A l=1Ty,, A is existentially closed iff A }= T,.f,. By Fact 6.2 (i), the claim from
left to right is clear. So we prove the other direction. So suppose A = Tict, ,
AC BTy, , ¢i(vk,z), i <n, are atomic or negated atomic formulas, a € A™ and
B = Jug Nicn ¢i(vk,a). Let b € B be such that B = Aj<n¢i(b,a). There are two
cases:

1. b is algebraic over A: Since A is algebraically closed, b € A (exercise, see
Fact 6.2 (iii)) and thus A = Jug Aicrn, ¢i(vg,a).

2. b is not algebraic over A: Then w.ol.g. each ¢;(vg,a) is of the form
= P;(vg,a) =0 (or 0 =0), where P;(vg,a) = X= b;vi where each b; € {a1,...,am} .
Since each polynomial P;(vg,a) has only finitely many roots and A is infinite, there
is ¢ € A such that Pj(c,a) # 0 for all i <n. Thus A |= Jvg Aicn ¢i(v,a). O

6.5 Remark. So {¢| (C,+,x,—,0,1) E ¢} is recursive (i.e. computer
can be programmed to tell for all sentences ¢, whether (C,+,x,—,0,1) = ¢ or
not, see the course Matemaattinen logiikka). Similarly one (Tarski) can show that
{¢| (R,+,x,—,0,1) = ¢} is recursive. The following is a famous open question: Is
{¢| (R, 4+, x,—,exp,0,1) = ¢} recursive? Schanuel’s conjecture (see Section 11) im-
plies that the answer is yes. By Exercise 1.12, {¢| (C,+, X, —, exp,0,1) = ¢} knows
which Diophantine equations P(X1, ..., X,) =0, P(Xy,..., X,,) € Z[X;, ..., X,,], have
an integer root and thus by the negative answer to Hilbert’s 10th problem (due to
M.Davis, Y.Matiyasevich, H.Putnam and J.Robinson) {¢| (C,+, x, —,exp,0,1) E
¢} Is not recursive.

6.6 Exercise. Let F' be an algebraically closed field of characteristic 0. C' C
F™ is called (Zariski) closed a.k.a. affine variety if it is a zero set of some finite number
of polynomials from F[X;...X,]. Complements of closed sets are called open. Show
that if X C F™ is definable, then it is a finite union of sets of the form U NC', where
U is open and C' is closed.

6.7 Exercise. Let L = {+,0} U{f,| ¢ € Q}, where + is a 2-ary function
symbol and f, are 1-ary function symbols and 0 is a constant (instead of +(t,u)
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we write t + u and insted of f,(t) we write qt). Let Ty, consist of the following
sentences:
VooV Vs ((vg + v1) + v2 = vo + (v1 + v2))

VooVur (vo + v1 = v1 + o)
Vg3 (vo + v1 = 0)
Vv (vg + 0 = vg)
Fvg—(vg = 0)
for all q,7 € Q,
YuoVu1 (q(ve + v1) = quo + qu1)
Yo((q + r)vo = quo + T00)
Yuo((gr)vo = q(rvo))
Voo (1lvg = vp).

(Le. the models of Ty, are the (non-trivial) vector spaces over Q.) Show that T,
is complete and has elimination of quantifiers.

6.8 Exercise. Suppose A,B |= Tyep,, A C B, a € A" and ¢(vg,z) is a
formula. Show that either for all b € B — A, B = ¢(b,a) or for all b € B — A,
B = —¢(ba).

6.9 Exercise. Prove Hilbert’s weak Nullstellensatz: If A |=Ty,, AC B =
Tact,, Py € A[X1,...,Xy], i <k, and there are A C C =Ty, and ¢ € C™ such that
for all i < k, P;(c) =0, then there is b € B™ such that for all i <k, P;(b) =0.

7. Ehrenfeucht-Fraissé games

7.1 Definition.

(i) We say that ¢ is a relational atomic formula if it is of the form T or
Ri(viy,...,vi,) or v, = fi(viy,...,v;,) or fi(vi,,...,v5,) = Vp O v; = ¢}, O ¢ = V; OF
v; = v; (we allow repetition in variables).

(ii) Relational formulas are defined as follows: Relational atomic formulas are
relational formulas and if ¢ and 1 are relational then so are —¢, ¢ AN and Jx¢.

Notice that if L is finite, then for all n € IN — {0}, the number of relational
atomic formulas of the form ¢(vy, ..., v,,) is finite (the same is true for atomic formulas
only if L does not contain function symbols).

7.2 Definition.

(i) For terms t, the relationality rank rr(t) is defined as follows: If t = v;,
then rr(t) = 0, if t = ¢y, then rr(t) = 1 and if t = f;(t1,...,t,), then rr(t) =
max{rr(ty),...,rr(t,)} + 1.

(ii) For atomic formulas ¢, the relationality rank rr(¢) is defined as follows: If
¢ =T, then rr(¢) =0 and if ¢ = R;(t1,...,ty), then rr(p) = max{rr(t1),...,rr(tn)}
and if ¢ =t =u, then rr(¢) =rr(t) +rr(u) — 1.
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Notice that atomic ¢ is relational iff rr(¢) < 0.

7.3 Lemma. For all atomic formulas ¢(x), x = (x1,...,2,), there is a rela-
tional formula 1 (x) such that for all A and a € A", A= ¢(a) <> ¢¥(a) (ie. ¢(x)
and ¢ (x) are equivalent).

Proof. Easy induction on rr(¢): If rr(¢) < 0, the claim is clear and for
rr(¢) =p+1>0 eg if ¢ = Ri(t1(z),....,tm(z)), we observe that ¢ is equivalent
with Jy1...3Ym (Ri (Y1, -y Ym) A /\1<].<m y; = t;) and that the relationality ranks of
formulas y; = t; are < p and thus the claim follows from the induction assumption.
[m}

7.4 Lemma. For all formulas ¢(z), there is a relational formula v (z) such
that it is equivalent with ¢(z).

Proof. By Lemma 7.3, trivial induction on ¢. o.

7.5 Definition. f: A — B is a relational partial isomorphism from A to B
if A C A and for all relational atomic formulas ¢(x1,...,x,) and a € A", A |= ¢(a)

ift B = ¢(f(a)).

Notice that since T is the only relational atomic sentence, for all A and B, 0
is a relational partial isomorphism from A to B.

The definition of an Ehrenfeucht-Fraissé game below is not the most common
one, in Section 13 the common definition is given. We also make a simplifying
assumption. Without it at each round the player 1 needs to specify from which
model the element is chosen and then the player II needs to choose f,, accordingly.

7.6 Definition. Suppose a € A™ and b € B™. In order to simplify the
notation, we assume that ANB =10.

(i) Ehrenfeucht-Fraissé game FEF}((A,a),(B,b)) of length k < w is a game
played by two players, I and II. At each round m < k, first I chooses ¢,, € AUB
and then II chooses a relational partial isomorphism f,, : A — B such that c,, €
dom(fm) Urng(fm), for all 1 < i <mn, a; € dom(fp,), fm(a;) =b; and if m > 0,
then f,, | dom(fm—1) = fm—1. For k=0, II wins if a; — b; is a relational partial
isomorphism and for k > 0, the first who breaks the rules looses and if neither break
the rules, I wins.

(ii) A strategy for a player II in EF((A,a),(B,b)) is a sequence (g;)i<r such
that for all 1 < k, g; is an i+ 1-ary function from AU B to partial maps from A to
B. The strategy is winning if 11 always wins the game by choosing g;(co, ..,¢;) on
each round 1.

(iii) We say that II wins EFy((A,a),(B,b)) (II 1 EFy((A,a),(B,b))) if II has
a winning strategy in the game.

If a=b=0, we write EF(A,B) for EF((A,a),(B,b)).
Notice that in (i) above we could require that |dom(f,,)| =n +m + 1 and this
would not change the winner of the game.
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7.7 Definition. The quantifier rank qr(¢) of a formula ¢ is defined as follows:
If ¢ is atomic, qr(¢) = 0, qr(=v) = qr(¥), qr(¥ A0) = maz{qr(¢),qr(0)} and
qr(Jaip) = qr(y) + 1.

Notice that the proof of the following theorem does not use the assumption that
L is finite in the direction (i) implies (ii).

7.8 Theorem. Suppose L is finite, a € A" and b € B", Then for all k € IN
the following are equivalent:

(j) 11 T EFk((Av a)? (Ba b)) :

(ii) For all relational formulas ¢(x), x = (1, ...,x,), of quantifier rank < k,
A 6(a) iff B = 6(b).

Proof. (i)=-(ii): We prove this by induction on k. The case k = 0 is immediate
by the definitions. So we assume that £k = p+ 1 > 0. We prove (ii) by induction
on ¢. The cases when ¢ is atomic or = or @ A @ are trivial. So we suppose
¢(x) = FyY(y,z). Clearly we may assume that ¢r(y) < p. By symmetry it is
enough to show that if A = ¢(a) then B = ¢(b). Since A = ¢(a), there is ¢ € A
such that A = ¥(c,a). We let this ¢ be the first choice of I in EFy((A,a), (B,b)).
Let fo be the answer given by the winning strategy of II and let d = fy(c). Then
IT T EF,((A,c,a),(B,d,b)) and so by the induction assumption A = 9(c, a) iff
B = (d,b). So B = 1(d,b) thus B = ¢(b).

(ii)=(i): Clearly it is enough to prove the following claim:

1 Claim. Suppose k € IN. For all n € IN there is a finite set F¥ of relational
formulas ¢(x), © = (v1,...,vy), (so for n = 0 the formulas are sentences) of quantifier
rank < k such that

(a) for all A and a € A" there is ¢(z) € F¥ such that A = ¢(a)

(b) if A= ¢(a) and ¢ € F¥ | then the following holds: For all B and b € B

(*) 111 EF((A,a), (B, b)) iff B = ¢(b).

Proof. By induction on k.

kE=0: Let ¢;(x), x = (v1,...,v,) and i < m, list all relational atomic formulas
in which only variables vi,...,v, appear. For Y C m, let ¢y(z) = A,y ¥i(z) A
Nicm_y ~%i(x). Let Ff ={¢y|Y C m}. Clearly F} is as required.

k=p+1: Let ¢;(x,vn41), © = (v1,...,v,) and i < m, enumerate the set F_ .
For all non-empty Y C m, let

oy (2) = N Fonp1i(@, vpi1) AVongr \f Vi@, vng1).
i€y ey
(We assumed that Y # 0 to make A,y and \/,.,, unambiguous.) We show that
Fk ={¢y(z)| Y Cm, Y # 0} is as required.

By the induction assumption, each ¢y is relational and of quantifier rank <
p+1=k. Solet A and a € A™ be given. Let Y be the set of all ¢ < m such
that A = Jv,119:(a, v,41). By the induction assumption, Y # @) and so ¢y € FF.
Furthermore, A = ¢y (a). Thus (a) holds.
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For (b), suppose A = ¢y(a), ¥ C m non-empty. By (i)=-(ii), if IT 1
EF,((A, a), (B,b)), then B = ¢y (b).

For the other direction in (*), suppose B |= ¢y (b) and we describe a winning
strategy for II. Let ¢y € AU B be the first move of I. We suppose ¢y € B, the
other case is similar. Since B |= ¢y (b), there is i € Y such that B |= ¥;(b, ¢o). Since
A = Jup1¢i(a, vp41), there is d € A such that A = ;(a,d). The first move of IT
is f(), where dom(fo) = {ah...,an,d}, fo(ai) = bl for 1 < 1 <n and fo(d) = Cy.
By the induction assumption I1 T EF,((A,a,d),(B,b,c)) and thus the rest of the
moves, I can play according to this winning strategy and win the game. o Claim
1.

]

7.9 Definition. We say that A and B are elementarily equivalent (A = B)
if for all sentences ¢, A = ¢ iff B ¢.

7.10 Corollary. The following are equivalent:
(i) A=B.
(ii) For all finite L* C L and k € IN, II 1 EF,(A [ L*,B | L*).

Proof. Immediate by Theorem 7.8, Lemma 7.4 and the fact that every L-
formula is L*-formula for some finite L* C L. o

The following exercise shows that the restriction to finite vocabularies is neces-
sary in Corollary 7.10.

7.11 Exercise. Show that there are a vocabulary L and L-structures A and
B such that L does not contain function symbols and I1 wins EF,, (A | L*,B | L*)
for all finite L* C L and n < w (i.e. A=B) but II does not win EF;(A,B).

7.12 Exercise. Let A= (IN,S,0) where S(a) =a+ 1 for all a € IN. Show
that if X C A is definable, then either X is finite or A — X is finite. Hint: Suppose
f: A— A is a partial map with finite domain containing 0. We say that f is
n-good if the following holds: Let a; € dom(f), i < mn be such that for all i < j <n,
a; < aj and dom(f) = {a;| i < n}. Then f(ap) = 0 (notice that ay = 0), for all
i <j<mn, fla;) < f(aj) and for all i < n, either a;11 — a; = f(a;i+1) — f(a;) or
both a;y1 — a;, f(a;11) — f(a;) > 2"TL. Start by showing that if f is n + 1-good
and a € A, then there is b € A such that fU{(a,b)} is n-good.

7.13 Exercise. In the proof of Exercise 7.12, the use of Ehrenfeucht-Fraissé
games can be replaced by the use of ultraproducts (or compactness). How is this
done? Hint: (The proof of) exercise 2.9.

Next exercise explains why in the definition of Eherenfeucht-Fraissé games, re-
lational partial isomorphisms were used.

7.14 Exercise. Let L = {f} where f is a unary function symbol. Show that
there are L-structures A and B and a € A such that A = B but there is no partial
isomorphism h : A — B with a € dom(h). Hint: Let B consist of n-cycles so that
for each n € w —{0,1}, B contains exactly one n-cycle.
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7.15 Exercise. Show directly from the definitions (i.e. without using Theorem
7.8) that if II 1+ EF(A,B) and 11 1 EF(B,C), then 11 1 EF;(A,C).

7.16 Exercise. Suppose that A = (A,+,0) and B = (B,+,0) are com-
mutative groups s.t. every element is an involution i.e. a + a = 0. Show that if
|Al|,|B| > 2™, then II 1 EF,(A,B). Hint: Exercise 6.7.

8. Types and saturated models

8.1 Lemma. Suppose T is a complete theory and A, B =T .

(i) If f : A — B is an partial elementary map, then there is C = T and an
elementary embedding g : A — C such that B <C and g | dom(f) = f.

(ii) There are B < C and an elementary embedding f: A — C.

Proof. Since T is complete, the empty function from A to B is elementary
and thus (ii) follows from (i) (compare Lemma 5.6). We prove (i). Without loss of
generality, we may assume that AN B = (this simplifies the notation).

As e.g. in the proof of Lemma 4.5, it suffices to show that

T* = Th(A, A) UTh(B,B) U {d = ¢| d € dom(f), e = f(d)}

is consistent (exercise). Let ¢(c,b) € Th(B,B) be such that ¢ = ¢(x,y), ¢ =
(c1y.es0m) € (B—rng(f))™ and b = (b, ...,b,) € rng(f)™. Let

Y(@y) =@y A N 05(),

1<i<j<m

where 0,;(x) = x; = z; if ¢; = ¢; and otherwise 0;;(z) = —x; = x;. Notice that
Y(c,b) € Th(B,B). Let a € dom(f)™ be such that f(a;) = b; for all 1 < i < n.
Since Th(B,B) is closed under conjunctions and we can let b contain any elements
of rng(f), by compactness it is enough to prove that

T'=Th(A,A) U{P(c,b)} U{d=¢|l d € {a1,...,an}, e = f(d)}
is consistent. Now B |= Jz1...32,,¥(x,b) and since f is elementary,
A= Jzy. Frp(z,a).

Let ¢ = (c},...,c),) € A™ be such that A = ¥(c’,a). Let C be a model we get
from (A,.A) by adding the interpretations zc = a; and ¢;° = ¢}. Notice that these
interpretations are well-defined i.e. e.g. if ¢; = ¢;, then the interpretations are

defined so that ¢;* = ¢;¢ (formulas 6;; guarantee this). Clearly C =T". o
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8.2 Definition. Suppose A C A and n > 0.

(i) Low(A,n) is the set of all ¢(x,a), where ¢(x,y) is a formula, x = (v, ..., v,)
and a is a sequence of elements of A.

(ii) An n-type over A is a non-empty subset of L, (A,n).

(iii) An n-type p over A is complete if for all ¢ € L,,(A,n), ¢ € p or =¢ € p.

(iv) b € A™ realizes an n-type p over A if A |= ¢(b,a) for all ¢(x,a) € p.
t(b/A) = t(b/A; A) is the set of all ¢(x,a) € Ly, (A,n) such that A = ¢(b,a) i.e.
the unique complete (consistent) n-type over A realized by b.

(v) An n-type p over A is consistent (in A) if there is B and b € B™ such that
A <X B and b realizes p.

(vi) Sn(A) = S, (A;.A) is the set of all complete consistent n-types over A.

8.3 Lemma. Suppose A C A and p is an n-type over A. Then the following
are equivalent.

(i) p is consistent.

(ii) For all ¢;(z,a’) €p, i <m e N, A Jvy..30, \,_,, ¢i(z,a").

(iii) T = Th((A, A)) U{d(c,a)| ¢(z,a) € p} is consistent, where ¢ = (c1, ..., Cy)
are new constant symbols.

Proof. (i)=(ii): Let B and b witness the consistency. Then B |= A,_,, ¢i(b,a’)
and thus B = Jv...3v, A\, _,, ¢i(z,a’). Since A 2B, Al Jvi...3v, A\, ¢i(z,a’).

(ii) = (iii): Let ¢ = (¢4, ..., ¢c,) be the sequence of new constant symbols, m € IN
and for i < m, ¢;(c,a’) € {¢(c,a)| ¢(z,a) € p}. By compactness, it suffices to show
that T" = Th((A, A)) U{¢;(c,a’)| i < m} is consistent. By (ii), there is b € A™ such
that (A, A) |= ¢i(b,a®) for all i < m. Thus by interpreting ¢; to b;, we get a model
for T".

(iii)=>(i): Let B* be a model of T' and B = B* | L. Clearly we may choose
B* so that for all a € A, a® = a. Then the identity function id : A — B is an
elementary partial map from A to B and thus by Lemma 8.1 (i), we may assume in
addition that A < B. Letting b; = c?* for 1 <i<n, b= (by,...,b,) realizes p in
B. o

8.4 Remark.

(i) Suppose A C A. Letting the sets {p € S,(A)| ¢(x,a) € p} for ¢(z,a) €
Ly, (A), be a basis for a topology on S, (A) (i.e open sets are unions of these ba-
sic open sets), we get a Hausdorff topology which is by Lemma 8.3 also compact
(exercise). This space is called a Stone space.

(ii) If f : A — B is a partial elementary map and A = dom(f), then p €
Sn(A; A) iff f(p) € Sh(f(A);B) (by Lemma 8.3), in particular, if A C A < B, then
Su( 4 A) = Su(A, B) (1(p) = {6(z, £(a))] 6(z,a) € p}).

(iii) If T is complete and A, B |= T, then S, (0; A) = S,.(0; B) (by (ii)) and thus
when T is given, we can talk about S,,({)) without need to specify the model.

(iv) If A C A and p is a consistent n-type over A, then there is q € S,,(A;.A)
such that p C q.
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8.5 Definition.

(i) We say that A is rk-saturated if for all n € IN — {0}, A C A of power
< Kk and p € S,(A), some a € A" realizes p. We say that A is saturated if it is
| A| -saturated.

(ii) We say that A is strongly k-homogeneous if for all partial elementary maps
f: A— A with dom(f) of power < k, there is an automorphism g of A such that
g I dom(f)=f.

(iii) We say that A is k-universal if for all B |= Th(A) of power < k, there is
an elementary embedding f: B — A.

8.6 Lemma.

(i) Suppose k > w. If for all A C A of power < k and p € S1(A), some a € A
realizes p, then A is k-saturated.

(ii) If a model is finite, then it is k-saturated for all k.

(iii) If A is rk-saturated and infinite, then |A| > k.

(iv) Suppose k > |Ly|. If A is strongly k-homogeneous and k-universal, then
A is k-saturated.

Proof. Exercise (hint for (iv): Use the idea from the proof of 5.11). o

8.7 Theorem. Suppose T is a complete theory and k is a cardinal. Then
there is A =T which is k-saturated, k-universal and strongly k-homogeneous.

Proof. By Lemma 8.1 and Corollary 4.7, the proof is the same as that of Theo-
rem 5.11, verbatim, except that one needs to replace C by =<, partial isomorphisms
by partial elementary maps and quantifier free formulas by complete types (exercise).
[m}

Theorem 8.7 follows also from Theorem 5.11 by using Morleyzation: For each
formula ¢(z), x = (v1,...,v,), choose a new n-ary relation symbol Ry(,). Let L*
be L together with these new predicate symbols and T the theory T together with
the sentences

VU1, YUr(é(x) < Ryzy(x)).

Then for all A =T there is unique A* =T such that A* [ L = A. Now from this
and Lemma 8.1 it follows easily that T* has AP, JEP and is closed under unions.
Also every model of T* is existentially closed (exercise). Thus by Theorem 5.13 T*
is complete and has elimination of quantifiers. Let now A* be as in Theorem 5.11 for
T* (w.0lg. k> |Lyw|). Then A= A* | L is as required in Theorem 8.7 (exercise,
r-saturation follows from Lemma 8.6 (iv), since k > |Lyy|)-

8.8 Remark.

(i) It is not an accident that the proofs of 8.7 and 5.11 are the same, see the
work on abstract elementary classes.

(ii) Suppose A C A and a,b € A™. Then the following are equivalent (exercise):

(a) t(a/A) = t(b/A),

(b) there are A < B and f € Aut(B/A) such that f(a) =,
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(c) There are A < B and an elementary embedding f : A — B such that
fTA=1id and f(a) =b.

Thus the types over A can also be viewed as orbits of the natural action fa =
(f(a1),..., f(an)) of Aut(B/A) on B™ for suitable B. These observations give also
rise to so called Galois types in the context of abstract elementary classes.

8.9 Lemma. If T is a complete theory and A,B | =T are infinite saturated
models of the same size, then A and B are isomorphic.

Proof. Let us enumerate A = {a;| i < k} and B = {b;] i < k}. By induction
on i < Kk, we construct partial elementary maps f;,g; : A — B so that

(i)fOI‘i<j§/£, fzggjgfj,

(ii) for all i < k, a; € dom(g;+1) and b; € rng(fi+1),

(iii) for all ¢ < K, |dom(f;)l],|dom(g;)| < |i|" + w.

For i =0, we let f; = g; = () (these are elementary because T' is complete) and for
limit ¢ we let g; = f; = Uj<i fi (= Uj<igj by (i)).

Suppose ¢ = j+ 1. Let A = dom(f;) and p = t(a;/A;A). Let fi(p) =
{o(z, fi(a)), ..., fi(al))| ¢(z,al,...,a,,) € p}. Since f; is elementary, by Lemma 8.3
(ii), f;(p) is consistent. Since B is saturated and f; satisfies (iii), f;(p) is realized
in B by some b. Let g; be such that dom(g;) = dom(f;)U{a;}, g: | A= f; and
gi(a;) =b. Clearly (i)-(iii) are satisfied. f; can be found similarly, only start from
g; and look the inverses.

Then f, is the isomorphism claimed to exist. o

8.10 Example. Every uncountable model of Ty, is saturated and thus T,.y,
is k-categorical for all Kk > w.

Proof. Exercise. o
We write k<" for the cardinality of the set {f : a — k| a < k}.

8.11 Lemma. Suppose k<" = k > |Ly,| and T is a complete theory with

infinite models. Then T has a saturated model of cardinality k.

Proof. Let A =T be of power k and A C A be of cardinality < x. Then
|S(A; A)| < 2141+ < k<* = k and we can enumerate it as {p;| i < k}. Now for each
i < k choose A; =T of power k so that Ay = A, A; < A; for j <i and A;4q
realizes p;. Then A(A) = U;<,.A; realizes every type in S(A; A) = S(A4; A(A)).

Let P-.(X) be the set of all subsets of X of power < k. Then |P.,(A)| <
k<" = k and so we can enumerate it as {A4;| i« < x}. For all i < k, choose Af
of power < k so that A5 = A, A} < A} for j < i and A7, ; = Aj(A;). Then
AT = U< A} realizes every type from S(A; A) = S(A; A1) for all A C A of power
< K.

Finally for all ¢ < x, choose models B; =T of power & so that By = A, B; < B;
for j <4 and B;1; = B;". Since k<% = x implies that « is regular (see e.g. [Je]),
B = U;-.B; is saturated. o

The cardinality assumption in Lemma 8.11 can not be made weaker: Let Ty, =
Th((Q,<)). Then Ty, has a saturated model of power k iff k<" = k > w (exercise,
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keep Exercise 5.17 in mind and see Exercise 8.13 below). So Ty, has a saturated
model of power N iff the continuum hypothesis holds and it has never a saturated
model of power X, . In fact, it is consistent that upto isomorphism, (Q <) is the
only saturated model of Ty, .

8.12 Lemma.
(i) If A is k-saturated, then it is k™ -universal.
(ii) If A is saturated then it is strongly |.A|-homogeneous.

Proof. Exercise (try to prove (ii) as an immediate consequence of Lemma 8.9).

8.13 Exercise.

(i) Show that if A |= Ty, is saturated and k = |A|, then k<% = k. Hint:
Suppose not. Let p be the least cardinal such that k" > k and let T be the set
of all functions f:a — k, 0 < a < pu. Order T by f < g if g C f or if there
is € dom(f) N dom(g) such that f(x) # g(x) and if y is the least such then
f(y) < g(y). Notice that (T,<) | Ta, and that every function f : u — succ(k)
(succ(k) is the set of all successor ordinals < k) determines a type over a subset of
T of size .

(ii) Find a countable complete theory that does not have a countable saturated
model.

8.14 Exercise. Suppose |L,.| = w, A;, i < w, are infinite structures and
U C P(w) is an ultrafilter such that for all n € w, {x € w| x > n} € U. Show that
;< A; /U is wy -saturated.

8.15 Exercise. Let T, x and A be as in Theorem 5.11. Show that Th(A)
has elimination of quantifiers iff A is k-saturated. Hint for the direction from right
to left: Show that if A = Yvi..Vo,(\;., ¢ — @), (o < |[Lywl|), then the same is
true in every model of Th(A).

The result in the next exercise is not the best possible.

8.16 Exercise. Let T' be a complete theory with infinite models and k > |Ly|
a regular cardinal. Suppose that for every A =T of power k, |S(A; A)| =k (ie. T
is k-stable). Show that T has a saturated model of power .

8.17 Exercise.

(i) Show that A = B iff for all w-saturated A <= A" and B < B'. II 1
EF,(A',B"). Hint: See Exercise 13.3 below.

(ii) Suppose that for all A C AT, if |A| < k, then |S1(4;A)| < k. Show
that for all n <w, if AC AT and |A| <k, then |S,(4;A)| < k.

8.18 Exercise. Let L ={R,| n <w}. We define A as follows: Let dom(.A)
be the set of all f : w — 2 such that for some k < w for all i > k, f(i) = 0.
(f,9) € R if f(n) < g(n). B is defined similarly except that dom(BB) is the set of
all f:w — 2 such that for some k < w for all i > k, f(i) = 1. Show that A =B
but there is no A’ < A for which there is an embedding h : A" — B.
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9. Henkin constructions and omitting types

9.1 Definition.

(i) We say that a theory T locally omits an n-type p over (), if the following
holds: For every formula ¢(z), x = (v1,...,vy,), if T = Yv1...Vv,—¢(x), then there is
0(x) € p such that T = Yvi..Yu,(¢(z) — 0(x)).

(ii) We say that A omits an n-type p over () if no a € A™ realize p.

In the following theorem, it is crucial that the vocabulary is countable (i.e. of
size w or finite) and that we claim only that A is countable, see Remark 9.3. In fact
for uncountable vocabularies there are no known methods, anywhere as powerful as
9.2, to omit types.

9.2 Omitting types theorem. Suppose L is countable, T is a consistent
theory and D is a countable collection of types over (). If T locally omits every
p € D then T has a countable model A which omits every p € D.

Proof. This proof is a modification of the usual proof of the completeness the-
orem, see the course Matemaattinen logiikka. For simplicity, we assume that D is
a singleton and that the only type p in D is a 1-type (exercise: what changes are
needed to prove the general case?). Let ¢;, i < w, be new constants and denote
L* = LU {¢| i < w}. Let ¢;, i <w, enumerate all L*-sentences so that if ¢; ap-
pears in ¢; then j < ¢. By recursion on k < w, we construct an increasing sequence
of consistent L*-theories T} so that

(i) T — T is finite and if ¢; appears in some 6 € T}, then ¢ < k,

(i) ¢r € Thq1 or =y € Tht1,

(iii) if ¢ = J20(x) € Tiy1, then O(cy1) € Thy1,

(iv) there is 6(v1) € p such that —0(c) € Tk41 .

Welet Ty =1T.
For Ty, first we choose L-formula ¢(vy,xg,...,k—1), so that

= @(cks Cos ey Clm1) < /\{9| 0eT,—T}

(if kK =0, welet ¢ = vy = v1). Now clearly T = Vv—3zg...3x,_1¢ (since T U
{é(ck,co, ..y ck—1)} is consistent) and thus T' [~ ¢(ck, co, ..., ck—1) — 0(ck) for some
O(v1) € p because otherwise (exercise or see the course Matemaattinen logiikka)

T ’Z Vvl(EImo..Elmkflqb(vl, xo, ...,xk,l) — 9(1)1))

for all #(v1) € p contradicting the assumption that 7" locally omits p. So there is
0(v1) € p such that T}, | = Ty U {—=0(ck)} is consistent. This takes care of (iv).

Clearly either T}, U {¢p} or T, U{—¢r} is consistent and let T}, be the
one of these that is consistent. This takes care of (ii).

Unless ¢ = x1p(x) for some ¢ and ¢y, € T}, welet Ty = T;75, . Otherwise,
since cp41 does not appear in Tj7,, Try1 = T35, U{(cry1)} is consistent (exercise
or see the course Matemaattinen logiikka). This takes care of (iii). Clearly (i) holds.

Then T* = Uk, Tk is consistent and it has a model, say B*. Let B =B* | L

and A= {cF|i<uw}.
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1 Claim. For all constants ¢ € L, ¢® € A and for all n—ary function symbols
fe€L and ac A", fB(a) € A.

Proof. Exercise. o Claim 1.

By Claim 1 we can let A be the L-model such that dom(A) = A, for all R € L,
RA = RBNA#E forall fe L, fA= fB | A#f and for all c € L, ¢* = & ie.
A=DB] A. Then A is a substructure of B and by (iii) and Tarski-Vaught, A < B
(if B = Jzep(x,cB), ¢ = (ciy,...,c,) and B = (cg*,...,cf:), then Jz¢p(z,c) € T*
and so (cg,c) € T* for some k i.e. B (cB ,cB)). So AT and by (iv), A

omits p. o

9.3 Remark.
(i) Let us look at the theory Ty, . Let

p={~(ZZfa;v} =0)| n >0, a; € Z,a, # 0}.

Then every model of Ty, which omits p is countable. Using this, one can find L'
(uncountable obviously), T' and a type p’ such that T’ locally omits p’ but no
model of T" omit p’ (exercise. Hint: Start by showing that Tg.s, locally omits p
and keep in mind Fact 6.2 (iii) and Theorem 6.4.)

(ii) If a theory T is complete and has a model that omits a type p over (), then
T locally omits p (exercise).

9.4 Definition. Assume T is complete.

(i) We say that p € S, (0) is isolated if T does not locally omit p i.e. there
is ¢(v1,...,v,) € p such that for all ¥(vy,...,v,) € p, T | Yv1...Yvu(é(v1,...,05) —
Y(v1,...,v,)). When this happens, we say that ¢ isolates p.

(ii)) A =T is (an) atomic (model of T ) if for all n € IN and a € A", t(a/0) is
isolated.

(iii) We say that ¢(v1,...,vy,) is complete if it isolates some p € S, ().

(iv) We say that T is atomic if for all ¢(v1,...,v,) either T' |= Yv;..Yv,—¢ or
there is complete ¢ (vy,...,v,) such that T |=Yvi..Nv, (¢ — ¢).

9.5 Lemma. Suppose |L,,| = w and T is a complete theory. Then the
following are equivalent.

(i) T is atomic.

(ii) T has an atomic model.

Proof. (ii)=-(i): Exercise.

(i)=(ii): For all n € IN — {0}, let

P = {—¢(v1,...,v,)| ¢ is complete}.

Since T' is atomic, T locally omits every p,,. Thus by Theorem 9.2, T" has a model
A which omits every p,,. Clearly A is atomic. o
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9.6 Exercise.

(i) Let T' be a consistent complete theory and L countable. Suppose that ¢(x),
x = (v1,...,vp), is such that T [~ Vv;..Vv,—¢ and there is no complete ¥ (x) with
T = Vv1..Yu, (¥ — ¢). Show that there are uncountably many p € S,,(0) such that
¢ € p. Conclude that if for all n € IN — {0}, S,(0) is countable, then T has an
atomic model. Hint: Notice that if T = Yvi..Yv,— and T | Yvi..Nvu, (¢ — ¢),
then 1) has the property the formula ¢ has. Also 2“ is uncountable i.e. construct a
splitting tree of formulas of height w.

(ii) Using (i), show that T,.r, has an atomic model and describe it. Hint:
Exercise 8.17 (ii).

(iii) Show that every model of Ty, is atomic (see Exercise 8.13 and Exercise
5.17).

(iv) Show that A = (IN,+, x,0,1) is an atomic model of the true arithmetic
Th(A). Hint: Show e.g. that vy = n isolates t(n/().

A theory can have an atomic model while having a lot of types over (). In fact
true arithmetic from the example above is such (exercise, think divisibility, n divides
v1) but let us look a more generic brute force example: For all n € 2<% = {¢ :
n — 2| n < w}, let P, be a unary relation symbol and L = {P,| n € 2<“}. Let
A be an L-structure such that dom(A) = 3* and for all £ € dom(A), £ € Pﬁ‘l if
¢ [ dom(n) =n. Let T = Th(A). For all n € 2, p, = {Ppn(v1)| n < w} is a
consistent type and thus |S;(0;T)| = 2¥. However, it is not hard to see that T has
elimination of quantifiers and that B = A [ (3% — 2¥) is an elementary submodel of
A (think of restrictions to finite subsets of L). Thus if £ € B and n < w is the least
such that {(n) = 2, then Pepy,(v1) A 2 Pepnug(n,0)3 (V1) A 7Pepnug(n,1)} (V1) isolates
t(£/0). This generalizes to bigger arities and thus B is an atomic model of T'.

9.7 Exercise. Find a countable (consistent) theory that does not have an
atomic model.

9.8 Lemma. Assume T is complete (with infinite models) and A and B are
countable atomic models of T'. Then A and B are isomorphic.

Proof. This proof is essentially the same as that of Lemma 8.9: Let {a;| i < w}
and {b;] i < w} be enumerations of A and B, respectively. Then we construct
an increasing sequences of finite partial elementary maps f;,g; : A — B, i < w,
as in the proof of Lemma 8.9. We let fo = go = 0 and g¢;11 is found as fol-
lows: Let {a},...,al,} = dom(f;). Then t((a},...,al,a;)/0) is isolated, say by
d(V1, ey Upy1). Since f; is elementary, B = Jv,410(fi(a}), ..., fi(al,), vnt1). So there
is b € B such that B = ¢(fi(da}), ..., fi(al,),b). Since ¢ isolates t((a},...,al,,a;)/0),

t((fi(a)), ..., fi(al),b)/0) = t((a},...,a.,,a;)/0). This means that g;+; is elementary

when dom(gi+1) = dom(fi) U{ai}, git1 [ dom(f;) = fi and git1(ai) =b. fir1 is
found similarly. U;< f; is the required isomorphism. o

9.9 Lemma. Assume T is complete (with infinite models) and A is a count-
able atomic model of T. Then A is a prime model i.e. for all B |= T, there is an
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elementary embedding f : A — B.
Proof. As the previous lemma (exercise). o

9.10 Exercise. Assume T is a complete theory in a countable language L.
Show that A is a prime model of T iff A is a countable atomic model of T'. Hint:
One direction is Lemma 9.9 and for the other direction start by showing that if T
does not have an atomic model, then every model of T' realizes a type that can be
omitted.

9.11 Theorem (Ryll-Nardzewski). Assume L is countable and T is com-
plete and has infinite models. Then the following are equivalent:

(i) T' is w-categorical,

(ii) for all n € IN — {0}, S,,(0) is finite.

Proof. (ii)=(i): If S, (0) is finite, then every p € S, (0) is isolated (if S, (0) =
{po,....,pn}t, p=po, then A ..., ¢; isolates p when the formulas ¢; are chosen so
that ¢; € p — p;). Thus every model of T is atomic and so (i) follows from Lemma
9.8.

(i)=(ii): Suppose S, (0) is infinite. We show that T is not w-categorical.

1 Claim. There is non-isolated r € S, (0).

Proof. Suppose not. For every p € S,,(0), let ¢, € p be a formula that isolates
p. Then q = {~¢,| p € S,(0)} can be realized in a model of T by compactness
since for all p € S,,(0) every realization of p realizes ¢ — {—¢,}. Let B = T and
b € B™ be such that b realizes ¢. Then r = t(b/() is a complete consistent type but
r & S,(0), a contradiction. o Claim 1.

Let r be as in Claim 1. By omitting types theorem, 7' has a countable model
A that omits r. Since T is complete and has infinite models, every model of T is
infinite and so A has power w.

On the other hand, since r € S,,(0), there is a model B of T that realizes r.
As above B is infinite and so by Lemma 4.8 can be chosen to have cardinality w.
Clearly A and B are not isomorphic. o

9.12 Example.

(1) Tacf, is not w-categorical.

(ii) If L is finite and relational and T' is a complete L-theory with infinite model
and elimination of quantifiers, then T is w-categorical.

Proof. Exercise. o

9.13 Exercise. Suppose T is complete. Let A C A = T. We say that
p € Sn(A; A) is isolated if there is ¢(x,a) € p, © = (v1,...,v,), such that for all
O(x,b) € p, Th(A,A) = Yvi..Vu,(d(z,a) — 0(x,b)). Assume that A is primary
over A i.e. there are a; € A, i < «, such that A = AU {a;| i < a} and for all
i < o, tla;/AU{a;| j < i}) is isolated. Show that if Bl=T and f: A — B is a
partial elementary map with dom(f) = A, then there is an elementary embedding
g: A— B such that f C g (ie. A is prime over A).
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9.14 Exercise.

(i) Show that there is a model A such that Z C A < (R, <) and it is primary
over Z.

(ii) Let T4, be the theory of random graphs i.e. the theory of the existentially
closed models of Ty, (see Exercise 5.18) and suppose B = (B, E) |= T;4, and there
is countably infinite X C B such that for all a,b € X, (a,b) ¢ E. Show that there
is (X,ENX?) CC Ty, such that for all c € C, {x € X| xEc} is finite.

(iii) Let X and B }= T4, be as above. Show that there is no model X C A< B
such that it is prime over X .

9.15 Exercise. Prove the direction (i)=-(ii) in Lemma 9.5 the following way:
Let A |=T. Show that there are a; € A such that for all n < w, t((ag, ..., a,)/0) is
isolated and A = {a;| i < w} passes the Tarski-Vaught test (Theorem 4.6).

We finish this section by giving one more application to the Henkin construction
technique from the proof of Theorem 9.2.

9.16 Craig’s interpolation theorem. Let L; and Lo be vocabularies,
Ly = LiNLy, ¢ asentence in the vocabulary L, and 1) a sentence in the vocabulary
Ly. If ¢ =4 (ie. for every Ly U Ly-structure A, if A= ¢, then A |= 1)), then
there is a sentence 0 in the vocabulary L such that ¢ =6 and 0 = 1.

Proof. W.o.l.g. we may assume that L; and Lo are finite. For a contradiction
we assume that ¢ = 1 but there is no sentence 6 in the vocabulary Ly such that
¢ =0 and 0 = 9. Let ¢;, i < w, be new constants and L} = L; U {¢] i < w}
for © < 3. If T} is an Lj-theory and 7> an Lj-theory, we say that 7 and 75 are
separable if there is an L{ sentence 6 such that T} = 6 and To U{#} is inconsistent.
Then we say that 6 separates 17 and T5. Notice that from our counter assumption
it follows that {¢} and {—t} are not separable (if 8*(co, ..., ¢,,), where 0*(zo, ..., ;)
is an Lg-formula, separates them, then 6 = dxq...dz,,0 separates them as well and
thus ¢ = 6 and 6 = v¢) and that if 77 and 75 are not separable, then they are
consistent.

Let n;, i < w, list sentences so that {n;| ¢ < w, 7 even} is the set of all Lj-
sentences and {n;| i < w, i odd} is the set of all Lj-sentences (thus every L{-sentence
appears in both of the sets). Furthermore we assume that if ¢; appears in 7;, then
j < i. By recursion on i < w, we construct Lj-theories T}! and Lj}-theories T? so
that

(i) T} and T7? are finite, they are not separable and if i < j, then T} C TF for
ke {1,2},

(i) if 4 is even then 7, € T}, or —m; € T}y, and if ¢ is odd then n; € T2 | or
) € Ti2-|-17

(iii) if @ is even and n; = Jv€(vy) € T¢1+1 for some formula &, then £(¢;) € TZlH
and if ¢ is odd and 7; = Jvpé(vg) € T}, for some formula &, then £(¢;) € T4,

(iv) if ¢; appears in some sentence in T} UT?, then j < i.

We let T) = {¢} and T¢ = {—)}. Suppose that we have defined 7} and T?.
We also assume that i is even, the other case is similar. We let T2, = T7. If
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T' =T! U{n;} and T?, are separated by 0 and T” = T} U {-n;} and T?, are
separated by €', then 6V 0" separates T} and T? and thus we can choose T to be
the one that is not separable from T2 ;. If T =T} U {n;} and n; = Jv;&(v;), we let
Tl =TU{{(c;)} and otherwise we let T}',; = T. Clearly T}', and T7? , are not
separable (exercise, see the proof of Theorem 9.2 or above).

Let T7 = Ui« , T} and Ty = U;,T2. Then they are consistent and we let
A =T, and B |=Ts. Notice that T} and 75 contain exactly the same Lfj-sentences
i.e. T1NT5, is a complete L-theory. Thus we can also choose A and B so that for all
i<w, ct=cP. Let X ={cf'| i <w}. Then as before A| X < A and B | X < B.
Thus letting C be L7 U Lj-model such that C [ L7 = A X and C [ L5 =B [ X,
C E ¢ and C = — contradicting the assumption that ¢ 1. o

Notice that from Craig’s interpolation theorem it follows that A(L,,) = Lww
(for A(Lyw) see the slides of the course Strong logics by J. Vadnénen).

Let L* = LU{P}, where P is a new n-ary relation symbol and ¢ be an L*-
sentence. If P’ is another new n-ary relation symbol, we write ¢(P’) for the formula
we get from ¢ by replacing P by P’ everywhere. So ¢(P) = ¢. We say that ¢
defines P implicitly if ¢(P) A ¢(P’') = Vay..Vo,(P(z) <> P'(x)).

9.17 Exercise. Suppose ¢(P) defines P implicitly. Show that there is an L-
formula 1(x) such that it defines P* in every L*-model A= ¢(P) (this is usually
expressed by saying that v defines P explicitly). Hint: Let ¢y, ..., ¢, be new constant

symbols and notice that ¢(P) A P(c1,...,¢n) = ¢(P') — P'(c1,...,¢n).

10. Indiscernible sequences

In Section 12 indiscernible sequences will play an important role. In this section
we make some general observations about them.

10.1 Definition. Suppose (I,<) is a linear ordering, for all i € I, a; € A"
and A C A. We say that (a;);e; is m™*-indiscernible over A if for all m < m*,
ozt ..., x™ a), zF = (2, ...,2%) and a € A", the following holds: If iy < iy <

. < im and j1 < jo < ... < jm are from I, then A = ¢(a;,,...,a;, ,a) iff A
é(ajy, -y aj,,,a). (a;)icr is indiscernible over A if it is m*-indiscernible over A for
all m* € IN.

If for all 4,j € I, a; = aj, (a;)icr is called trivial (indiscernible sequence).
When we talk about indiscernible sequences we mean non-trivial ones.

Notice that (a;);es is indiscernible over A can be defined also as follows (exer-
cise): For all n < w and 41, ...,79p, j1, s jn € I, if (x = (21, ...,x,) and)

tar((in, s in) /05 (1, <)) = 15 ((G1; s Gn) /05 (I, <))
(see the proof of Theorem 5.13), then

t((ail, ceey aln)/A) = t((ajl, ceey (ljn/A).
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10.2 Definition. Let x,\ and ¢ be cardinals and X C k.

(i) By [X]™ we mean the set {(aq,...,a,) € X" a1 < g < ... < ap}.

(ii) We write & — (A)g if the following holds: For all functions f : [k]" — £ there
is X C k of power X\ such that f | [X]|" is constant (such X is called homogeneous).

10.3 Ramsay’s theorem. w — (w)} for all n,k € IN — {0}.

Proof. By induction on n:

n = 1: This is just the pigeon hole principle.

n = m + 1: By the induction assumption we can find by recursion on 7 < w,
infinite sets X; C w, b; € X;, functions f; : [X; — {b;}]" — k and ¢;y1 € k as
follows:

i=0: Xo=w, bp =0 and fo(ay,...;am) = f(bo, a1, .ssm).

t=7+1: Welet X; C X; and ¢; € k be such that X; is infinite and for all
(a1,...,am) € [Xi]™, fi(a1,...,am) = ¢;. We let b; be the least element of X; and
filat,...,am) = f(bi,a1, ..., am).

By the case i = 1, we can find infinite ] C w and ¢ € k such that for all i € I,
¢i+1 = c. Then X = {b;| i € I} is as wanted (exercise). o

The following theorem is just one example of what kind of indiscernible sequences
can be found by compactness.

10.4 Theorem. Suppose (I,<) is a linear ordering, a; = (a',...,a%) € A",

coy Wy

i < w, are such that for i # j, a; # aj. Then there are A < B and e; € B"
such that (e;);cs is indiscernible over A and for all iy < ... < i,, € I, d € A* and
formula ¢(z1,...,2m,y), if B = ¢(eiy, ..., €, ,d), then for some j; < ... < jp, < w,

AE=o(aj,, ..., a4, ,d).
Proof. Let cé-, i €I and 1 < j < n, be constants not in L(A). Denote

c; = (ct,...,c%). Clearly it is enough to show that the following theory T is consistent:

T = Th(A, AU

{¥(ciy, v cip, b) & Y(cjys-ons ¢y, b)| Y(21, -0y 2, 2) L-formula, b e Al9()
i1 <idg < .. <, J1 < Jo<..<JrptU
{=é(ciyy i, )| P(21, ey Zm, 2) L-formula such that
for all j; < ... < jm <w, AW ¢(aj,,...,a;,,d),
W <..<imel, de A9}

where [g(z) denotes the length of z.

Let 9s(21, ..y 2k, 2), 8§ < 8* < w be L-formulas, d € AY93) | ¢(z1, ..., 2m, 2) be
an L-formula such that for all iy < ... < iy, < w, A & ¢(aiy,...,a;,,d), for all
s < s, 4 < ..<iie€land ji <...<yji€l and iy < ... < iy € 1. By
compactness, it is enough to show that

T' = Th(A, AU
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{Ws(eiz, s iz d) < s(cys, s cje, d)| 8 < 87U

{ﬂgb(cio, ceny cim,c_l)}

is consistent.

For each s < s* define f, : [w]® — 2 so that f,(ny,..,nx) = 1 if A |
Ys(an, s ..y ap,,b) and otherwise fs(nq,...,nx) = 0. By Ramsey’s theorem there is
infinite X C w such that it is homogeneous for every function fs, s < s*.

Let m:{i},j7| s <s*. 1 <1 <k}U{ig,...,im} — X be order preserving. Let
A* be a model we get from (A,.A) by interpreting cé}s to ag(ils ) and cffs to a;(jls ),
where 1 <[ <k and 1 <p<mn, and cf} to ag(”) for ] <m and 1 < p < n. Clearly
A =T o

Theorem 10.4 can be used to prove e.g. the following result which is at the
hearth of many so called non-structure theorem:

10.5 Corollary. Suppose (I, <) is an infinite linear ordering, a; = (ai, ..., a’)
€ A", i <w, and d € A™ are such that for i # j, A= ¢(a;,a;j,d) iff i < j, where
¢(x,y,z) is a formula. Then there are A < B and e; € B™ such that (e;);cr Is

indiscernible over A and for all i,j € I, i # j, B = ¢(e;,e;,d) iff i < j.
Proof. Exercise. o

10.6 Theorem. Suppose (I,<) C (J,<) are infinite linear orderings, A C A
and a; € A", i € I, are such that (a;);e; is indiscernible over A. Then there are
A < B and b; € B™ such that (b;);cy is indiscernible over A and for all i € I,
bi = Qa;.

Proof. Follows from compactness (exercise, hint: choose B so that, in addition,
it is strongly x-homogeneous for large enough k). o

10.7 Lemma. Suppose (J, <) is a linear ordering and (a;);c; is indiscernible
over AC A, a; = (a},...,a}) € A". Let I; C J, i < 3, be such that J = U;-31;
and for all x; € I;, i < 3, x9 < w1 < x2. Then (a;)icr, is indiscernible over
AU{CL?J jEI()UIQ, 1 Sk‘gﬂ}

Proof. Exercise. o

10.8 Exercise. Suppose A = T,cf,. For A C A, by acl(A) we mean the
algebraic closure of A (i.e. the set of all roots from A of all non-zero polynomials
P(X) over the field generated by A or equivalently over the ring generated by A ).
Then (a;)i<w, a; € A (a; a singleton), is indiscernible over A C A (and non-trivial)
iff for all i < w, a; € acl(AU {a;| j < i}). Hint for the direction from right to
left: There is essentially only one such sequence. If (a});<, is another one, then
by induction on ¢ one can find an isomorphism f between the fields generated by
AUA{a;| i < w} and by AU {d}| i < w} such that f | A = id and for all i < w,
f(a;) = aj. (See also the next section.)
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We say that (a;)icr, a; € A™, is set-indiscernible over A C A if for all n < w,
10y ooy ins J0s s ju € I, a formula ¢(20,...,2",y) and a € A* the following holds:
if for all I < p < n, 4 # i, and j; # jp, then A = ¢(a;,,...,a;,,a) iff AE
d(ajy, s aj,,a).

For k-stable see Exercise 8.16.

10.9 Exercise. Let (a;)ic.,, a; € A™, be indiscernible over A C A.

(i) Let m # id be a permutation of n + 1, n < w. Show that there are m; € n,
i < k < w, such that 7 = (mg,mg + 1) o (mg_1,mg—1 + 1) o ... o (Mg, mg + 1),
where the permutations (m,m’) are the usual transpositions (e.g. if n = 3 and
m=(1,2)0(0,1), then 7(0) =2, (1) =0, m(2) =1 and 7(3) = 3).

(ii) Suppose (a;)ic,, Is not set-indiscernible. Show that there are k < n < w,
a formula ¢(2V,...,2"* 1 y) and a € AP such that A = ¢(ag,...,ani1,a) but A =
P(AQy ooy A1y At 1 Ay Q-2 vy Q15 @) -

(iii) Show that if Th(A) is w-stable (or k-stable for some k), then (a;)ic. is
set-indiscernible over A. Hint: Exercise 8.13 and Theorem 10.6.

11. Pregeometries

In this section we look at combinatorial geometries and their relation to model
theory.

11.1 Definition. Let X be aset and cl : P(X) — P(X). We say that (X, cl)
is a pregeometry if for all A C B C X and a,b € X, the following holds:

(g1) ACcl(A) Ccl(B) = cl(cl(B)),

(g2) if a € cl(A), then there is finite C' C A such that a € cl(C),

(g3) if be cl(AU{a}) —cl(A), then a € cl(AU{b}).
If in addition, cl(0) = 0 and cl({a}) = {a} for all a € X, we say that (X,cl) is a
geometry.

The property (g3) above is called Steinitz exchange principle.

In the following exercise and in some later exercises we look only finite dimen-
sional vector spaces. This is becase at least at some point, in our course Lineaarial-
gebra I and II, only finite dimensional spaces were studies. The results hold also in
the case of infinite dimensional spaces.

11.2 Exercise. Let 1 < N < w.

(i) Show that (RY, span) is a pregeometry, where R" is considered as a vector
space over the reals R (of dimension N ) and for A C R, span(A) is the subspace
generated by A (span(0) = span({0}) = {0}).

(ii) Show that (R™ aff) is a geometry, where aff(A) is the affine subspace
generated by A i.e. {1 gria;ln <w,r, € R, a; € Aand X gr; =1} (aff(0) =0).

(iii) Show that for any non-empty A C R"™ and for any a € A, aff(A) =
fa(span(f71(A))), where f, : RN — RY is such that f,(z) =z +a.
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Notice that (R? aff) can be see also as the structure in Example 1.19 (the lines
are aff({a,b}) for a,b € R*, a #b).
For the rest of this section, we let (X, ¢l) be an arbitrary pregeometry.

11.3 Exercise.
(i) Show that for all A C X, cl(A) = J{cl(C)| C C A, C finite}.
(ii) Show that if a € cl(AU {b}) — cl(A), then cl(AU{a}) = cl(AU{b}).

Let Y = X —cl(0). On Y we define a binary relation E so that (a,b) € E if
cl({a}) = cl({b}). Notice that this is an equivalence relation.

11.4 Exercise. Show that for alla € Y and ACY , if cl({a}) N A # (), then
cl({a}) Ccl(A). Conclude that a/E(={be€ Y| (a,b) € E}) =cl({a})NY.

Let X* =Y/E = {a/FE| a € Y}, where, as above, a/FE = {b € Y| (a,b) € E}.
Let cl* : P(X*) — P(X*) be such that cl*(A4) = (cl(UA)NY)/E (ie. for a €Y,
a/E € cl*({a;/E|ie€I}) iff a € cl({a;| i € I})).

11.5 Exercise. Show that (X*,cl*) is a geometry.

The geometry ((RY)*, span*) is also called a projective space and denoted by
Py_1(R). As with the affine closure, also Py(R) = ((R*)*, span*) can be seen as
a structure of the form of Exercise 1.19. Exercise: What is the difference between
A(R) and Py(R)? (In geometry, a/E e.g. for a = (z,y,2) € R® — {0}, is usually
denoted by (xz:y: z2) or [z,y,z].)

Forall A C X, by cls : P(X) — P(X) we mean the closure operation cls(B) =
cl(AUB).

11.6 Exercise. Show that for all A C X, (X, cly) is a pregeometry.

11.7 Definition. We say that (a;)ic; € X is independent (in (X,¢l)) if for
all iel, a; &cl({a;] j €I—{i}}).

11.8 Exercise. Suppose I = (I, <) is linearly ordered. Show that (a;);e;r € X
is independent if for all i € I, a; € cl({a;j| j € I, j <i}).

11.9 Definition. Suppose (a;)ic; € A C X. We say that (a;);c; Is a basis
of A (in (X,¢l)) if it is independent (in (X,cl)) and A C cl({a;| i € T}).

Notice that if (a;);e; is a basis of A then it is a basis of every B such that
ACBCcA).

11.10 Exercise. Show that every set A C X has a basis. In fact, every
independent (a;);c; € A extends to a basis.

11.11 Lemma. Suppose INJ =10.

(i) Suppose A C B C X, (a;);er is a basis of A (in (X,cl)) and (a;)ics is a
basis of B in (X,cla). Then (a;)icrus is a basis of B in (X, ¢l).

(ii) Suppose (a;)icrus is a basis of A C X. Then (a;);cs is a basis of A in
<X7 Cl{ai| iG]}) .
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Proof. (i): Clearly (a;)ic;us € B. It is also independent: Pick some linear
order < on [ U J such that for all e € [ and j € J, i < j. By Exercise 11.8, it is
enough to show that for all i € TUJ, a; & cl({aj| j € IUJ, j<i}). If i €I, thisis
clear. So suppose i € J. Then a; & cla({a;| j€ J, j<i})=cl(AU{a;|jeJ, j<
i 2 e({a;] jTUJ, j<i}).

So we are left to prove that B C cl({a;| i € IUJ}). But B C cla({ai| i € J}) =
c(AU{a;| i € J}) Cd(cd({a;| i € I})U{a;| i € J}) C cl(cd({a;| i € TUJ})) =
cd({a;lie TUJ}).

(ii): Exercise. o

11.12 Theorem. Suppose (a;)ic; and (b;);c; are basis of A C X. Then
|I| =|J| (i.e. I and J have the same cardinality).

Proof. If both [ and J are infinite, then the claim is immediate: By symmetry,
it is enough to show that [I| < |J|. For this, for each j € J, we can find finite
I; C I such that b; € cl({a;| i € I;}). Let I' = Uje;sI;. Then |I'| < |J| and
ACcl({bj| je J}) Cel(cl({as| i € I'})) = cl({ai| i € I'}) and thus I' = 1.

So we may assume that I = {ix|k <n}. If n =0, then A C cl(() and thus also
J = 0. So it is enough to prove the claim for n = m + 1 under the assumption that
the claim holds for m.

Choose finite J' C J such that a;,, € cl({b;| j € J'}) and choose J' so that
in addition |J’| minimal. By well-ordering .J, we may assume that .J is an ordinal
and that J' = {0,...,p}. Similarly we may assume that i, = k for all £ < n. Since
am € cl({bo,...,bp}) — cl({bo, ..., bp—1}), cl({bo, ..., bp—1,am}) = cl({bo,...,b,}) and
thus by Exercise 11.8 and a simple manipulation, {b;| j € J —{p}}U{a,,} is a basis
of A. Thus by Lemma 11.11 (ii), {ao,...,am—1} and {b;| j € J — {p}} are basis of
Ain (X, cl{q,,,y). By the induction assumption, |J —{p}| = m and thus |J| = |I|. o

11.13 Definition. Suppose A, B C X . By the dimension of A, dim(A), we
mean the cardinality of a basis of A. Similarly by dim(A/B) we mean the dimension
of A in the pregeometry (X,clp).

Notice that by Exercise 11.10 and Theorem 11.12, dimensions are well-defined
and that for all A C B C cl(A), dim(A) = dim(B). Notice also that dim(R?) in
As(R) = (R? aff) as well as dim((R?)*) in Py(R) = ((R?)*, span*) is 3 (although
they are called planes).

11.14 Exercise.

(i) Show that dim(A U B) = dim(A) 4+ dim(B/A).

(ii) Suppose 1 < N < w. Show that the pregeometry (RN, span) is modular
ie. forall A,B C R", dim(AUB) = dim(A) + dim(B) — dim(span(A) N span(B)).

(iii) Suppose 2 < N < w. Show that the geometry (R™,aff) is not modular
but (RY, af f{ay) is modular for any a € RY (ie. (RN,aff) is locally modular).
Hint: As in Exercise 11.2 (iii), let f,(z) = = 4+ b. Show first that in (R™,aff), A
and fy(A) have the same dimension and that af f{oy = span.
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11.15 Definition. Let A be a model.

(i) Suppose A C A. We say that a is algebraic over A if there are b € A"
and ¢(x,y) such that A = ¢(a,b) and ¢p(A,b) (= {c € Al A = é(c,b)}) is finite.
By the algebraic closure acl4(A) of A we mean the set of elements of A that are
algebraic over A. Usually we write just acl(A) for acl s(A) (see Exercise 11.16 (ii)).
If A C A", we write acl(A) for the set acl(Pr(A)), where Pr(A) is the set of all
b € A such that for some a = (ay,...,a,) € A and 1 < i <n, b = a;. Instead of
acl(Pr({a})) we write just acl(a).

(ii) We say that a definable infinite set A C A™ is minimal if for all definable
sets B C A" either AN B is finite or A — B is finite.

(iii) We say that a definable set A C A" is strongly minimal if for all B = A,
¢(B™,b) is minimal, where ¢(x,y) and b € A™ are such that A = ¢(A™, D).

(iv) We say that A is (strongly) minimal if the universe of A is (strongly)
minimal.

Typical examples of strongly minimal sets are (irreducible) algebraic curves. E.g.
an elliptic curve C = {(z,y,2)/E € Py(C)| y?2 = 23 + az2? + b3}, 4a3 + 270%> # 0
is a strongly minimal subset of P2(C) when P3(C) is equipped with a suitable
structure (e.g. the structure from Exercise 1.19; then C' is definable using e.g. lines
{(2.,2)/El © = 0}, {(2,5,2)/El y = 0}, {(2,, 2)/E| = = 0} and points (1,0, 1)/E,
(0,1,1)/E, (a,0,1)/E and (b,0,1)/E as parameters). The curve C' is also a strongly
minimal subset of C¢? (for C®?, see any book on stability theory or [Hol).

Notice that if ¢(A",b) is finite, then for all a = (ay,...,a,) € ¢(A",b) and
1<i<mn, a; €acl(b) (exercise).

11.16 Exercise.

(i) Suppose A C A < B. Then aclg(A) = aclo(A).

(ii) Suppose A |= T4, and A C A. Show that acl(A) as defined above is the
same as acl(A) as defined in Example 10.8. Conclude that A is strongly minimal.

(iii) Show that Definition 11.15 (iii) does not depend on the choice of ¢ and b.

(iv) Give an example of a minimal structure A such that it is not strongly
minimal. Hint: Think of an equivalence relation whose equivalence classes are finite
but of different size. Theorem 7.8 may be useful.

(v) Find A such that (A, acl) does not satisfy Steinitz exchange principle (g3)
of Definition 11.1.

11.17 Definition. Suppose X C A" is minimal and definable with parameters
a*. Then by aclX. we denote the operation aclX.(A) = acl(AUa*)"NX for AC X.
If there is no risk for confusion, we write just acl for acl.X. .

Notice that above the choice of the parameters a* affect on what the closure
operation aclX. is. So how should we choose the parameters for a given definable
relation X ? This is a real problem. However, many theories, e.g. T,.f,, have a
property called elimination of imaginaries that guarantees a canonical choice of the
parameters. In field theory this phenomenom is studied under the name field of

definitions.
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11.18 Exercise. Suppose X C A" is minimal and definable with parameters
a* and AC X.

(i) Show that a € aclX.(A) iff a € X and there are ¢(z,y,2) and b € A™ such
that ¢(X,b,a*) (={ce X| A= ¢(c,b,a*)}) is finite and A = ¢(a,b,a*).

(i) Suppose a,b € X —aclX.(A). Show that t(a/Pr(A)Ua*) = t(b/Pr(A)Ua*).

Notice that in the proof of the following theorem, the strong minimality assump-
tion is not needed in the proof of (gl) and (g2). Also for (g3), minimality is enough,
see Exercise 11.20.

11.19 Theorem. Suppose X C A* is strongly minimal and definable with
parameters a*. Then (X,acl) (= (X,aclX.)) is a pregeometry.

Proof. Solet AC BC X and a,b € X. We show that (g1)-(g3) are satisfied.
We assume that a* = (). E.g. by naming a* with new constants, this can be done
without loss of generality (but it simplifies notations).

(gl): Formulas v; = ciA...Avg = ¢, ¢ = (c1,...,cx) € A, show that A C acl(A).
acl(A) C acl(B) follows immediately from the definition. For acl(B)=acl(acl(B)),
pick ¢ € acl(acl(B)). It is enough to show that ¢ € acl(B). Now, by Exercise
11.18 (i), there are ¢(x,y), y = (y1, .-, Yn), and d = (dy, ...,dy) € acl(B)™ such that
¢(X,d) is finite and A |= ¢(c,d). Since d; € acl(B), 1 <i < n, there are ¢;(y;, z;)
and e; € B™ such that ¢;(X,e;) is finite and A = ¢;(d;, ;).

Let m = |¢(X,d)| and 9(y) such that A = ¢(e) iff [¢(X,e)] < m and e € X
(keep in mind that X is definable without parameters). Now it is easy to see that

0(x, 21,0 20) = Fyr- Ty (W) A C N\ 6ilyir ) A d(,y))

1<i<n

and e; U...Ue, witnesses that ¢ € acl(B).

(g2): Immediate by the definition.

(g3): The proof we give here is not the most simple one (see Exercise 11.20).
Instead it is the one that can be used to prove symmetries also in many other cases
(e.g. symmetry of non-forking for stable theories). In order to avoid some cardinal
arithmetical considerations in this proof, we assume that the language is countable.
This guarantees that for all A C X, |acl(A)| < max{|A|,w} (exercise). In Exercise
11.20 this assumption is not used.

By Exercise 11.16 (ii), it is enough to show that (g3) holds in some elementary
extension of A. Thus by Theorem 8.7, we may assume that A is (2¢)% -saturated
and strongly (2¢)*-homogeneous. Also if (g3) fails, there is an example in which A
is finite. So without loss of generality, we may assume that A is finite.

For a contradiction, suppose a € acl(A U {b}) — acl(A) and b & acl(A U {a}).
Let ¢(x,y,A) be such that ¢(X,b, A) is finite and A = ¢(a,b, A). Notice that by
Exercise 11.18 (ii), ¢(X,a, A) is finite and thus A = —¢(b,a, A).

Choose a; € X, i < w, such that for all i < w, a; € acl(AUJ;_;a;) (this
is possible since for all i < w, [acl(AUJ;_;a;)] < w < |[X]). Now by Exercise
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11.18 (ii), for all j <1i < w, t(aja;/Pr(A)) =t(ab/Pr(A)). Thus for all j <i < w,
A = ¢(aj,a;, A) N =¢(a;,a;,A). Now we could get a contradiction by modifying
Exercises 10.9 and 11.18 (ii) or we can argue as follows: By Theorem 10.4 (and
(29)* -saturation of A), we can find e, € X, r € R, such that for all r;s € R,
A = ¢er,es, A) iff r < s. Since acl({eq4] ¢ € Q}) is countable, we can find r,s €
R such that » < s and e,,es & acl(AU{e;] ¢ € Q}). By Exercise 11.18 (ii),
t(ey/Pr(AU{eq| ¢ € Q}) = t(es/Pr(AU{eq| ¢ € Q}). But letting ¢ be a rational
between r and s, A= ¢(er,eq, A) A np(es, €4, A), a contradiction. o

11.20 Exercise. Suppose X C A* is minimal and definable with parameters
a*. Show that (X,acl) (= (X, aclX.) ) satisfies (g3). Hint: To simplify the notations,
suppose a* =) and k = 1. Let ¢(x) define X and suppose that there are A C X
and a,b € X such that a € acl(A U {b}) — acl(A) but b ¢ acl(A U {a}). Then
there are ¢ € A™, formulas ¢*(x,y,c), ¥(y,c) and 0(x,c) and N € w such that
A E ¢(b,c) Nb(a,c) and 1 says that y € X and there are < N many x € X such
that ¢*(z,y,c) holds and 6 says that x € X and there are < N many y € X such
that =¢*(z,y,c) holds. Then find distinct b; € X, i < N(N + 1)+ 1, that satisfy 1
and distinct a; € X, i < N + 1, that satisfy 0. Finally find j < N(N + 1) + 1 such
that for all i < N +1, A= ¢*(a;,b;,c), a contradiction.

11.21 Definition. We say that a complete theory T is strongly minimal if
some A =T is strongly minimal.

So by Exercise 11.16 (i), Thcf, is strongly minimal.

Now we can formulate Schanuel’s conjecture that was mentioned in Remark 6.5.
Let A |= T4ef,.- The dimension of A C A in the pregeometry (A, acl) is called
the trancendence degree and we denote it by 7r(A). However, A can also be seen
as a vector space over Q (see Exercise 6.7) by letting the addition of the vector
space to be the same as the addition of the field and for all @ € Q and =z € A,
letting f,(x) = ax. Then (A, span) is a pregeometry and by dim(A) we denote the
dimension of A in this pregeometry. Now letting A = C, Schanuel’s conjecture says
that for all a4,...,a, € C,

Tr({ay,...,an,exp(ay),...,exp(an,)}) — dim({ay,...,a,}) > 0.

11.22 Exercise.

(i) Show that if T is strongly minimal, then every A |=T is strongly minimal.
Conclude that if T' is strongly minimal, then it is k-stable for all k > |L.,|. Hint:
Exercise 11.18 (ii).

(ii) Show that Ty, from Exercise 6.7 is strongly minimal and that for A C A |=
Tyw, acl(A) = span(A).

11.23 Theorem. Suppose T' is strongly minimal and A, B |=T. Then A= B
iff dim(A) = dim(B), where the dimensions are calculated in the pregeometries
(A, acl) and (B, acl), respectively.
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Proof. The claim from left to right is trivial. So we assume that for some
cardinal k, A has a basis (a;);<, and B has basis (b;);<, and we prove that A= B.
Let f:{a;| i <k} — {b;| i < k} be such that f(a;) = b; for all i < k. Then as in
the proof of Theorem 11.19 (notice that, by Lemma 8.1 (i) or Theorem 8.7, w.o.l.g.
we may assume that there is C such that A,B <C =T'), f is a partial elementary
map from A to B. By starting from f and recursively going through all the elements
of AU B one can find the isomorphism once one has proved the following claim (and
one noticed that the claim is symmetric):

11.23.1 Claim. Suppose g : A — B is a partial elementary map such that
A = acl(dom(g)) and B = acl(rng(g)) and a € A. Then there is a partial elementary
map h: A — B such that ¢ C h and a € dom(h).

Proof. Let ¢(x,y) and ¢ € dom(g)* witness that a € acl(dom(g)). Since
?(A,c) is finite, we may assume that we have chosen these so that in addition, for
all a’ € ¢(A,c), t(a'/dom(g)) = t(a/dom(g)). Now A | Fzp(x,c) and thus there is
b € B such that B = ¢(b,g(c)). We claim that h = g U {(a,b)} is as wanted.

Let ¢ (z,z) and d € dom(g)"™ be arbitrary such that A = ¢(a,d). We need to
show that B |= ¢(b,g(d)). Suppose not. Then B = Jz(o(z,g(c)) A ~p(z, g(d))).
Thus there is @’ € A such that A = ¢(a’,¢) A —p(a’,d). This contradicts the choice
of ¢ and ¢. o Claim 11.23.1.

[m}

Remark: There is an easier proof for Theorem 11.23: One could assume that
C (see the proof) is strongly A-homogeneous for large enough A (A > x) and then
extend f to an automorphism ¢ of C and show that g(A) = B. We gave the more
complicated proof since it contains an important observation that can be used in
many situations.

11.24 Exercise. Suppose T is strongly minimal.

(i) Show that T is k-categorical for all K > |Ly.]|.

(ii) Suppose, in addition, that L is countable. Show that T has, upto isomor-
phism, at most w many countable models.

(iii) Suppose, in addition, that L is countable and A C A = T. Show that
if acl(A) is infinite, then acl(A) < A (here we think acl(A) as the submodel of A
generated by acl(A) and notice that acl(A) is L-closed). Conclude that T has upto
isomorphism either one or w many countable models.

12. Ehrenfeucht-Mostowski models

We start by looking at ideas from the proof of Lemma 4.8.

12.1 Definition.  Given a vocabulary L, a skolemization L° of L is the
vocabulary L U {fs(v; )| ¢(vi,x) L-formula, x = (x1,...,2,)}, where fy, ) are
new n-ary function symbols (0-ary function symbols are constants). Skolem theory
T is the set of all sentences

V.. Ve, (Fuid(vi, ) = ¢(foiu;,0)(2), ),
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where ¢(v;,x) is an L-formula.

Misusing the terminology, we call both the new function symbols and their in-
terpretations (in case they satisfy T"°) Skolem-functions.
The following lemma was part of the proof of Lemma 4.8.

12.2 Lemma.

(i) For all L-structures A there is L°-structure A° such that A° = T° and
A5 T L=A.

(ii) If A and B are L® -structures and BC Al=T?, then B| L <A L.

Proof. (i) is trivial and (ii) follows immediately from Tarski-Vaught. o

12.3 Definition. Let A be an L® -structure and A C A. By SH(A) (Skolem
hull) we mean the set

{t*(a)| t(zx) L®-term, x = (x1,...,z,), a € A™}.

Then SH(A) is closed under all f*, f € L® a function symbol, and contains all ¢*,
c € L® a constant symbol, and thus it can be equipped with the structure induced
from A. This substructure of A is also called SH(A).

Notice that by Lemma 12.2 (i), SH(A) | L < A | L assuming A |= T%.

Next we look constructions of Ehrenfeucht-Mostowski models. We start by
quickly explaining an easy way of constructing them that is good enough e.g. for
Exercise 12.11 (iii) but which is not good enough for Corollary 12.8. Let A be
any infinite L-model, e.g. a model of a theory that you are interested in. Add
Skolem functions to A to get A* |= T°. Then pick A* < B so that it contains a
non-trivial indiscernible sequence (b;)i<., over () and let ®,, = t((b1,...,b,)/0) and
® =J,,«, ®n- Then for all linear orders I = (I, <) one gets Ehrenfeuch-Mostowski
model EM (I, ®) as below using Theorem 10.6.

12.4 Exercise. Let A and ® be as above. Show that EM(I,®) | L and A
are elementarily equivalent.

12.5 Definition. Let k be an infinite cardinal. For all ordinals «, a cardinal
J.(k) is defined as follows: Jo(k) = k&, Jag1(r) = 22 and for limit o, Do (k) =
Upca 28(K). Also we write 3, = Jp(w).

Notice that for all infinite cardinals x, 3,.+(A) = 3.+ for all A < 3.+ and that
for all a > w, J,((2%)") = 3u(k).

12.6 Fact (Erd6s-Rado). For all infinite cardinals k and n € IN,

(Tn(w)™ = (5

K

Proof. See e.g. [Je|. o
Only for notational simplicity, in the following theorem we look at elements
ay € A, instead n-sequences af* € A7 for n € IN.
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12.7 Theorem. Let k = |L,,| and A = (2%)". Suppose that for all o < X,
we have A, and aff € Ay, i < (Ja(N))T, such that af # af for i # j. For all
a < A, let AS be as in Lemma 12.2 (i) for A,. Then there is a collection ® of
L* -formulas with the following properties:

(i) for every L°-formula ¢(vy,...,v,), n € IN, either ¢ € ® or ¢ € P,

(i) for all linear orderings (I,<), there are L®-structure B and b; € B, i € I,
such that

(a) for all ¢(v1,...,v,) and iy < ia < ... < i, from I, B = ¢(b;y,...,b;,) iff
d(v1,...,v,) €D,

(b) for all i1 < iy < ... <1, from I, there are a < X, y1 < ... < yp < (o(A\))T
and an isomorphism 7 : SH({bi,,...,b;,}) — SH({aS,,...,a5 }) such that for all

1<k<n, m(by)=as, .

Proof. By Lemma 10.7 it is enough to prove (ii) in the case I = w. Furthermore,
by (i) and (a), it is enough to prove (b) in the case i, = k forall 1 < k <n € IN—{0}.
We do this.

By recursion on n € IN we construct n-types ®,, over (} in vocabulary L, and
for a <A, a” € A\ —a and X2 C (Jyn(A))T of power > 3, (\) so that

I) o™ < B" for a < B and o™t = " for some > « and then X, , C X/

(IT) for all ¢(vl, woUp) and ip < ... < 4, from XS, é(v1,...,v,) € Dy 1ff
A5 E (),

(IIT) 1f (al, vy @p) € A™ realizes ®,,, then (ay,...,a,) is n-indiscernible over 0,

(IV) &, C <I>n+1.

n = 0: Since the number of possible L -theories is < X, thereis X C X\ of power
A such that for all o, 8 € X, Th(A3) = Th(A3) and we let ®; be the common
theory. a® = min(X — {8°] B < a}) and X§ = (J,0(N))T. Clearly (I)-(IV) hold.

n=m+1: For all @« <\, let o = («+n)™ and notice that

(9 X577 2 (Tn(Ta (W) o
Define fo : [X3"]" — S,(0) so that f(i1, ..., in) = t((ag", ..., a5 ) /0; A5, ). Since

(%) [Sa (D) < A,
by Erdos-Rado and (*) above, there is homogeneous X+ C X%+ of power > J,()\).
Let po» be the constant value.

By (**), there is X C {a?| a < A} of power A and p such that for all v € X,
py =p. Now let a” = min(X —{8"| B < a}), X2 = X*" and ®,, = p. Notice that
by the assumptions (I) and (II) for m, ®,, C ®,,. So clearly (I)-(IV) hold.

Then we let & = U, <, ®,,. This is as wanted (exercise). o

12.8 Corollary. Let k = |Ly| and suppose that T is a theory and D is a
collection of types over (). If for all A < J(oxy+ there is A |=T of power > X such
that it omits every p € D, then for all > k there is A =T of power 6 such that
it omits every p € D.

Proof. For all a < (27)", since (3o ((27)%))" < J(ax)+, we can find A, =T
and a$ € A, i < (3o((27)7))" such that
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(i) af # af for i # ],

(ii) A, omits every p € D.

Let & = U, ., ®, be asin Theorem 12.7. Let B and b;, i < #, be also as in Theorem
12.7 (ii) for (I,<) = (0,<). We claim that C = SH({b;| i < 0}) | L is as wanted.

Clearly |C| = 6. Also TUT® C ®; and thus B|=TUT?® andso C < B | L and
C = T. Finally, suppose p € D. For a contradiction, assume that ¢ = (¢1,...,¢p) €
C™ realizes p. Then there are i; < ... < i, in 6 such that ¢; € SH({b;,,....b;, }) =D
forall 1<+t <m.Since D] LB Land D CC,D]|L=C,andso c realizes p in
D. Let a, ¥1,...,7n and 7 be as in Theorem 12.7 (ii)(b). Then d = (7(c1), ..., 7(cm))
realizes p is D' = SH({a5,,...,a5 }) [ L. Since D' < A,, d realizes p in Ay, a
contradiction. o

The model C = SH({b;| i € I}) [ L from the proof of Corollary 12.8 is called
an Ehrenfeucht-Mostowski model and is denoted by EM (I, ®). Notice that I and
® determine EM (I, ®) upto isomorphism (and not more). In the literature, by &
one usually means our ® restricted to quantifier free formulas. (Exercise: Why?)

It is also important to notice that although the easiest way to show that the
model EM (I, ®) exists (i.e. that the set ® constructed in the proof of Theorem 12.7
satisfies (ii) from the theorem) is to use compactness, this can also be done without it
and thus the construction works in many other context than the one above, perhaps
with a bit more carefully chosen interpretations for Skolem-functions.

Recall that Remark 9.3 shows that in Corollary 12.8, one can not replace Jon)+
by k.

12.9 Exercise. Show that in Corollary 12.8, one can not replace :(QN)Jr by
any cardinal < J,+. (Hint: Look at models in which there are a countable set, codes
for subsets of the set, codes for subsets of subsets of the set etc.)

By Ho(k) (Hanf number for omitting types) we denote the least cardinal A such
that the following holds for all vocabularies L of size < k: If T is an L-theory, D
is a collection of L-types over ) of size < x and there is A =T of power > \ such
that it omits every p € D, then for all § > k there is A =T of power 6 such that
it omits every p € D. Hoj(k) is defined similarly except that D is assumed to be a
singleton.

12.10 Exercise.

(i) Show that for all infinite k, Ho(k) = Hoy1(k). Hint: For the non-trivial
inequality Ho(k) < Hos(k), suppose K is the class of all models of T' that omit
every p € D. We want to code K as a class of the type the definition of Hoi(k)
talks about. To do this, extend the vocabulary by adding new unary predicates P, @),
constants ¢;, i < k, and function symbols F,, p € D. Look at a theory T" such
that A |=T' implies the following: P and QA form a partition of the universe, for
all i <k, cfeQA, foralli<j<rk,cit# 03-4 and A | PA L =T (see, Exercise
1.15). In addition put to T’ requirements for the functions F, so that if A =T’
omits {Q(vo)} U {—vo = ¢;| i < k}, then A | PA L omits every p € D.

(ii) Show that Ho(k) < Jax)+ .
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Recall that we say that a complete theory T is k-stable if forall n <w, AT
and A C A of power < k, |S,(4;A)] < k.

12.11 Exercise. Suppose k is an uncountable cardinal, L is countable, T' a
complete theory, A= T, a; € A for all i < J(gwy+, for all i < j < Jgwy+, a; # a;
and ® is as in Theorem 12.7 for A, = A and a = a;.

(i) Show that for all n < w and countable A C k, |{t%,(a/A;(k,<))| a € K"}| <
w, where x = (v1,...,0p).

(ii) Show that for all n < w and countable A C EM (k,®),

{t(a/A; EM(k,®))| a € EM(k,®)"}| < w.
(iii) Show that if T' is k-categorical then it is w-stable.

13. L., and omitting types

In this section we look at extensions L, of the first-order logic. The main
motivation to look extension (also other than L, ) is that many interesting classes
of structures are not axiomatizable in the first-order logic. The following is a good
example although it is not axiomatizable even in L,,. Look at the class H of all
complex Hilbert spaces H = (H,+, fo, < , >)acc (there are many ways to handle
the inner product <, > so that the structure H indeed is a structure in our sense). If
one looks the class of all models of the complete first-order theory of H, the resulting
class behaves very badly, the structures are extremely complicated e.g. stationary
sets (see [Je|) can be coded in them. However, the original class H is very nice, at
least in comparison. E.g. if k¥ = k, then there is upto isomorphism only one model
in H of power «.

13.1 Definition. L, -formulas are defined as follows:

(i) atomic formulas ¢ are L, -formulas and v; is free in ¢ is it appears in ¢,

(ii) if v is L, -formula, then so are =) and Jug and v; is free in — if it is
free in 1 and it is free in Juy) if it is free in ¢ and k # i,

(iii) if |I| < k, for all i € I, 1; is Ly, -formula and there is n € IN such that
for all i € I, if vy, is free in 1;, then k < n, then /\ieI v; is a formula and vy, is free
in N\,c; i if it is free in some 1; .

An L., -formula ¢ is an L., -sentence if no vy, is free in ¢.

Notice that for all L, -formulas ¢, only finitely many v; are free in ¢. The
notation ¢(z) is used as in the case of first-order logic and also A |= ¢(a) is defined as
in the case of first-order logic (A = (A\,;c; ¥:)(a) if A = 9;(a) forall i € I'). Symbols
V, =, ¢ and V are used as in the case of first-order logic (\/,c; ¥: = = \;cr ~%:)-
Notice that L, is still the first-order logic (i.e. the two definitions for L, coincide)
and we say that ¢ is L., -formula if it is L, -formula for some k.

13.2 Definition.
(i) Let x be a cardinal or co. We say that A and B are Ly, equivalent
(A=, B) if for all Ly, -sentences ¢, A= ¢ iff B ¢.
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(ii) A variant EF}(A,B), k < w, of the game EF}y(A,B) is defined exactly as
the game EFy (A, B) except that at each round m < k, II is required to choose the
function f,, so that (in addition) it is a partial isomorphism.

13.3 Exercise.  Show that for all models A and B, Il 1 EF,(A,B) iff
11+ EF*(A,B).

13.4 Theorem. The following are equivalent:
(i) A=cw B,
(ii)) II 1+ EF,(A,B).

Proof. (ii)=-(i): Exactly as in the first-order case (just forget the quantifier
ranks).
(i)=(ii): Clearly it is enough to prove the following claim:

1 Claim. If A=, B, thenforall a € A, thereis b € B such that (A, a) =ccw
(B,b).

Proof. Suppose not. Then for all b € B there is an L., -formula ¢p(v1)
such that A = ¢y(a) but B [E ¢p(b). Then A = vy A\jcpdp(vi) but B =
Fv1 Apen @(v1), a contradiction. o Claim 1.

m]

13.5 Definition. L, -formulas in negation normal form are defined as follows:
L., -formula ¢ is in negation normal form if it is atomic or negated atomic formula,
or of the form Jv;v or Yv;v, where 1 is in negation normal form or of the form
Nicr i or \/,c;¥i, where each 1); is in negation normal form.

13.6 Lemma. For all Ly, -formulas ¢(x), x = (x1,...,x,), there is an L, -
formula (x) in negation normal form such that for all A and a € A", A | ¢(a)
iff Al=y(a).

Proof. Clearly it is enough to prove the following claim (exercise):

1 Claim. For all L, -formulas ¢(x) in negation normal form, x = (x1, ..., xy),
there is an Ly, -formula 1 (x) in negation normal form such that for all A and
a€ A", Al -¢(a) iff Al=1(a).

Proof. Easy induction on ¢. E.g. if ¢ = A,.;0;, then by the induction as-
sumption there are L, -formulas 6, in negation normal form such that for all A and
ac A", A —0;(a) iff A= 0;(a) and we can choose 9 = \/,.;0;. o Claim 1.

[m]

13.7 Lemma. Suppose T is a theory and D is a collection of types. Let k
be such that |Ly.|,|D| < . Then there is an L, -sentence ¢ such that for all A,
AE¢ if AET and A omits every pe D.

Proof. Exercise. o

In the following definition, we assume that vy does not appear in ¢ and when
we write ¢(z), x = (1, ...,Tn), we assume that x is chosen so that v; € {x1,...,x,}
iff v; is free in ¢. And in item (iv) our notation is even more sloppy than usually.
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13.8 Definition. Suppose ¢ is an L, -formula in negation normal form. In
items (ii)-(iv) below ¢ is assumed to be a sentence.
(i) A fragment Fy of ¢ is defined as follows:

(a) if ¢ is atomic or negated atomic formula, then Fy = {¢},

(b) if ¢ = Niey i or ¢ =V ey i, then Fy = {6} UlU;c; Fy,

(c) if ¢ = Fvpp or ¢ = Vo, then Fy = {¢} U Fy,.
(ii) L? = LU{Ry(s,,...z)| ¥ € Fs}, where Ry, are new n+ 1-ary relation symbols.
(iii) T? consists of the following formulas:

(a) if Y(z1,...,x,) € Fy is atomic or negated atomic formula then

VooV, Vo, (Ry (V0, T1, oy Tp) > (71, .0y ) € T,

(b) if (1, ..., Tn) = N;es i € Fy, then for all i € I,

VooV Vo, (Ry (vo, T1...2y) — Ry, (vo, 21, ...y z)) € T?,

)

.....

(c) if (1, ...;Tn) = ;e i € Fy, then for all i € T,
VooV Vo, (Ry, (vo, 21..25) — Ry (vo, 21, .oy ) € T?,
(d) if Y(x1,...,xy) = F20(x, 21, ..., 2,) € Fy, then
VooVt ..V, (Ry (o, T1, oy ) <> FTRe(vo, T, 21, ...y 1)) € T?,
(e) if P(x1,...,zpn) = Vab(x, x1,...,x,) € Fy, then
VooV Vo, (Ry (V0, T1, oy Tn) <> V2 Ry (v, T, X1, ..y 7)) € T,
(f) VU()R¢(U0).

(iv) D? consists of the following types:
(a) if Y(x1,...,2n) = N\;cr Vi € Fy, then
{=Ry (v, v1...v,) } U{Ry, (vo,v1,...,vn)| i € [} € D?,
(b) if (1, ....,xn) = Ve i € Fy, then
{Ry(vo,v1...0n) } U {=Ry, (vo,v1,...,vn)| i € [} € D?.

13.9 Lemma. Suppose ¢ is an L, -sentence in negation normal form.

(i) For all L-structures A, if A= ¢, then there is an L®-structure B = T? so
that B omits every p € D? and B | L = A. Furthermore such B is unique.

(ii) If A= T? is an L?-structure and A omits every p € D?, then A | L |= ¢.

Proof. Just check the definitions (exercise). o

13.10 Theorem. Suppose ¢ is an L, +,,-sentence such that for all A < Jiar)+,
there is A |= ¢ of power > X. Then for all A > k, there is A |= ¢ of power \.

Proof. Clearly in ¢ at most x symbols from the vocabulary can appear and
thus we may assume that |L,,| < k. But then the claim is immediate by Lemmas
13.6 and 13.9 and Corollary 12.8. o

In Theorem 13.10 in the case k = w, Jax)+ can be replaced by 3., . This is
because in this case in the construction of a model in the Skolem-language with the
indiscernibles one can make use of Henkin construction.

13.11 Remark. Suppose F' is a collection of L, +,-formulas of power < k
and A C A. Then there is a substructure B of A of power |A|+ k such that A C B
and for all ¢(x1,...,x,) € F and a € B™, B = ¢(a) iff A= ¢(a).
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Proof. Clearly we may assume that if A;c;; € F', then ¢, € F for all ©+ € T
and that if ¢ € F' or dugyp € F, then ¢ € F'. Then we can proceed as in the
first-order case (exercise). o

13.12 Exercise. Suppose k > w is such that L., is k-compact i.e. if T is
a collection of L., -sentences of size k and every T C T of size < k has a model,
then T has a model. Show that k is a regular limit cardinal (and thus the existence
of such cardinal is not provable in ZFC).

13.13 Exercise. Let L = {x,1}, where x is a binary function symbol and 1
is a constant.

(i) Show that there is an L, -sentence ¢ such that for all groups A, A = ¢
iff A is locally finite i.e. every finitely generated subgroup is finite.

(ii) Show that there is an L, -sentence ¢ such that for all groups A, A = ¢
iff A is simple i.e. {1} and A are the only normal subgroups of A.

13.14 Exercise. Let L = {R}, where R is a binary relation. Show that there
is no Lo, -sentence ¢ such that for all models A, A = ¢ iff there are no a; € A,
i < w, such that for all i < j < w, A }= R(aj,a;). Hint: Use Lemma 13.9 and the
proof of Corollary 12.8.

14. Scott-rank

In this section we look at isomorphisms between countable structures. The
starting point is the observation that by Theorem 13.4, for countable A and B,
A= B iff A=, B.

Throughout this section, L and all structures are assumed to be countable.

Now suppose A is a model. For all & < w;, n < w and a = (ay,...,a,) € A",
we define an L, -formula d){l‘l’a (v1, ..., V) by recursion on « as follows:

1. a=0: We let ¢214,0 be the conjunction of all atomic or negated atomic formulas
Y(vy,...,v,) such that A = ¥(a). If n = 0 and there are no atomic sentences, we
let gbéo be T.

2. a=p+1: For all b € A, by ab we denote the sequence (a,...,a,,b). Then

$ato = s AN\ Fonardin 5) A (YVongr \/ b p)-
be A be A

3.« is alimit: ¢z}, = Ns<a (%47/8'
If a = 0, then we denote ¢7', by just ¢ . Notice that A = ¢;',(a) and that for all
a<f<w; and a € A", = ‘v’vl...an(gbf’B — ¢2ty)-

14.1 Lemma. Suppose |A| = w. There is a < w;y such that for all n < w
and a,b e A", if A= ¢, (b), then A ¢2t, 1 (b).
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Proof. For any pair (a,b) € (A™)?, let a(a,b) be the least o < w; such that
A = (bf’a(b) if there is such « and otherwise let a(a,b) = 0. Now let a be any
ordinal < w; such that o > a(a,b) for any (a,b) € (A")?, n < w. Clearly « is as
wanted (exercise). o

The least o as in Lemma 14.1 is called Scott-rank of (countable) A and we
denote it by Sr(A). The Scott-sentence ¢ of A is the formula

a—|—1 /\ /\ /\ V'Ul \V/’Un (ZS — (ba a—l—l))

0<n<w a€A"

where o = Sr(A). Notice that A = ¢* and that ¢* is an L,,, ., -sentence.

14.2 Theorem. Let L be countable. For all countable structures A and B,
the following are equivalent:

() A=B,

(ii) B | ¢*.

Proof. We prove that (ii) implies (i), the other direction is clear. Let o =
Sr(A). We notice first that since B = ¢y, for all a € A, there is b € B such that
B = ¢7ta(b).

We also notice that a = (aq,...,a,) € A", if b = (b1,...,b,) € B™ and B
¢34 (b), then B = ¢2(b) and thus a; — b;, 1 <i < n, is a partial isomorphism.

Thus it is enough to prove the following claim (exercise).

14.2.1 Claim. Suppose a € A" and b € B" are such that B = ¢;',(b).
(i) For all ¢ € A there is d € B such that B |= qzﬁac o(b,d).
(ii) For all d € B there is ¢ € A such that B = qbac o(b,d).

Proof. By symmetry it is enough to prove (ii). Since B = ¢ A gf)éa(b), B E
¢t o r1(b). In particular, B = Yo, 41V g 07 o (b). Thus there is ¢ € A such that
B = qﬁaca( d). o Claim 14.2.1.

14.3 Definition.

(i) We say that a (possibly empty) partial ordering T' = (T, <) is a tree if for all
t €T, the set {u € T|u<t} is well-ordered by <. We say that B C T is a branch
if it is linearly ordered by < and downwards closed. u € T is a successor of a branch
B ift <wu for all t € B and it is an immediate successor if in addition there is no
w €T such that B < w < u. uw € T is an immediate successor of t € T if it is an
immediate successor of the branch {w € T| w < t}. T is a k, \-tree if every branch
has < k many immediate successors and every branch has size < \.

(ii) For an ordinal «, by T, we mean the tree of all strictly decreasing f :n — «,
n € w — {0}, ordered by the subset relation.

(iii) Let T be a tree and A and B be structures. The game EF%(A, B) is defined
exactly as EF (A, B) except that now the number of rounds may be any ordinal and
at each round m € On, the player I is required to choose in addition to ¢,, € AUB
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also t,, € T and he is required to do this so that for all k < m, tx < t,,. The game
ends when I cannot choose t,, anymore (i.e. {u € T| for some k <m, u <t} is a
maximal branch).

Often one requires that trees have the least element (=root) but here that is
inconvenient. Also when we talk about k,\-trees we assume that x and )\ are
infinite cardinals. Notice that () is a branch, T, is a |a|*,w-tree and that Ty = 0.
Notice also that EF*(A, B) and EFY(A, B) are equivalent i.e. a player has a winning
strategy in one iff he/she has a winning strategy in the other and that these games
are determined i.e. one of the players has a winning strategy, compare this to Fact
15.12 (if I does not have a winning strategy then at every round, I can find a move
so that after that move, I still does not have a winning strategy in the rest of the
game, exercise). Finaly notice that if A and B are countable, then A = B iff IT has
a winning strategy in EF9(A, B).

14.4 Exercise. Show that for all ordinals o and structures A and B, the
following are equivalent.

(1) B 6

(i) 11 + EFg (A, B).

We can define quantifier rank for L., -formulas: If ¢ is atomic, ¢r(¢) = 0, if

¢ = —, then qr(¢p) = qr(y), if ¢ = Jvp, then gr(¢) = qr(¢) + 1 and finally if
¢ = Nier i, then qr(¢) = U{qr(vi)| i € I}.

14.5 Exercise. Let A and B be models and « an ordinal. The following are
equivalent.

(i) For all L., -sentences ¢ of quantifier rank < o, A= ¢ iff B = ¢.

(i) 11 + EFg (A, B).
Conclude that for all countable A there is an wy,w-tree T such that for all countable
B, A~ B iff I t EF%(A,B).

14.6 Exercise. Let A = (A, E4), where A = {(n,m) € w?| n < m} and
(n,m)EA(a,b) if m = b and B = (B, EB), where B = {(n,m) € (w+ 1)?| n < m}
and (n,m)E®(a,b) if m = b. Show that if o« < w, then II + EF{ (A,B) and if
a > w, then ITEF%Q(A,B).

15. More on Ehrenfeucht-Fraissé games

In this section we take a quick look on what happens when one cannot use
ordinals to rank games in the style of the previous section. The analysis below is not
limitted to Ehrenfeucht-Fraissé games but works for all so called closed games.

15.1 Definition. Let Ty and Ty be trees. The comparison game CG(Ty,T1)
is defined as follows: At each round m € On, first I chooses t,, € Ty and then
11 chooses u,, € Ty. Both players must choose these so that the element they pick
is strictly greater than any of the elements they have chosen earlier. The one who
can not move, looses. We write Ty < Ty if II T CG(Ty,Ty) and Ty << Ty if
I1CG(Ty, Th).
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15.2 Exercise.

(i) Show that Ty << Ty implies Ty <1y and Ty £ Tp.

(ii) Show that Ty < Ty iff there is f : Ty — Ty such that for all t,u € Ty, if
u <t, then f(u) < f(t).

(iii) Show that for all K ,w-trees T there is a < Kkt such that T < T, and
T, <T.

(iv) Show that for all ordinals o and , o < g iff T, < Ts and o < ( iff
T, << TB .

15.3 Definition. Let T be a tree. By o(T') we mean the tree of all branched
of T ordered by the subset relation.

15.4 Exercise. Show that o(Ty) < To41 and Thy1 < o0(Ty).

15.5 Lemma. Let T be a tree.

(i) T << o(T).

(ii)) If T << T, then o(T) < T'. In particular, there is no 1" such that
T<<T <<o(T).

(iii) If T' is a kK, A-tree, then so is o(T).

Proof. (i): At each round m € On in CG(o(T),T), I simply chooses t,, to
be the set of all w € T such that for some k < m, w < u, where uj is the choice
of IT at round %k (so to =0).

(ii) and (iii): Exercise. o

15.6 Definition.  Suppose A and B are models of size > k. We write
T.(A,B) for the tree of all winning strategies of II in games EFZ, o < k, ordered
by the subset relation.

15.7 Exercise.

(i) Suppose A and B be models of size < A > k. Then II does not have a
winning strategy in EF3(A, B) iff T,,(A, B) is a (2*)T, k-tree.

(i) If |A| = |B| = k, then A= B iff I ¥ EFY(A,B).

15.8 Theorem. Suppose A and B are models of size A\ > k, II does not
have a winning strategy in EFY(A,B) and T = o(T.(A,B)). Then II does not
have a winning strategy in EF$(A, B).

Proof. It is enough to show that for any tree T, if II 1 EF$(A,B), then
T <T.(A,B). Let m be the winning strategy and ¢t € T. Let B={u € T| u < t}
and « the order-type of B. Then B and 7 canonically define a winning strategy m

for IT to EF3(A, B). But then clearly ¢ — 7; is an order-preserving function from
T to T.(A,B). o

15.9 Corollary. Suppose |L| < k. For all models A of power k, there is a
(27)F, k-tree T such that for all models B of power r, A= B iff Il 1 EF%(A,B).
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Proof. Let B,, a < 2%, list upto isomorphism all models of power « that are
not isomorphic to A and for all a < 2%, let T, = 0(T,(A,B)). Then if T is the
disjoint union of these trees, T is as wanted. o

Corollary 15.9 can not be improved:

15.10 Fact. For every (e.g.) unstable theory ¥ in a countable language and
uncountable r such that k<% = k, there is A = ¥ of power k such that for all
kT, k-trees T there is B |= % of power x for which II t EF$(A,B) but A % B.

There is another way to prove Corollary 15.9: Instead of looking when I has
a winning strategy one can look when I does not have a winning strategy. In many
cases of many (closed) games (but not always) this is the right way to go.

15.11 Exercise. Suppose |A| = |B| = k and A % B. Show that there is a
(k<®)*, k-tree T such that I+ EF%(A,B).

15.12 Fact. There are (e.g.) dense linear orders A and B of power w; s.t.
IT1TEFYAB) iff a<w+1 and I 1 EFY(A,B) iff a > w;.

Appendix: On recursive definitions

Let A be a non-empty set and f an n-ary function from A to A, n € IN
(ie. f: A" — A). We say that C C A is f-closed if for all cy,...,c, € C,
flery.oycn) € C. If F is a set functions from A to A of finite arity, we say that
C C A is F-closed if it is f-closed for all f € F'. For non-empty B C A, we write
cla(B, F) for the C-least subset of A that contains B and is F'-closed (if such set
exists).

A.1 Lemma. cla(B,F) exists.

Proof. Let S be the family of all F'-closed D C A that contain B. Notice that
A € S. Let C be the intersection of all elements of S. Then C = ¢la(B, F): Clearly
B CC and if ¢;,...,c,, € C and f € F, then for all D € S, f(c1,...,¢,) € D (since
Cly.scn € D and D is f-closed) and thus f(cy,...,¢,) € C ie. C is F-closed.
Since every F'-closed set that contains B belongs to S, C' is the C-least such. o

A.2 Example. Let G be a group, f : G> — G be the group operation and
g: G — G be such that g(a) = a~'. Then for all non-empty B C G, clg(B,{f,g})
is the subgroup generated by B.

A.3 Lemma. Let P be any property (expressible e.g. in set theory). Then
every element of cla(B,F) has P if the following holds:

(i) every element of B has P,

(ii) if each of c1,...,¢,, € cla(B,F) has P and f € F is of arity n, then
f(e1y...,cpn) has P.

Proof. Let D be the set of all ¢ € cl4o(B, F') that has P. By (i), D contains
B and by (ii), D is F-closed. Since cla(B, F) is the C-least such, cla(B,F) C D
i.e. every element of cl4(B,F) has P. o
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A.4 Example. Let B = {0} and f: IN — IN be such that f(n) =n+ 1.
Then IN = clp(B,{f}) and thus every natural number has a property P if 0 has
it and if n € IN has P, then also n+ 1 has it.

A.5 Exercise. Show that for all ¢ € cla(B,F) either ¢ € B or there are
ClyeyCp € la(B, F) and f € F such that ¢ = f(c1,...,cp).

A.6 Example. Let W be the set of all finite sequences of symbols from the set
V =A(,),+, X, 1} ie. the set of all words in vocabulary V. For u,v € W, we write
uv for the concatenation of u and v. Let B = {X,1} and f: W? — W be such
that f(u,v) = (u+v). We write LP = clw (B,{f}) (soeg. (X+1)+1)€ LP,
LP = linear polynomials). We write also V (u) for the number of left brackets in u
and O(u) for the number of right brackets.

Structure trees: On blackboard.

A.7 Exercise.
(i) O(u) = V(u) for all u € LP.
(ii) If v and w are non-empty words and uw € LP, then V(u) > O(u).

We say that the triple (A, B, F') is good if for all ¢ € cla(B, F) the following
holds: Either ¢ € B or there are unique f € F' and ¢y, ...,¢, € cla(B, F') such that
c=flcry.yen).

A.8 Exercise. Let W, B and f be as in Example A.6. Show that (W, B,{f})
is good. Hint: Use Exercise A.7.

For all n € IN we define ¢l (B, F) as follows: cl%(B,F) = B and
ClZ}\Jrl(BJF) = CZZ(B7F) U {f(cl7-'-7cn)| C1y..sCp € CZZ(B7F)7 f < F}

A.9 Lemma. |J - c%(B,F)=cla(B,F).

Proof. Easy induction on n shows that for all n € IN, cl’;(B,F) C cla(B, F)
and thus (J,_, cl’4(B,F) C cla(B, F). On the other hand, clearly, | J -, cl’4 (B, F)
is F-closed and contains B and thus cla(B,F) C |, _,cl%(B,F). o

A.10 Lemma. Suppose (A,B,F) is good, R is a set, g : B — R and for
all f € F, gr : R* — R, where n is the arity of f. Then there is a unique h :
cla(B,F) — R such that h | B= g and for all ¢c € cls(B,F)—B,if c = f(c1,...,¢n),
then h(c) = g¢(h(c1), ..., h(cp)).

Proof. For all n € IN, we define function h,, : cl’}(B,F) R as follows:
ho = g and hy,qq : CZZH(B,F) — R is such that h,41 [ (B, F) = h, and for
c= f(c1,.cn) € AT (B, F) =% (B, F), hnii(c) = gf(hn(c1), -, hn(cy)). Since
(A, B, F) is good, each h,, is well-defined and clearly h = |J;—, h,, is the required
function. The uniqueness of h follows by an easy induction. o

A.11 Example. There is a unique function h : LP — IN such that h(X) =

h(1) =0 and h((u +v)) = maz{h(u), h(v)} + 1.
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Definition of A on structure trees: On blackboard.

A.12 Exercise. Let S be the set of all (unary) functions IN — IN, f, € S
be such that fo(n) = n for all n € IN and f; € S such that fi(n) = 1 for all
n € IN. Let B = {fo,f1} and F = {fy}, where f, : S* — S is such that
f+(90,91) = g2 if for all n € IN, go(n) = go(n) + g1(n). We write go + g1 for
f+(g0,91). Let LF = clg(B, F). Show that there is no function h : LF — IN such

that h(fo) = h(f1) =0 and h(go + g1) = max{h(go),h(g1)} + 1.

A.13 Exercise. Suppose g : IN — IN. Show that g € LF iff there are
m, k € IN such that m + k # 0 and for for all n € IN, g(n) =mn+ k.

A.14 Exercise. By Lemma A.10, there is Ev: LP — LF (Ev = evaluation)
such that Fv(X) = fo, Ev(l) = f; and Ev((u + w)) = Ev(u) + Ev(w). Show that
FEv is a surjection.

A.15 Exercise. Let n € IN. We define Ev,, : LP — IN as follows: Ev,(X) =
n, Ev,(1) =1 and Ev,((u+ w)) = Ev,(u) + Ev,(w). Show that for all w € LP,
Ev,(w) = Ev(w)(n).
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