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Abstract

These lecture notes give a short introduction to ideas shared by classical
theory of geometries and modern model theory. This course is not on stability
theory and thus all the non-trivial results from stability theory are replaced by
stronger assumptions, except three: Shelah’s finite equivalence relation theorem,
one consequence of splitting and the fact that ∞ -definable groups in models of
ω -stable theories are definable. These three are considered as facts i.e. the proofs
are skipped. Also, we try to keep all the objects studied as concrete as possible
and so although our main theorem (Conclusion 11.3) is a variant of a special case
of a result from [Hr], the proof follows [HLS] and [Hy] most of the time. Additional
benefit of this is that most of the proofs work also in many non-elementary cases.
For the history of this topic, see [Pi] and [Po].
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PART I: Geometries

In this part we look at various geometries, their properties and how to find
such objects.

1 Basic definitions from model theory

In this section we recall the basic definitions of the first-order logic and some
notions from model theory that are needed already when we study affine and
projective planes.

1.1 Definition. A vocabulary L is a collection of relation, function and
constant symbols. Each relation symbol R and function symbol f come with the
arity #R,#f ∈ IN− {0} .

We let L = {Ri, fj, ck| i ∈ I∗, j ∈ J∗, k ∈ K∗} be a fixed but arbitrary
vocabulary (i.e. when we talk about arbitrary models, this is the vocabulary).

1.2 Definition. The collection of (L -)terms is defined as follows:
(i) variables vi , i ∈ IN , are terms,
(ii) constant symbols ck , k ∈ K∗ , are terms,
(iii) if n = #fj , j ∈ J∗ , and t1, ..., tn are terms, then fj(t1, ..., tn) is a term.

1.3 Definition. The collection of atomic (L -)formulas is defined as follows:
(i) if t and u are terms, then t = u is an atomic formula,
(ii) if n = #Ri , i ∈ I∗ , and t1, ..., tn are terms, then Ri(t1, ..., tn) is an

atomic formula.

1.4 Definition. The collection of (L -)formulas is defined as follows:
(i) atomic formulas are formulas,
(ii) if φ is a formula, then ¬φ is a formula,
(iii) if φ and ψ are formulas, then (φ ∧ ψ) is a formula,
(iv) if φ is a formula and i ∈ IN , then ∃viφ is a formula.
By Lωω we denote the set of all L -formulas. Notice that the cardinality of

Lωω is max{ω, the cardinality of L} .

The following notation is used:

φ ∨ ψ = ¬(¬φ ∧ ¬ψ)

φ→ ψ = ¬φ ∨ ψ

φ↔ ψ = (φ→ ψ) ∧ (ψ → φ)

∀viφ = ¬∃vi¬φ.

1.5 Definition. The notion vi is free in φ is defined as follows:
(i) φ is atomic: vi is free in φ if vi appears in φ ,
(ii) φ = ¬ψ : vi is free in φ if it is free in ψ ,
(iii) φ = ψ ∧ θ : vi is free in φ if it is free in ψ or θ ,
(iv) φ = ∃vjψ : vi is free in φ if it is free in ψ and i 6= j .
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A sentence is a formula in which no vi is free.
If x = (x1, ..., xn) is a sequence of variables (when we write like this we assume

that for k 6= m , xk 6= xm ), then the notation φ(x) means that if vi is free in φ
then vi ∈ {x1, ..., xn} . Similarly for a term t , t(x) means that if vi appears in
t , then vi ∈ {x1, ..., xn} . Often we split x into two (or more) sequences y and z
and write φ(y, z) in place of φ(x) .

1.6 Definition. A (L -)structure (i.e. model) is a sequence

A = (A, RA
i , f

A
j , c

A
k )i∈I∗,j∈J∗,k∈K∗

where
(i) A is a non-empty set (the universe of A , when we want to make a dis-

tinction between the model and its universe, we write dom(A) for the universe),
(ii) RAi ⊆ A#Ri ,
(iii) fA

j : A#fj → A ,

(iv) cAk ∈ A .

When it does not risk confusion we write just Ri = RA
i etc.

1.7 Definition. For a term t(x) , x = (x1, ..., xn) , structure A and a =
(a1, ..., an) ∈ An , tA(a) is defined as follows:

(i) t = vi : t
A(a) = am , where m is such that vi = xm ,

(ii) t = ck : t
A(a) = cAk ,

(iii) t = fj(t1, ..., tm) : tA(a) = fA
j (tA1 (a), ..., t

A
m(a)) .

1.8 Definition. For a formula φ(x) , x = (x1, ..., xn) , structure A and
a = (a1, ..., an) ∈ An , A |= φ(a) is defined as follows:

(i) φ = t = u : A |= φ(a) if tA(a) = uA(a) ,
(ii) φ = Ri(t1, ..., tm) : A |= φ(a) if (tA1 (a), ..., t

A
m(a)) ∈ RA

i ,
(iii) φ = ¬ψ : A |= φ(a) if A 6|= ψ(a) ,
(iv) φ = ψ ∧ θ : A |= φ(a) if A |= ψ(a) and A |= θ(a) ,
(v) φ = ∃viψ : A |= φ(a) if there is b ∈ A such that A |= ψ(b, a1, ..., an) for

ψ = ψ(vi, x1, ..., xn) .

1.9 Remark. In the Definition 1.8 (v) we assumed that vi 6∈ {x1, ..., xn} .
This can be done without loss of generality, see the course Matemaattinen logiikka.
This kind sloppy notation will be used regularly in these notes.

1.10 Fact. For all φ(x) , x = (x1, ..., xn) , and y = (y1, ..., yn) , there is ψ(y)
such that for all A and a ∈ An , A |= φ(a) iff A |= ψ(a) .

Proof. See the course Matemaattinen logiikka.

1.11 Definition. For a structure A , a relation R ⊆ An is definable over
A ⊆ A , if there are a formula φ(x, y) , x = (x1, ..., xn) and y = (y1, ..., ym) , and
b ∈ Am such that for all a ∈ An , a ∈ R iff A |= φ(a, b) . The elements of b are
called the parameters of the definition. We say that R is definable if it is definable
over A . If parameters are not needed i.e. it is definable over ∅ , we say that R
is definable without parameters. A (possibly partial) function f : An → A is
definable if its graph i.e. the relation {(a1, ..., an+1) ∈ An+1| f(a1, ..., an) = an+1}
is definable. And an element a ∈ A is definable if {a} is definable.
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1.12 Exercise. Show that the set of integers is definable without parameters
in (C,+,×, exp, 0, 1) , where + and × are the addition and multiplication of
complex numbers and exp(x) = ex . Conclude that {dφe| (IC,+,×, exp, 0, 1) |= φ}
is not recursive, where dφe is the Gödel number of φ . Hint: See Exercise 1.15
and use the fact that the answer to Hilbert’s tenth problem is: there is no such
algorithm.

1.13 Exercise. Suppose L∗ ⊇ L is a vocabulary, A is an L∗ -structure and
for all R, f, c ∈ L∗ , RA , fA and cA are definable in A � L . Show that if X ⊆ An

is definable in A then it is definable already in A � L .

If g : A → B and f : Bn → C then f ◦ g is a function from An to C
such that for all a = (a1, ..., an) ∈ An , (f ◦ g)(a) = f(g(a1), ..., g(an)) . Also if
g : A→ Bn and f : B → C , then f ◦ g is a function from A to Cn such that for
all a ∈ A , (f ◦ g)(a) = (f(b1), ..., f(bn)) , where (b1, ..., bn) = g(a) .

1.14 Definition. Let L∗ be a vocabulary and B an L∗ -structure. We say
that B is interpretable in A over A ⊆ A if there are a natural number n and a
one-to-one function F : B → An such that F (B) , F (RB) , F ◦ (fB ◦ F−1) and
F (cB) are definable over A for all R, f, c ∈ L∗ . If A = A , we say just interpretable
in A and if A = ∅ , we say that B is interpretable in A without parameters.

Notice that F ◦ fB ◦ F−1 being definable means that the set

{(F (x1), ..., F (xm+1))| f
B(x1, ..., xm) = xm+1}

is definable (the graph of F ◦fB ◦F−1 is this set). And so B is interpretable in A
if ‘an isomorphic copy of B is definable in A ’. In fact we say that B is definable
in A if the identity function id witnesses that B is interpretable in A .

1.15 Exercise. Suppose that F : B → An is a one-to-one function which
witnesses that B is interpretable in A over A ⊆ A .

(i) Show that if G is an automorphism of A , then G ◦ F is a one-to-one
function which also witnesses that B is interpretable in A . Furthermore, if (e.g.)

φ(x1, ..., xn, a1, ..., am)

defines F (RB) , then

φ(x1, ..., xn, G(a1), ..., G(am))

defines (G ◦ F )(RB) . Conclude that if G � A = id , then F−1 ◦ G ◦ F is an
automorphism of B .

(ii) Show that for all L∗ -formulas φ(x) , x = (x1, .., xm) , there is an L -formula
φ∗(y1, ..., ym) , yi = (yi1, ..., y

i
n) , such that for all a = (a1, ..., am) ∈ Bm , B |= φ(a)

iff A |= φ∗(F (a1), ..., F (am)) . Hint: See Lemma 7.4 in the lecture notes of the
course Model theory.
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We finish this section by fixing an L -structure M (for those familiar with
stability theory, one can choose M to be the monster model).

We say that p is a type over A ⊆M if for some finite sequence x of variables,
it is a collection of formulas of the form φ(x, a) , a ∈ An and n ∈ IN. If m is the
length of the sequence x , then we say also that p is an m-type. We say that p
is realized in M if some sequence b of elements of M realizes it i.e. M |= φ(b, a)
for all φ(x, a) ∈ p . We say that p complete (over A) if every finite subtype (i.e.
subset) of p is realized in M and for all φ(x, a) , a ∈ An for some n ∈ IN, either
φ(x, a) ∈ p or ¬φ(x, a) ∈ p . For a finite sequence b of elements of M , the type
of b over A (in M ), t(b/A) , is the unique complete type p over A realized by b
(i.e. t(b/A) = {φ(x, a)| M |= φ(b, a), a ∈Mn, n ∈ IN}).

1.16 Assumptions. Outside definitions, when we talk about L -structure
M , we mean an arbitrary but fixed L -structure such that the following holds:

(i) The cardinality of M is > |L|+ ω .
(ii) M is saturated: For all A ⊆ M , if |A| < |M | , p is a type over A and

every finite subtype of p is realized in M , then p is realized in M .
(iii) M is stable i.e. for all formulas φ(x, y, b) , b ∈ Mm , x = (x1, ..., xn)

and y = (y1, ..., yn) , there is N ∈ IN such that there are no sequences ai ∈ Mn ,
i < N , such that M |= φ(ai, aj, b) iff i < j .

(iv) From Section 7 on, we will assume that L is countable.
(v) From Section 8 on, we will assume that M is ω -stable i.e. for all el-

ementary extensions (see below) M ′ of M and countable A ⊆ M ′ , the set
{t(a/A)| a ∈M ′} is countable. Under the assumptions (i) and (ii), this is equiva-
lent to: for all countable A ⊆M , the set {t(a/A)| a ∈M} is countable (exercise).

1.17 Fact. ω -stability implies stability.

In our main theorems, assumptions (i) and (ii) are essentially without loss
of generality (we will return to this later). On the way to prove the main main
results, (i) and (ii) are vital assumption.

Suppose A and B are structures, A ⊆ A and f : A → B . Then f is
elementary if for all formulas φ(x) , x = (x1, ..., xn) and a ∈ An , A |= φ(a) iff
B |= φ(f(a)) (where f(a) = (f(a1, ..., f(an))). We say that A is an elementary
substructure of B , A � B , if the identity function is an elementary function from
A to B

1.18 Exercise.

(i) M is strongly homogeneous i.e. if f : A→M , A ⊆M and |A| < |M | , is
elementary, then there is an automorphism g of M such that f ⊆ g .

(ii) If A is interpretable in M , then A is stable.
(iii) If A is interpretable in M , then A is saturated.
(iv) Show that if M is ω -stable, then for all countable A ⊆ M and n ∈ IN ,

the set

{t(a, A)| a ∈Mn}

is countable.
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2 Affine planes

We call a structure of the form A = (A, P, L, I) a quasigeometry if A = P ∪L ,
P ∩ L = ∅ and I ⊆ P × L . Then the elements of P are called points and the
elements of L are called lines. I is an incidence relation. However, we will make
no difference between l ∈ L and the set {p ∈ P | (p, l) ∈ I} and thus we write e.g.
p ∈ l instead of (p, l) ∈ I and l ∩ l′ = ∅ instead of saying that for no p ∈ P , both
(p, l) ∈ I and (p, l′) ∈ I .

2.1 Definition. A quasigeometry A = (A, P, L, I) is an affine plane if the
following holds:

(i) there are four points such that no three of them are collinear i.e. not
contained in a one line,

(ii) for any two points there is a line containing them both,
(iii) any two distinct lines contain at most one common point,
(iv) for any point p and line l there is a unique line l′ such that p ∈ l′ and

l′ and l are parallel (i.e. l′ ∩ l = ∅ or l′ = l ).

2.2 Exercise. Suppose A = (A, P, L, I) is an affine plane.
(i) Show that being parallel is an equivalence relation on the set of lines.
(ii) For a point p ∈ P , let L(p) be the number of lines that contain p and for

a line l ∈ L , let P (l) be the number of points on l . Show that L(p) = P (l) + 1 .
Hint: Prove this first under the assumption that p 6∈ l .

In these notes, multiplication in a field F = (F,+,×, 0, 1) is commutative (we
have 0 and 1 in the language of fields because they are needed in the elimination
of quantifiers). If this requirement is dropped (but we still require that both
x(y + z) = xy + xz and (x + y)z = xz + yz ), the resulting object is called a
division ring (a.k.a. skew field a.k.a. sfield a.k.a. field). Most of the time we work
with fields although often the results hold also for division rings and even without
any changes in the proof. Also we write F+ for (F,+), the additive group of F ,
and F× for (F − {0},×) , the multiplicative group of F .

Sometimes we think vector spaces over a field F as structures in the sense of
Section 1 and then the vocabulary is {+}∪{fa| a ∈ F} and e.g. n -dimensional vec-
tor space Vn(F ) over a field F is (Fn,+, fa)a∈F , where (x1, ..., xn)+(y1, ..., yn) =
(x1 + y1, ..., xn + yn) and fa(x1, ..., xn) = (ax1, ..., axn) . However, still, we will
write just ax for fa(x) .

2.3 Example. Let F be a field and V2(F ) a two dimensional vector space
over F . Then we define a quasigeometry A2(F ) = (A, P, L, I) so that

(i) P = V2(F ) (i.e. the universe of V2(F ) i.e. F 2 ),
(ii) L is the set of all lines labc = {(x, y) ∈ V2(F )| ax + by + c = 0} , where

a, b, c ∈ F and either a 6= 0 or b 6= 0 (or both),
(iii) (p, l) ∈ I if p ∈ I .

Then A2(F ) is an affine plane (check).

2.4 Theorem. Let IR be the field of real numbers. Then IR is interpretable
in A2(IR) .
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Proof. Let k be a line in A2(IR) and 0 and 1 be two distinct points of this
line. Let d be the distance between the two points (in V2(IR) with the usual
metric). We define F : IR → k so that for all x ∈ IR, F (x) is the unique point of
k such that the distance between 0 and F (x) is d|x| and the distance between 1
and F (x) is d|x− 1| . Then it is enough to show that the sets

Y = {(F (x), F (y), F (z))| x+ y = z}

and
K = {(F (x), F (y), F (z))| xy = z}

are definable in A2(IR).
Y is defined by the formula φ(x, y, z, k, 0), where

φ(x, y, z, z1, z2) = ∃x1∃x2∃y1∃y2∃y3∃y4∃y5((y1 ∩ z1 = ∅) ∧ (z2 ∈ y2)

∧(x1 ∈ y1 ∩ y2 ∩ y3) ∧ (y ∈ z1 ∩ y3) ∧ (x ∈ z1 ∩ y4) ∧ (x2 ∈ y1 ∩ y4 ∩ y5)

∧(y2 ∩ y4 = ∅) ∧ (y3 ∩ y5 = ∅) ∧ z ∈ z1 ∩ y5))

(where e.g. y1 ∩ z1 = ∅ is a shorthand for ¬∃x3(I(x3, y1) ∧ I(x3, z1)). The fact
that φ(x, y, z, k, 0) defines Y can be seen from the picture below (notice that the
line segments b(a+ b) , CD and 0a have the same length).

| | | |
0 a b a+ b

C D

k

K is defined by ψ(x, y, z, k, 0, 1), where

ψ(x, y, z, z1, z2, z3) = x ∈ z1 ∧ y ∈ z1 ∧ z ∈ z1∧

[((x = 0 ∨ y = 0) → z = 0) ∧ ((x 6= 0 ∧ y 6= 0) → ψ′(x, y, z, z1, z2, z3))]

and

ψ′(x, y, z, z1, z2, z3) = ∃x1∃x2∃y1∃y2∃y3∃y4∃y5((z2 ∈ y1) ∧ (x1 ∈ y1 ∩ y2 ∩ y4)

8



∧(x1 6∈ z1) ∧ (z3 ∈ y2) ∧ (x ∈ y3) ∧ (y ∈ y4) ∧ (z ∈ y5) ∧ (x2 ∈ y1 ∩ y3 ∩ y5)

∧(y2 ∩ y3 = ∅) ∧ (y4 ∩ y5 = ∅)).

The fact that ψ(x, y, z, k, 0) defines K can be seen from the picture below (notice
that |0(ba)|/|0b| = |0D|/|0C| = |0a|/|01| , where e.g |0a| denotes the length of the
line segment 0a).

| | | | |
0 1 a b ba

C

D

k

From the work we do in Section 4, it follows that in A2(F ) for any field F ,
the formulas φ(x, y, z, k, 0) and ψ(x, y, z, k, 0, 1) define addition and multiplication
to k so that one gets a field that is isomorphic with F , see the discussion after
Exercise 4.12. So

2.5 Fact. For every field F , F is interpretable in A2(F ) .

Alternatively one can directly show that the formulas φ(x, y, z, k, 0) and
ψ(x, y, z, k, 0, 1) define addition and multiplication to k so that one gets some
field F ′ and then argue further that the field F ′ must be isomorphic with F . In
fact more is true, see Fact 4.13.

2.6 Exercise. (A. Kuusisto, J. Meyers and J. Virtema) Show that the
monadic Π1

1 -theory of A2(IR) is Π1
1 -hard i.e. there is a recursive f : IN →

IN such that for all Π1
1 -sentences φ in the language {+,×, 0, 1} , f(dφe) is the

Gödel number of a monadic Π1
1 -sentences ψ in the language {P, L, I} such that

(IN,+,×, 0, 1) |= φ iff A2(IR) |= ψ . (For Π1
1 -sentences, see the literature.)

3 On group actions and automorphism groups

Let X be a set. By Sym(X) we denote the group of all permutations of X
(i.e. bijections from X to X with composition as the group operation).

3.1 Definition. Let M = (M,×, 1) be a monoid. A homomorphism π :
M → Sym(X) is called an action of M on X . For all g ∈M and x ∈ X , we write
gx for (π(g))(x) (i.e. the group acts on left). For all x ∈ X , O(x) = {gx| g ∈M}
is called the orbit of x and Mx = {g ∈ M| gx = x} is the stabilizer of x . Similarly,
for Y ⊆ X we write MY for {g ∈ M| gx = x for all x ∈ Y } .
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In these notes almost always when we study an action it will be an action of
a group. And for an action π : G → Sym(X) of a group G on X the following
observations hold:

(i) The orbits form a partition of X (i.e. for all x, y ∈ X , O(x) = O(y) or
O(x) ∩O(y) = ∅) and thus x ∈ O(y) is an equivalence relation.

(ii) Gx is a subgroup of G .
(iii) The kernel K = Ker(π) of the homomorphism π (this will be called

the kernel of the action) is a normal subgroup of G and G/K acts on X via
π′(gK) = π(g) . Then π′ is an isomorphism from G/K to the subgroup π(G) of
Sym(X) .

3.2 Exercise.

(i) Prove the three observations above.
(ii) Show that every group is isomorphic to a subgroup of Sym(X) for some

X .
(iii) Suppose f, g, h ∈ Sym(X) . Show that
(a) f is an isomorphism from (X, g) onto (X, h) iff fgf−1 = h .
(b) f is an automorphism of (X, g) iff fg = gf .
(c) f is an automorphism of (X, g) iff g is an automorphism of (X, f) .

3.3 Examples.

(i) Let G be a group. Then

g 7→ (x 7→ gx)

and
g 7→ (x 7→ gxg−1)

are actions of G on G (gxg−1 is often denoted by xg ). If G is a subgroup of
Sym(X) then identity is an action of G on X . In particular, if A is a structure
and G is a subgroup of Aut(A) , then identity is an action of G on A , where
Aut(A) is the automorphism group of A . (With Aut(A) and A ⊆ A it is common
to write Aut(A/A) instead of Aut(A)A .)

(ii) Let F be a field. By GLn(F ) we denote the group of invertible n × n
matrices (general linear group). Then

(∗) A 7→ (x 7→ Ax)

is an action of GLn(F ) on Vn(F ) , where ((aij)i,j<n)((xi)i<n) = (yi)i<n if yi =
Σn−1

k=0aikxk . In fact, (*) above determines an action of the monoid of all n × n
matrices on Vn(F ) . GLn(F ) acts also on An(F ) : on points the action is as in (*)
above and lines l are mapped to Al = {Ax| x ∈ l} .

When we wrote ((aij)i,j<n)((xi)i<n) , we thought (xi)i<n as a column vector
but for the obvious reason we write also e.g. ((aij)i,j<3)(x, y, z) .

3.4 Definition. We say that actions π : G → Sym(X) and π′ : G′ →
Sym(X ′) are isomorphic if there are an isomorphism F : G→ G′ and a bijection
H : X → X ′ such that for all x ∈ X and g ∈ M , F (g)H(x) = H(gx) . Then we
also say that the pair (F,H) is an isomorphism between the two actions. If the
actions are the same (F,H) is called an automorphism of the action.
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In the exercises, if two actions π : G→ Sym(X) and π′ : G′ → Sym(X) act
on the same set X and it is claimed that they are isomorphic, then often, but not
always, the isomorphism (F,H) can be chosen so that H = id .

3.5 Exercise.

(i) Show that actions π : G → Sym(X) and π′ : G′ → Sym(X ′) are isomor-
phic if there are one-to-one and onto functions F : G→ G′ and H : X → X ′ such
that for all g ∈ G and x ∈ X , H(gx) = F (g)H(x) .

(ii) Let us look at the action g 7→ (x 7→ xg) of G on G from Example 3.3 (i).
Let K be the kernel of this action. Show that the action of G/K is isomorphic
with an action of a subgroup of Aut(G) on G .

(iii) Show that the actions of GLn(F ) and Aut(Vn(F )) on Vn(F ) are isomor-
phic.

(iv) Show that the action of GL2(F ) on A2(F ) is isomorphic with an action
of a subgroup of Aut(A2(F )) on A2(F ) .

(v) Show that Aut((IR,+,×, 0, 1)) contains just one element.
(vi) Suppose that x1, x2, x3 are points in A2(F ) which are not collinear (re-

call: not contained in a one line) and similarly y1, y2, y3 are points in A2(F ) ,
which are not collinear. Show that there is f ∈ Aut(A2(F )) such that f(xi) = yi
for all 1 ≤ i ≤ 3 . Show that if in addition F = IR , then there is only one such f .

(vii) Show that there is a point x ∈ A2(IR) , such that the actions of GL2(IR)
and

Aut(A2(IR))x

are isomorphic on A2(IR) .
(viii) Show that for no point x ∈ A2(IC) , the actions of GL2(IC) and

Aut(A2(IC))x

on A2(IC) are isomorphic, where IC is the field of complex numbers (Exercise 5.21
(ii) may help here).

3.6 Definition. Let (G,×) and (H,+) be groups and suppose that there
is an action g 7→ (h 7→ hg) of G on H so that for all g ∈ G , 0g = 0 and
(x+ y)g = (xg) + (yg) for all x, y ∈ H (i.e. letting K be the kernel of the action,
the action of G/K on H is isomorphic with the action of a subgroup of Aut(H)).
Then we define a group G oH (semidirect product) as follows: The elements of
the group are pairs (g, h) ∈ G×H and (g, h)(a, b) = (ga, h+ bg) .

3.7 Exercise. Show that GoH is a group and that for g ∈ G and h ∈ H ,
(g, 0)(1, h)(g, 0)−1 = (1, hg) (and so H i.e. {(1, h)| h ∈ H} is a normal subgroup
of GoH ).

When we think V2(IR) as a group, then it acts on A2(IR) via translations
i.e. for points p , xp = p + x and for lines l , xl = {p+ x| p ∈ l} . Also using the
action of GL2(IR) on V2(IR) from Example 3.3 (ii), we can form GL2(IR)oV2(IR),
which acts on A2(IR) as follows: For points p , (A, x)p = Ap+ x and for lines l ,
(A, p)l = {Ap+ x| p ∈ l} .
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3.8 Exercise.

(i) Show that the two actions above are indeed actions.
(ii) Show that the actions of Aut(A2(IR)) and GL2(IR) o V2(IR) on A2(IR)

are isomorphic.

We finish this section with two notions needed later.

3.9 Definition. Suppose a group G acts on X .
(i) We say that the action is n -transitive (a.k.a. n -fold transitive) if for all

distinct xi ∈ X , i < n , and distinct yi ∈ X , i < n , there is a ∈ G such that for
all i < n , axi = yi . Action is transitive if it is 1 -transitive.

(ii) We say that the action is n -regular if it is n -transitive and for all distinct
xi ∈ X , i < n , and a, b ∈ G the following holds: If for all i < n , axi = bxi , then
a = b . The action is regular if it is 1 -regular.

4 Projective planes

4.1 Definition. A quasigeometry S = (S, P, L, I) is a projective plane if
the following holds:

(i) there are four points such that no three of them are collinear,
(ii) for two distinct points, there is exactly one line containing both of them,
(iii) for any two distinct lines there is exactly one point that is contained in

both of then.

4.2 Exercise.

(i) Show that every projective plane contains at least 7 points.
(ii) Show that if S = (S, P, L, I) is a projective plane then also

S′ = (S, P ′, L′, I ′)

is a projective plane when P ′ = L , L′ = P and (l, p) ∈ I ′ if (p, l) ∈ I .

Suppose A = (A, P, L, I) is an affine plane. We define A = (S, P ′, L′, I ′)
as follows: For each l ∈ L , by lp we denote the equivalence class of l in the
equivalence relation ’being parallel’ on L . Then P ′ = P ∪ {lp| l ∈ L} L′ =
L∪{l∞} , where l∞ = {lp| l ∈ L} , I ′ = I∪{(lp, l∞), (lp, l)| l ∈ L} and S = P ′∪L′ .

4.3 Exercise.

(i) Show that A is a projective plane.
(ii) Suppose S = (S, P, L, I) is a projective plane and l ∈ L . Show that Sl =

(S′, P ′, L′, I ′) is an affine plane when P ′ = P − l , L′ = L−{l} , I ′ = I ∩ (P ′×L′)
and S′ = P ′ ∪ L′ .

4.4 Definition. Let F be a field and n > 0 . For all (xi)i≤n ∈ Vn+1(F )−
{0} , let [xi]i≤n be the equivalence class of (x)i≤n in the equivalence relation ∼ on
Vn+1(F )− {0} , where (xi)i≤n ∼ (x′i)i≤n if for some λ ∈ F× , λ(xi)i≤n = (x′i)i≤n

(i.e. [xi]i≤n ∪ {0} is the 1-dimensional subspace of Vn+1(F ) containing (xi)i≤n ).
Then Pn(F ) = (S, P, L, I) is called a projective space over F , if P =

{[xi]i≤n| (xi)i≤n ∈ Vn+1(F )− {0}} , L is the set of all 2-dimensional subspaces of
Vn+1(F ) , (p, l) ∈ I if p ⊆ l and S = P ∪ L .
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In the literature, projective space Pn(F ) often means just the set of points of
the projective space Pn(F ) as defined above. Similarly affine space often means
just the universe of Vn(F ) . Also e.g. [x, y, z] is usually denoted by (x : y : z) but
this notation is most inconvenient for our purposes.

4.5 Exercise. Show that A2(F ) is isomorphic with P2(F ) (in particular,
P2(F ) is a projective plane).

4.6 Theorem. Let k and l∞ be two distinct lines in P2(IR) and 0, 1 ∈
k − l∞ be two distinct points. Denote by ∞ the point in the intersection of k
and l∞ . Then with the parameters k, l∞, 0 and 1 one can define addition and
multiplication to k − {∞} so that with these, k− {∞} is isomorphic with F . In
particular, IR is interpretable in P2(IR) .

Proof. Just copy the proof of Theorem 2.4. Then the picture from the proof
of Theorem 2.4 for addition transforms to the picture (by Exercise 4.5 and the
fact that any two distinct lines can be mapped to any other two distinct lines, see
the discussion after Definition 4.8, we may think l∞ as the line of points in the
infinity i.e. lines are ‘parallel’ if they intersect at a point in l∞ ):

| | | | |
0 a b a+ b ∞

k

l∞

k′

And for multiplication it transforms as follows (here we have changed the
order of a and b in an attempt to make the picture clearer):

13



| | | | | |
0 1 b a ba ∞

k

l∞

Notice that for all a ∈ k− l∞ and b ∈ k−(l∞∪{a, 0}) , if there are (and there
are, see below) δa ∈ Aut(P2(IR)/l∞ ∪ {k, k′}) such that δa(0) = a (for k′ see the
picture for addition) and ρb ∈ Aut(P2(IR)/l∞ ∪ {k, 0}) such that ρb(1) = b , then
a + b = δa(b) and ab = ρb(a) (think how such automorphisms move the lines in
the related pictures above).

Let F be a field and n > 0. Clearly GLn+1(F ) acts on Pn(F ) by

A([xi]i≤n) = [x′]i≤n,

where (x′)i≤n = A((x)i≤n) and for lines l , Al = {A([x]i≤n)| [xi]i≤n ∈ l} . Notice
that the action of every A ∈ GLn+1(F ) is an automorphism of Pn(F ) . Let K be
the kernel of this action.

For all λ ∈ F× , let Aλ ∈ GLn+1(F ) be the unique matrix such that

Aλ((x)i≤n) = (λxi)i≤n.

So A1 is the neutral element of GLn+1(F ) and we refer to it also as id (since
this is the action of A1 on Vn+1(F )). Similarly by id we refer also to A1K ∈
PGLn+1(F ) .

4.7 Exercise. Show that K = {Aλ| λ ∈ F} .

4.8 Definition. We let PGLn+1(F ) = GLn+1(F )/K (projective general
linear group).

Fix two distinct lines k, l∞ ∈ P2(F ) .
Notice that if l0, l1 are distinct lines and also l′0, l

′
1 are distinct lines, then

there is A ∈ GL3(F ) such that for all i < 2, Ali = l′i (exercise). Also if we denote
by π the action of GL3(F ) on P2(F ) , then the action of A on P2(F ) together
with the map f 7→ π(A)◦f ◦π(A−1) on Aut(P2(F )) form an automorphism of the
action of Aut(P2(F )) on P2(F ) (exercise). (Similarly, the action of A on P2(F )
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together with the map BK 7→ ABA−1K on PGL3(F ) form an automorphism
of the action of PGL3(F ) on P2(F ) , exercise.) Thus keeping in mind that the
action of A on P2(F ) is an automorphism, essentially by Exercise 1.15, if one can
solve the exercises for some choice of k and l∞ if follows that the claims hold for
all choices. So it is enough to prove the claims for some choice which makes the
calculations easy. This same general principle holds when it comes time to deal
with 0 and 1 below.

4.9 Exercise.

(i) Show that if f, g ∈ Aut(P2(F )/l∞∪{k}) , x, y ∈ k− l∞ are distinct points,
f(x) = g(x) and f(y) = g(y) , then f = g (notice that the easiest proof works in
every projective plane).

(ii) Show that for all distinct x0, x2 ∈ k − l∞ and distinct y0, y1 ∈ k − l∞ ,
there is a ∈ PGL3(F )l∞∪{k} such that for i < 2 , axi = yi . (So the action of
PGL3(F )l∞∪{k} on k − l∞ is 2 -regular.)

(iii) Show that the actions of PGL3(F )l∞∪{k} and Aut(P2(F )/l∞ ∪ {k}) on
P2(F ) are isomorphic.

Denote G = PGL3(F )l∞∪{k} . Since the action of every g ∈ G fixes k − l∞
as a set, we can restrict the action to k − l∞ and so this way G acts on k − l∞
(i.e. if π is the action of G on P2(F ) , then π′(g) = π(g) � (k − l∞) is the action
of G on k − l∞ ).

Also F× acts on F+ by multiplication and since x(y + z) = xy + xz and
x0 = 0, we can form H = F× o F+ . This group acts on F by (x, y)a = xa+ y ,
where (x, y) ∈ H and a ∈ F .

4.10 Exercise. Show that the action of G on k − l∞ and the action of H
on F are isomorphic.

So G carries all the information needed to find the field F in P2(F ) but is
F interpretable in P2(F )? For this a bit more work is needed.

We say that an element x of a group is an involution if x2 = 1. We let G+

be the set of all g ∈ G such that the following holds: for all involutions h ∈ G , if
h 6= id , then gh is an involution.

4.11 Exercise. Show that G+ is a normal subgroup of G and the action
of G+ on k− l∞ (as induced from G) is isomorphic with the action of F+ on F
(i.e. xa = a+ x for x ∈ F+ and a ∈ F ). Keep in mind that F may contain only
two or three elements.

Now fix some point 0 ∈ k − l∞ and let G× = G0 . Since G+ is a normal
subgroup of G , G× acts on G+ via conjugation and since conjugation is an
automorphism of G+ , we can form G× oG+ .

For all x ∈ k − l∞ let gx be the unique element of G+ such that gx(0) = x
(by Exercise 4.11). Fix some 1 ∈ k− l∞ so that 1 6= 0. For all x ∈ k− l∞ , x 6= 0,

let fx be the unique element of G× such that gfx1 = fxg1f
−1
x = gx .

4.12 Exercise.

(i) Show that fx exists and is unique.
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(ii) Show that G× = {fx| x ∈ k − l∞, x 6= 0} .

(iii) Show that (fx, gy) 7→ gyfx is an isomorphism from G× oG+ to G .

(iv) Define addition and multiplication on k − l∞ as follows: x + y = z if
gxgy = gx and xy = z if gfxy = gz . Show that (k − l∞,+,×, 0, 1) is isomorphic
with F .

(v) Conclude that F is interpretable in P2(F ) . Hint: Use pairs (a0, a1) to
code elements a ∈ G and use + and × from (iv). Notice that for all x ∈ k− l∞ ,
ax can be defined from (a0, a1) as shown in the picture below (think what happens
in the picture if 0 and 1 are moved by some f ∈ Aut(P2(F )/l∞ ∪ {k}). See also
Section 8.

| | | |
0 1 x ∞

k

l∞

One can prove also Exercise 4.12 (v) from (iv) by showing that the formulas
from the proof of Theorem 4.6 work, see Section 10 (and Exercise 3.2). However,
this method is a bit ‘accidental’. The method in the hint is the one used in Section
8 and in many other places outside the scope of these notes.

4.13 Fact. One can add a geometric requirement to the definition of pro-
jective plane (to get a notion of a Pappian plane), satisfied by all planes P2(F )
so that under the requirement the construction above goes through and one can
interpret some field F in the plane. Further more, one can coordinatize the plane
(see the picture below) so that the coordinatization gives an isomorphism between
the plane and P2(F ) . A weaker requirement gives a notion of a Desarguesian
plane and in these the construction still works but it does not necessarily give a
field but just a division ring. The coordinatization works as in Pappian planes.
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|

|

|

|

[0, 0, 1]

1

1′

y

[1, 0, 0]

[0, 1, 0]

[1, y, 0]

[1, y, 1]

k
l∞

k′

We finish this section with an exercise in which we describe the action of
PGL2(F ) on the projective line P1(F ) . This description will be needed in the
end of these lecture notes.

4.14 Exercise. Let F be a field.
(i) Show that the action of PGL2(F ) on P1(F ) is 3 -regular.
(ii) Pick some point ∞ ∈ P1(F ) . Show that the action of PGL2(F )∞ on

P1(F )− {∞} is isomorphic to the action of F× o F+ on F .
(iii) Let G : PGL2(F )∞ → F× o F+ and H : P1(F ) − {∞} → F witness

the claim in (ii). For notational simplicity, we identify x ∈ P1(F ) − {∞} and
H(x) . Then let α ∈ PGL2(F ) be such that α0 = ∞ , α∞ = 0 and α1 = 1 (by
(i) there is exactly one such element and it is an involution). Show that for all
x ∈ P1(F )− {∞, 0} , αx = x−1 .

(iv) Show that for all a ∈ PGL2(F )−PGL2(F )∞ , there are c, b ∈ PGL2(F )∞
such that a = cαb . Hint: c and b can be found using just the properties (ii) and
(iii) above keeping in mind that the action is 3 -regular.

(v) Show that if a group G acts on a set X so that (i)-(iii) above hold for
G in place of PGL2(F ) and X in place of P1(F ) , then the action of G on X is
isomorphic with the action of PGL2(F ) on P1(F ) .

5. Pregeometries and strongly minimal sets

For a set A and an element a , by Aa we denote the set A ∪ {a} (it will be
clear from the context whether we mean a set Aa or the value of a in the action
of a matrix A). Similarly if a = (a1, ..., an) is a sequence of elements, Aa means
A ∪ {a1, ..., an} .
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5.1 Definition. We say that (X, cl) is a pregeometry (a.k.a. matroid) if
the following hold:

(i) X is a non-empty set and cl : P(X) → P(X) ,
(ii) if A ⊆ B , then A ⊆ cl(A) ⊆ cl(B) = cl(cl(B)) ,
(iii) if a ∈ cl(A) , then a ∈ cl(B) for some finite B ⊆ A ,
(iv) if a ∈ cl(Ab)− cl(A) , then b ∈ cl(Aa) .

(X, cl) is a geometry if in addition cl(∅) = ∅ and cl({a}) = {a} for all a ∈ X .

5.2 Exercise. Let F be a field, V a vector space over F and for all
A ⊆ V , span(A) be the subspace of V generated by A . Show that (V, span) is
a pregeometry.

Suppose (X, cl) is a pregeometry and Y ⊆ X . We define clY : P(X) → P(X)
so that clY (A) = cl(A ∪ Y ) . (X, clY ) is called a localization of X .

5.3 Exercise. Let (X, cl) be a pregeometry.
(i) Show that (X, clY ) is a pregeometry for all Y ⊆ X .
(ii) Suppose Y ⊆ X is not empty. Show that (X, cl) � Y = (Y, clY ) is a

pregeometry, where clY (A) = cl(A) ∩ Y .
(iii) Show that a ∼ b if cl({a}) = cl({b}) is an equivalence relation on X∗ =

X−cl(∅) and that for all a, b ∈ X∗ , either cl({a}) = cl({b}) or cl({a})∩cl({b}) = ∅
(and thus a/ ∼= cl({a})− cl(∅)).

(iv) Let ∼ and X∗ be as above and assume that cl(∅) 6= X . For A ⊆
X∗/ ∼= {a/ ∼ | a ∈ X∗} , let cl∗(A) = {a/ ∼ | a ∈ cl(∪A) − cl(∅)} . Show that
(X∗/ ∼, cl∗) is a geometry.

We say that a set A of elements of a pregeometry (X, cl) is independent if
for all a ∈ A , a 6∈ cl(A− {a}) . A is a basis of X if in addition cl(A) = X .

5.4 Exercise. Let (X, cl) be a pregeometry.
(i) Suppose A ⊆ X is independent in (X, cl) and B is independent in

(X, clA) . Show that A ∪ B is independent in (X, cl) . If in addition B is a
basis of (X, clA) , show that A ∪B is a basis of (X, cl) .

(ii) Suppose (I, <) is a linear ordering. Show that {ai| i ∈ I} ⊆ X is
independent if for all i ∈ I , ai 6∈ cl({aj| j < i} . Hint: Show first that if there is a
counter example, then there is a finite one.

5.5 Theorem. If A and B are bases of a pregeometry (X, cl) , then |A| =
|B| (i.e. they have the same cardinality i.e. there is a bijection from A onto B ).

Proof. We prove first the claim in the case A is finite. The general case
follows from this easily. Since A = ∅ iff cl(∅) = X iff B = ∅ , we may assume that
A 6= ∅ 6= B . By symmetry, it is enough to show that |B| ≤ |A| . We start with a
claim:

5.5.1 Claim. Suppose f : B′ → A , B′ ( B , is a one-to-one function such
that

(*) (A− rng(f))∪ dom(f) is a basis of (X, cl) .

Then for any b ∈ B − B′ there is a one-to-one function g : B′b → A , such that
f ⊆ g and (*) holds for g .
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Proof. We prove the claim first in the special case B′ = ∅ (for all (X, cl) , A
and B ):

Let b ∈ B be arbitrary. Then b ∈ cl(A)− cl(∅) and let A′ ⊆ A be a minimal
set such that b ∈ cl(A′) . Then A′ 6= ∅ and we can choose some a ∈ A′ . Let
A′′ = A′ − {a} and notice that by the minimality of A′ , b 6∈ cl(A′′) and thus
a ∈ cl(A′′b) i.e. cl(A′′b) = cl(A′′a) and in particular,

(I) b 6∈ cl(A− {a}).

We claim that g = {(b, a)} is as wanted. Since g is one-to-one, it is enough to
prove (*) for g (i.e. that A∗ = (A− {a})b is a basis of X ):

For the independence, let c ∈ A∗ . We need to show that c 6∈ cl(A∗−{c}) . The
case when c = b follows from (I) above and so we may assume that c 6= b . But now
if c ∈ cl((A− {a, c})b) , since c 6∈ cl(A−{a, c}) , we get that b ∈ cl((A−{a, c})c) ,
which is a contradiction with (I) above.

Also X ⊆ cl(A) ⊆ cl((A− A′) ∪ cl(A′′b)) ⊆ cl(cl(A∗)) = cl(A∗) and thus A∗

is a basis of X .
Now we get the general case B 6= ∅ as follows: It is easy to see that A−rng(f)

and B−B′ are bases of (X, clB′) and so the claim follows from the case |B′| = 0
and Exercise 5.4. Claim 5.5.1.

Now the claim that |B| ≤ |A| follows immediately (for finite A) from Claim
5.5.1 since by applying it recursively (at most |A| many times), one can construct
a one-to-one function from B to A .

For infinite basis A and B (we showed above that if one of them is infinite
then so is the other one) the claim can be see as follows: It is enough to show that
|A| ≤ |B| . For all b ∈ B , we can find finite Ab ⊆ A such that b ∈ cl(Ab) . Let
A∗ = ∪b∈BAb . Since B is infinite, |A∗| ≤ |B| and so it is enough to show that
A∗ = A . For this it is enough to show that cl(A∗) = X . But this is clear since
X ⊆ cl(B) ⊆ cl(cl(A∗)) ⊆ cl(A∗) .

5.6 Definition. For a pregeometry (X, cl) and Y ⊆ X , by dim(Y ) =
dimX

cl (Y ) (dimension of Y ) we mean the size of a basis of (X, cl) � Y . If in
addition, Z ⊆ X , then by dim(Y/Z) we mean the dimension of Y in the prege-
ometry (X, clZ) i.e. dimX

cl (Y/Z) = dimX
clZ

(Y ) . When we talk about dimensions
of sequences, we think the sequences as sets, so for a = (a1, ..., an) ∈ Xn , e.g.
dim(a/Z) = dim({a1, ..., an}/Z) .

For Y ⊆ Xn and Z ⊆ X , max{dim(a/Z)| a ∈ Y } is often called a rank (or
dimension or something) of Y over Z with various names in front of the word
rank depending on the situation.

5.7 Exercise. Suppose (X, cl) is a pregeometry and Y, Z ⊆ X .
(i) Show that dim(Y/Z) is the size of a maximal independent subset of Y in

the pregeometry (X, clZ) .
(ii) Show that dim(Y Z) = dim(Z) + dim(Y/Z) .

Let us now look one way of finding pregeometries inside structures. The
pregeometries that we will find, are a special case of pregeometries that arise from
regular types and non-forking.
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Recall that in the end of Section 1 we fixed a structure M .

5.8 Definition. For A ⊆ M , let acl(A) be the union of all finite sets
definable over A . If A is a collection of finite sequences of elements of M , we
still write acl(A) and mean acl(A) , where A is the set of all elements of M that
appear in the sequences from A .

5.9 Exercise.

(i) Show that if A ⊆ B , then A ⊆ acl(A) ⊆ acl(B) = acl(acl(B)) .
(ii) If a ∈ acl(A) , then a ∈ acl(B) for some finite B ⊆ A .
(iii) If X ⊆Mn is finite and definable over A ⊆M , then X ⊆ acl(A)n .

Notice also that if X is definable over A , then so is Xn .

5.10 Definition. Let A be a structure and A ⊆ A .
(i) We say that P ⊆ An is minimal over A if it is definable over A , infinite

and for all definable X ⊆ An , either P ∩X or P −X is finite.
(ii) We say that P ⊆ A is strongly minimal over A if for all elementary

extensions B of A the following holds: If φ(x, a) , a ∈ Am , defines P , then
φ(B, a) is minimal in B .

(iii) We say that A is strongly minimal if the universe of A is strongly minimal
over ∅ .

5.11 Exercise.

(i) Show that Definition 5.10 (ii) does not depend on the choice of φ(x, a) .
(ii) Let A ⊆ M . Show that P ⊆ Mn is minimal over A iff it is strongly

minimal over A . Hint: M is saturated.

Recall that for a ∈Mn and A ⊆M we write t(a/A) for the set

{φ(x, b)| M |= φ(a, b), b ∈ Am},

where x = (v1, ..., vn) .

5.12 Exercise. Suppose P ⊆ Mn is strongly minimal over A and A ⊆
B ⊆ M . Show that if a, b ∈ P − acl(B)n , then t(a/acl(B)) = t(b/acl(B)) .
Conclude that if the cardinality of B is less than the cardinality of M , then there
is f ∈ Aut(M/acl(B)) such that f(a) = b . Hint: Exercise 1.18.

In order to simplify the proof of the following lemma, in the proof we use the
assumption that M is stable although it is not necessary (exercise).

5.13 Lemma. Suppose P ⊆ Mn is strongly minimal over finite A ⊆ M .
For all X ⊆ P , let cl(X) = aclPA(X) = P ∩ acl(X ∪ A)n . Then (P, cl) is a
pregeometry.

Proof. The first requirement is clear and the next two requirements follow
immediately from Exercise 5.9. So it suffices to prove the exchange property. For
a contradiction suppose that a0 ∈ cl(Xa1) − cl(X) but a1 6∈ cl(Xa0) for some
finite X (if there is a counter example, there is one in which X is finite). So there
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is a formula φ(x, y, z) and b ∈ A∪X , such that the set φ(M, a1, b) of realizations
of φ(x, a1, b) is finite and M |= φ(a0, a1, b) .

For all i ∈ IN, i > 1, choose ai so that ai 6∈ cl(Xa0...ai−1) . By applying
Exercise 5.12 twice, for all i < j and i′ < j′ there is f ∈ Aut(M/A∪X) such that
f(ai) = ai′ and f(aj) = aj′ . (By Exercise 5.12, there is g ∈ Aut(M/A∪X) , such
that g(ai) = ai′ . Since aj 6∈ cl(Xai) , g(aj) 6∈ aclPA(AXg(ai)) = aclPA(AXai′) .
Since also aj′ 6∈ aclPA(AXai′) , by Exercise 5.12 again, there is h ∈ Aut(M/A ∪
Xai′) such that h(g(aj)) = aj′ . Now f = h ◦ g is as wanted.) But then for all
i < j , M |= φ(ai, aj, b) and for all i ∈ IN, φ(M, ai, b) is finite. In particular, for
i < j , M 6|= φ(aj , ai, b) . But then φ(x, y, b)∧ ”x 6= y” defines an infinite ordering
contradicting our assumption that M is stable.

Following Definition 5.6, we write dimP
aclP

A

(a/B) for dimP
aclP

A∪B

(a) for all B ⊆

M (and not just for B ⊆ P ).

5.14 Exercise. Suppose P ⊆ Mn is strongly minimal over A and A ⊆
B ⊆M . Show that if ai, bi ∈ P , 1 ≤ i ≤ n , and

dimP
aclP

A

((a1, ..., an)/B) = dimP
aclP

A

((b1, ..., bn)/B) = n,

then t((a1, ..., an)/B) = t((b1, ..., bn)/B) . Make the same conclusion as in the
Exercise 5.12.

5.15 Definition. Let P be strongly minimal over A .
(i) For X ⊆ Pn and B ⊆ M , we say that a ∈ X is generic in X over B if

for all b ∈ X , dimP
aclP

A

(b/B) ≤ dimP
aclP

A

(a/B) . If X = Pn , we say just generic

over B and if in addition B = ∅ , we say just generic.
(ii) For a ∈ Pn and A ⊆ B ⊆ C ⊆ M , we write a ↓B C if dimP

aclP
A

(a/B) =

dimP
aclP

A

(a/C) .

5.16 Exercise. Suppose A ⊆ B ⊆ M and P is strongly minimal over A .
Show that if X ⊆ Pn is definable over A , then a ∈ X is generic over B iff

dimP
aclP

A

(a/B) = max{dimP
aclP

A

(b/A)| b ∈ X}.

Conclude that a ∈ Pn is generic over B if it is generic and a ↓A B . Hint: Exercise
5.14.

The following lemma is a very special case of a general fact of ‘definability of
free extension’ in stable structures.

5.17 Lemma. If P ⊆ Mn is strongly minimal over A and φ(x, y) is a
formula, x = (x1, ..., xn) and y = (y1, ..., yk) , then there is a formula dPφ(y, e) ,
such that e is a sequence of elements of A and for all b ∈Mk and a ∈ P generic
over Ab , M |= φ(a, b) iff M |= dPφ(b) .

Proof. For all N ∈ IN, let φN (y, e) be a formula such that for all b ∈ Mk ,
M |= φN (b, e) if there are ≥ N many a ∈ P such that M |= φ(a, b) (clearly there
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is such a formula with parameters from A). Similarly, let φ−N (y, e) be a formula
such that for all b ∈ Mk , M |= φ−N (b, e) if there are ≥ N many a ∈ P such
that M |= ¬φ(a, b) . We claim that for some N ∈ IN, dPφ(y, e) = φN (y, e) is as
wanted.

Since there are infinitely many elements in P which are generic over Ab , by
Exercise 5.12, the claim from left to right holds no matter how N is chosen i.e. if
φ(a, b) holds for some a ∈ P generic over Ab , then φN (b, e) holds for all N ∈ IN.
Since the same holds also for ¬φ and φ−N in place of φ and φN , if there is no
such N , then every finite subtype of the type

q = {φN (y, e), φ−N(y, e)| N ∈ IN}

is realized in M and thus by the saturation of M , q is realized in M by some b .
But then φ(x, b) defines a subset X of Mn such that both P ∩X and P −X are
infinite, a contradiction.

5.18 Exercise.

(i) If P ⊆ Mn is strongly minimal over A and φ(x, y) is a formula, x =
(x1, ..., xmn) and y = (y1, ..., yk) , then there is a formula dPφ(y) such that for all
b ∈ Mk and a ∈ Pm generic over Ab , M |= φ(a, b) iff M |= dPφ(b) . Hint: Use
‘dP (...(dPφ(x, y))...) ’.

(ii) If M satisfies Assumptions 1.16 (i), (ii) and (iv) and is strongly minimal,
then it is ω -stable.

Before looking examples, we need one fact.

5.19 Definition.

(i) We say that a structure A has elimination of quantifiers if for every set
X ⊆ An the following holds: If X is definable over A ⊆ A then it is definable
over A with a formula that does not contain any quantifiers (i.e. is a boolean
combination of atomic formulas).

(ii) We say that a field F is algebraically closed if for all polynomials P (X) ∈
F [X ] the following holds: if P is not constant, then it has a root in F (i.e. there
is a ∈ F such that P (a) = 0).

5.20 Facts.

(i) If V is an infinite vector space, then it has elimination of quantifiers.
(ii) If F is an algebraically closed field, then it has elimination of quantifiers.

5.21 Exercise. Prove the following claims:
(i) If V is an infinite vector space over a field F , then it is strongly minimal,

acl = span , and if in addition dimV
acl(V ) is at least the cardinality of F , then V

is saturated.
(ii) If F is an algebraically closed field, then it is strongly minimal, and if in

addition is dimF
acl(F ) is infinite, then it is saturated. Hint: see the remark below.

(iii) If F is an uncountable algebraically closed field and k, l∞ ∈ P2(F ) are
distinct lines, then k− l∞ is strongly minimal over {k, l∞} and (k− l∞, acl

k−l∞
{k,l∞})

is a geometry. Hint: Start by noticing that every automorphism of F extends
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naturally to an automorphism of P2(F ) fixing lines k and l∞ (easier if k and l∞
are chosen properly). Then use this to show that for every definable X , either
k ∩X or k −X is countable. Finally, show that P2(F ) is saturated, see Exercise
7.2, 7.3.3 and 1.18.

5.22 Remark.

(i) The claim in Exercise 5.21 (ii) can be proved so that from the proof it
follows that for an algebraically closed field F and A ⊆ F , a ∈ acl(A) if a is
a root of some non-zero polynomial over the subfield of F generated by A . So
in the case of algebraically closed fields, out notion of algebraic closure coincides
with the notion of algebraic closure from the theory of fields.

(ii) In Exercise 5.21 (iii) the assumption that F is uncountable is made just
to make the proof easier.
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PART II: Models

In this part we look at examples of what geometries tell about models and
their automorphism groups.

6. Groups, fields and pregeometries

6.1 Definition.

(i) For an infinite structure A and cl : P(dom(A)) → P(dom(A)) , we say
that (A, cl) is a structure carrying an ω -homogeneous pregeometry if the following
holds:

(a) (A, cl) is a pregeometry,

(b) dim(A) is the same as the cardinality of A ,

(c) if A ⊆ A is finite and a, b ∈ A− cl(A) , then there is f ∈ Aut(A/A) such
that f(a) = b and for all B ⊆ A , f(cl(B)) = cl(f(B)) .

(ii) Following Section 5, for a structure (A, cl) carrying an ω -homogeneous
pregeometry and A ⊆ A , we say that a ∈ An is generic over A if dimA

cl(a/A) = n .

(iii) We say that X ⊆ An is A -invariant, A ⊆ A , if

f(X) = {(f(x1), ..., f(xn))| (x1, ..., xn) ∈ X} = X

for all f ∈ Aut(A/A) .

Notice that if H : A → M witnesses that A is interpretable in M over
A ⊆M and H(A) is strongly minimal over A , then A is a structure carrying an
ω -homogeneous pregeometry (exercise). Notice also that if X ⊆ Mn is definable
over A ⊆M , then it is A -invariant.

6.2 Exercise. Suppose that (G, cl) is a group carrying an ω -homogeneous
pregeometry and A ⊆ G is finite. Prove the following claims:

(i) If X ⊆ G is A -invariant, then either X ⊆ cl(A) or G− cl(A) ⊆ X .

(ii) If a ∈ G−cl(A) , b ∈ cl(A) and c ∈ G−cl(Aa) , then a−1, ab, ac ∈ G−cl(A)
and a−1 ∈ cl({a}) .

(iii) If H is an A -invariant subgroup of G , then either H ⊆ cl(A) or H = G .

The order of an element a of a group G is the cardinality of the subgroup
generated by {a} if finite and otherwise it is ∞ . The following easy exercise is
needed in the proof of Theorem 6.4.

6.3 Exercise. If the order of every element of a group G is ≤ 2 , then G
is commutative.

6.4 Theorem. Suppose that (G, cl) is a group carrying an ω -homogeneous
pregeometry. Then either G is commutative or unstable (in which case it is not
interpretable in M eq by Exercise 1.18 (ii), see Section 7).
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Proof. We assume that G is not commutative and we show that it is unstable.
Let Z be the center of G (i.e. the subgroup of all elements of G that commute
with every element of G). Since G is ∅ -invariant and G is not commutative, by
Exercise 6.2, Z ⊆ cl(∅) . Let G∗ = G/Z .

Our first goal is to show that G∗ is centerless (i.e. the center of G∗ contains
just one element, the neutral element). For a contradiction, suppose a ∈ G − Z
is such that aZ commutes with every element in G∗ . Then for all x ∈ G , ax =
xax−1 ∈ aZ . For all z ∈ Z , let Xaz = {x ∈ G|ax = az} . Since Xaz is {a, z} -
invariant, by Exercise 6.2 (i), for some z0 ∈ Z ,

(*) G−Xaz0 ⊆ cl({a, z0}) = cl({a}) .
Choose c ∈ G − cl({a}) and d ∈ G − cl({a, c}) . Then by (*) and Exercise 6.2
(ii), c, d, cd ∈ Xaz0 . Now (since z0 ∈ Z ) az0 = acd = (ad)c = (az0)

c = aczc0 =
acz0 = (az0)z0 and so z0 = 1 (the neutral element of G). But then Xaz0 is the
centralizer Ca of a (i.e. the set of all elements of G that commute with a), in
particular it is a subgroup of G and thus by Exercise 6.2 (iii), Ca = G i.e. a ∈ Z ,
a contradiction.

Our next goal is to show that any two a, b ∈ G∗ − {1Z} are conjugates (i.e.
for some x ∈ G∗ , ax = b). Let c ∈ G be such that a = cZ . Since G∗ is centerless,
C∗

c = {x ∈ G|cx ∈ cZ} (x ∈ C∗
c if xZ and a = cZ commute) is a proper subgroup

of G and since it is {c} -invariant, it is a subset of cl({c}) by Exercise 6.2. Let
x ∈ G− cl({c}) .

6.4.1 Claim. cx 6∈ cl({c}) .

Proof. For a contradiction, suppose cx ∈ cl({c}) . Then for all y ∈ G −
cl({c}) , cy = cx (there is an automorphism fixing cx and mapping x to y ). This
means that for all y ∈ G − cl({c}) , y−1x ∈ C∗

c , which contradicts Exercise 6.2
(ii). Claim 6.4.1.

But then from Claim 6.4.1 and Definition 6.1 (i) (c) it follows that for all
e ∈ G− cl({c}) , e = cx for some x ∈ G . Now the same holds for b = dZ and so

we can find e, x, y ∈ G such that e = cx and e = dy . But then d = cy
−1x . In

particular, a and b are conjugates in G∗ .

Now it is easy to see that G is unstable. By Fact 6.3, there must exist a =
cZ ∈ G∗ of order > 2. So a 6= a−1 and they are conjugates by some b = dZ . Then
b does not commute with a but b2 does (since conjugation is an automorphism of

G∗ , ba−1b−1 = (bab−1)−1 and so a(b
2) = (ab)b = (a−1)b = (ab)−1 = (a−1)−1 = a).

Also every element that commutes with b commutes also with b2 and thus C∗
d is

properly contained in C∗
d′ for any d′ ∈ G such that b2 = d′Z (notice that C∗

d′

depends on d′ only upto d′Z ). Now b and b2 are conjugates by some eZ . For
all i ∈ IN, we define di ∈ G as follows: d0 = d and di+1 = edie

−1 . Again since
conjugation is an automorphism, for all i ∈ IN, C∗

di
is properly contained in C∗

di+1

and thus for i < j , C∗
di

( C∗
dj
. Clearly C∗

x ( C∗
y is expressible in the first-order

logic.

6.5 Open question. Are there non-commutative groups that carry an
ω -homogeneous pregeometry?
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6.6 Fact. Commutative groups are stable.

Now we turn to fields carrying an ω -homogeneous pregeometry. For these we
need to recall some basic properties of fields and one not so basic fact.

Let F be a subfield of K i.e. K is a field extension of F . Then K can be
seen as a vector space over F as follows: The addition in K is the addition of
the field and for a ∈ F and x ∈ K , fa(x) = ax (the multiplication of the field).
We say that K is a finite dimensional extension of F if the dimension of this
field is finite. Now suppose that K is a finite dimensional extension of F and let
{ξi| i < n} be a basis for K such that ξ0 = 1.

6.7 Exercise.

(i) Show that H : K → Fn , H(Σi<naiξi) = (a0, ..., an−1) witnesses that K
is interpretable in F .

(ii) Show that every a ∈ K is a root of some polynomial P ∈ F [X ] . In
particular, if F is algebraically closed then F = K .

(iii) Show that there is a finite A ⊆ F such that for all f ∈ Aut(F/A) , if
f : K → K is such that f(Σi<naiξi) = Σi<nf(ai)ξi , then f ∈ Aut(K) .

(iv) Show that for all n > 0 , {an| a ∈ K×} is a subgroup of K× and if the
characteristic of K is p > 0 , then {ap − a| a ∈ K+} is a subgroup of K+ .

6.8 Fact. F is algebraically closed if for all finite dimensional extension
K of F the following holds: For all n > 0 , {an| a ∈ K×} = K× and if the
characteristic of F is p > 0 , then also {ap − a| a ∈ K+} = K+ .

6.9 Theorem. If (F, cl) is a field carrying an ω -homogeneous pregeometry,
then it is algebraically closed.

Proof. We use Fact 6.8. For this let K be a finite dimensional extension of
F and H : K → Fn as in Exercise 6.7 (i) and A ⊆ F as in Exercise 6.7 (iii). For
A ⊆ X ⊆ F , we say that a ∈ K is generic over X if H(a) is generic (in Fn ) over
X in the pregeometry (F, cl) .

6.9.1 Exercise. Suppose X is finite and A ⊆ X ⊆ F .
(i) Show that for all n > 1 , if a ∈ K is generic over X then so are an and

an − a .
(ii) Show that if a ∈ K is generic over X and H(b) ∈ cl(X)n , then a+ b and

ab are generic over X .
(iii) Show that if a, b ∈ K are generic over X , then there is an automorphism

f ∈ Aut(F/X) such that f(a) = b (and f ∈ Aut(K/H−1(Xn))).
(iv) Show that if G is an H−1(Xn) -invariant subgroup of K+ (respectively,

of K× ) and it contains an element generic over X , then G = K+ (respectively,
G = K× ).

Now let a ∈ K be generic over A . Then an is generic over A by Exercise
6.9.1 (i) and thus the ∅ -invariant subgroup {an| a ∈ K×} of K× contains an
element generic over A and thus {an| a ∈ K×} = K× by Exercise 6.9.1 (iv). If the
characteristic of F is p > 0, then similarly we can see that {ap−a| a ∈ K+} = K+ .
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7. M eq and connected components

In order to simplify our arguments, from now on in these notes, we assume
that L is countable.

7.1 Definition. Let E be the set of all equivalence relations on Mn , n ∈ IN ,
which are definable without parameters. For all E ∈ E , by a/E we denote the
equivalence class of a ∈ Mn and (by misusing the notation a bit) by M/E we
denote the set of all equivalence classes of E . (Strictly speaking, we choose the
objects a/E so that for E 6= E′ , a/E 6= a/E′ even if as sets they are the same.)
We let Leq = L∪{FE , PE| E ∈ E} , where PE is a new unary predicate symbol and
FE is a new function symbol of arity n , where n is such that E is an equivalence
relation on Mn . Then M eq is defined as follows:

(i) The universe of M eq is A∗∪
⋃

E∈E M/E , where A∗ is some set of the same
cardinality as M of elements outside

⋃
E∈E M/E (these elements are needed to

guarantee that M eq is saturated).

(ii) To simplify notation we identify each a ∈ M with a/ = and then we let
the interpretation of every relation and constant symbol from L be the same as
that in M .

(iii) For all n -ary function symbols f from L , the interpretation of f on Mn

in M eq is the same as the interpretation in M .

(iv) The interpretation of PE is M/E .

(v) If FE is n -ary and a ∈ Mn , then the interpretation of FE maps a to
a/E .

(vi) Now we have defined M eq except that the interpretations of function
symbols are only partial and we would like to leave it this way. However, we have
defined structures so that the interpretations of function symbols must be total.
So we make the interpretations total so that no structure is added in the process
(i.e. no new definable sets): if f is an n -ary function symbol and a = (a1, ..., an) ∈
(M eq)n is such that we have not yet defined what f(a) is, then we let f(a) = a1 .
This does not add structure by Exercise 1.13. (Alternatively we could define M eq

as a many sorted structure and then this problem does not appear and the set A
is not needed.)

7.2 Exercise.

(i) Show that for every f ∈ Aut(M) there is f ∈ Aut(M eq) such that f �M =
f (and it is unique up to what it does on A∗ ). Show also that if f ∈ Aut(M eq) ,
then f �M ∈ Aut(M) .

(ii) Show that M eq is saturated. Hint: Show first that for proving that A is
saturated, it suffices to show that for all A ⊆ A of cardinality strictly less than
the cardinality of A and for all complete 1 -types p over A , if p is finitely realized
in A , then it is realized in A .

(iii) Show that if M is ω -stable, then also M eq is ω -stable.

(iv) Show that M eq is stable. Hint: Start by showing that with Ramsay’s
theorem and (i), one can find an infinite order indiscernible sequence in M eq such
that the order is given by some formula, see the lecture notes on model theory.
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(v) Show that if X ⊆Mn is definable in M eq , then it is definable already in
M and that if it is definable over A in M , then it is definable over A also in M eq .
Conclude that if P ⊆M is strongly minimal over A ⊆M in M , then it is strongly
minimal over A in M eq . In particular, if F is an uncountable algebraically closed
field, then it is strongly minimal over ∅ in F eq .

(vi) Suppose X ⊆ Mn is definable over A ⊆ M and that E ⊆ X2 is an
equivalence relation also definable over A . Then there is F : X →M eq definable
over A such that for all x, y ∈ X , xEy holds iff F (x) = F (y) .

By Exercise 7.2 (vi), even if an equivalence relation is not on Mn and/or
definable over ∅ , as long as it is definable, we can use M eq as if the equivalence
relation is definable without parameters.

Before studying interpretable groups from the point of view of model theory,
let us look at some examples.

7.3 Examples. Let F be an uncountable algebraically closed field of char-
acteristic 0 (e.g. IC) and let S be a finite set of polynomials from F [X0, ..., Xn] .
Now if V = VS ⊆ Fn+1 is the vanishing set of these polynomials, it is called an
affine variety. If A contains the coefficients of the polynomials from S , then we
also say that V is an affine variety over A . A topology on Fn+1 in which affine
varieties are the closed sets is called Zariski topology.

7.3.1 Fact. The family of affine varieties ⊆ Fn+1 is closed under intersec-
tions (since there are no infinite properly decreasing sequences of affine varieties).
The family is also closed under finite unions (exercise).

A subset of a topological space is called irreducible if it is not a union of two
closed proper subsets (in the literature, sometimes irreducibility is included in the
definition of a variety).

7.3.2 Exercise.

(i) Show that if V is an irreducible affine variety over A , then for all finite
A ⊆ B ⊆ F , if a, b ∈ V are generic over B (i.e. a and b are generic over A ,
a ↓A B and b ↓A B ), then t(a/B) = t(b/B) .

(ii) Show that if V is an irreducible affine variety over A and

rk(V/A) = max{dimF
aclF

A

(a)| a ∈ V } = 1,

then V is strongly minimal over A .
Hint for (i): Suppose not. Then there are generic ai = (ai0, ..., a

i
n) ∈ V , i < m

and m ≥ 2 , over B such that for all b ∈ V generic over B , t(b/B) = t(ai/B) for
some i < m and for i < j < m , t(ai/B) 6= t(aj/B) . But then (by elimination of
quantifiers) we can find polynomials fp

j ∈ F [X0, ..., Xn] , j < m and p < m − 1 ,

such that the coefficients are from acl(B) and fp
j (a

i) = 0 for all p < m − 1 iff
i = j . Let k = rk(V ) . To simplify this hint we assume that for all i < m ,
dim((ai0, ..., a

i
k−1)/B) = k . Then by saturation we can find non-zero polynomials

gl ∈ F [X0, ..., Xk−1] , l < m′ , such that all the coefficients are from acl(B) and
for all a = (a0, .., an) ∈ V , either there is l < m′ such that gl(a0, ..., ak−1) = 0
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or there is j < m such that fp
j (a) = 0 for all p < m − 1 (or both). Now it is

easy to find proper subvarieties Vi , i < m , such that V = ∪i<mVi and deduce a
contradiction.

Let us now look at projective spaces.

7.3.3 Exercise. Show that Pn(F ) is interpretable in F eq . Furthermore,
show that the one-to-one function from Definition 1.14 can be chosen so that on
the set of points it is identity.

From now on in this example, Pn(F ) denotes the set of point of Pn(F ) (cf.
the discussion after Definition 4.4). If all the polynomials in S are homogeneous
(f ∈ P [X0, ..., Xn] is homogeneous if all monomials in f have the same degree),
then U = US = {[x0, ..., xn]| (x0, ..., xn) ∈ VS} ⊆ Pn(F ) is called a projective
variety. Notice that the homogeneity of polynomials in S quarantee that US is
well-defined. Irreducibility of such varieties is defined exactly as it was defined for
affine varieties. If by regular functions (see the literature, regular functions are
definable) one can define a group law on an irreducible projective variety U , then
U is called an abelian variety. A good reason to call these varieties abelian is the
fact that the group law is necessarily commutative (although this is probably not
the reason why the word abelian was originally chosen). In fact we have already
seen this. For simplicity, we look only the special case of elliptic curves:

If S = {X3
0−X

2
1X2+aX0X

2
2+bX

3
2} and 4a3+27b2 6= 0 , then U = US ⊆ P2[F ]

is called an elliptic curve and these are abelian varieties.

7.3.4 Exercise. Show that the elliptic curve U is strongly minimal over
{a, b} in F eq . Hint: Show first that it suffices to show that the affine variety
V = {(x, y) ∈ F 2| y2 = x3 + ax+ b} is strongly minimal over {a, b} . Then either
one can use algebra and show that it is irreducible and apply Exercise 7.3.2 (ii)
or one can argue as follows: Suppose that V is not strongly minimal over {a, b}
and show that there are a generic (c, d) ∈ V over some {a, b} ⊆ B ⊆ F and
a polynomial f ∈ F [X0, X1] with coefficients in B such that f(c, d) = 0 but
f(c,−d) 6= 0 . Now consider what powers of X1 appear in monomials in f and
show that d = g(c)/h(c) where g and h are polynomials with coefficients from
the field generated by B . Finish by showing that this is not possible (look at the
degrees of the three polynomials).

Thus by Exercise 7.3.4 and Theorem 6.4 the group law is commutative.

Now we are ready to introduce the setup that, excluding the last section, will
be studied for the rest of these notes.

7.4 Assumptions. We assume that there are A,Q ⊆ M and P ⊆ Mm

such that
(i) A is finite,
(ii) P and Q are definable over A ,
(iii) P is strongly minimal over A ,
(iv) (P, aclPA) is a geometry,
(v) there is n ∈ IN− {0} such that
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(a) for all (finite) B ⊆ Q and a = (a1, ..., an) ∈ Pn generic over A ,

dim(a/AB)(= dimP
aclP

A

(a/B)) = n,

(b) for some (finite) B ⊆ Q and a = (a1, ..., an+1) ∈ Pn+1 generic over A ,

dim(a/AB)(= dimP
aclP

A

(a/B)) = n.

We have made the assumption (iv) i.e. that (P, aclPA) is a geometry to guar-
antee that certain groups are interpretable. An easy modification shows that we
can loosen this to: for all x ∈ P , aclPA({x}) is finite. This is because then the
equivalence relation x ∼ y if aclPA({x}) = aclPA({y}) on P ∗ = P − aclPA(∅) is
definable and so (P ∗/ ∼, (aclPA)

∗) , see Exercise 5.3 (iv), can be found from M eq

and we can use this instead of P . This weaker assumptions holds e.g. if Th(M)
is ω -categorical, see the lecture notes on model theory or Section 12.

7.5 Exercise. Let F be an uncountable algebraically closed field and k
and l∞ be distinct lines in P2(F ) . Show that M = P2(F ) , P = k − l∞ , Q = l∞
and A = {k, l∞} satisfy all the assumptions we have made on M , P , Q and A .
Hint: Exercise 1.18.

Now we can define the group G that will be our main object of study in these
notes. Let G′ = Aut(M/AQ) . Then G′ acts the natural way on P and let K be
the kernel of this action. Then we let G = G′/K . Probably the first question on
G that comes to ones mind is: Does it contain more than one element. It does,
but for this one fact from stability theory is needed (a proof can be found from
[HLS]):

7.6 Fact. Suppose X ⊆ M is definable over some finite B ⊆ M and
a, b ∈ Mm are such that t(a/BX) = t(b/BX) . Then there is f ∈ Aut(M/BX)
such that f(a) = b .

Now from Fact 7.6 it follows:

7.7 Exercise. Show that the following claims hold without assuming As-
sumptions 7.4 (iv)

(i) For all generic a, b ∈ Pn there is f ∈ G such that fa = b (i.e. the action
of G on P has rank (≥) n).

(ii) If n ≥ 2 , then (P, aclPA) is a geometry iff the action of G on P is 2 -
transitive.

The reason why abelian varieties behave nicely (as a group) is that they have
‘unique generics’ i.e. the claim in Exercise 7.3.2 (i) holds for them and we would
like the same to be true for G . However, this is not true, from [HK] a counter
example can be found. What we do is that we will find a normal subgroup G◦ of
G such that G/G◦ is small and G◦ have unique generics. G◦ will be called the
connected component of G .

The key fact behind finding G◦ is the following theorem from stability theory
which is also one of the reasons why we (partially) work in M eq (when we want
to press the fact that we take algebraic closure in M eq we write acleq instead of
just acl ):
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7.8 Fact. Suppose A ⊆ B ⊆ C ⊆ M eq and a, b ∈ Pm . If B = acleq(B) ,
t(a/B) = t(b/B) , a ↓B C and b ↓B C , then t(a/C) = t(b/C) .

But some work is needed before we can apply this fact.

7.9 Lemma. The action of G on P is n + 1 -determined i.e. if a =
(a0, ..., an) ∈ Pn+1 is generic and f, g ∈ G are such that for all i ≤ n , fai = gai ,
then f = g .

Proof. Clearly it is enough to show that if for all i ≤ n , fai = ai , then
fc = c for all c ∈ P . In fact, it is enough to show that if c ∈ P is generic over
Aa , then fc = c (exercise). For i ≤ n , let ai = (a0, ..., ai−1, ai+1, ..., an) . We
start by showing that

(*) fc is not generic over Aaic .
Clearly it is enough to show this for i = 0. For a contradiction, suppose it

is. Let finite C ⊆ Q be such that a0c is not generic over AC . Let d ∈ P be
generic over ACa0c and choose F ∈ Aut(M/Aa0c) such that F (d) = fc . Then
a0c is not generic over AF (C) but by the choice of d , (fc)a0 = (fc, fa1, ..., fan)
is generic over AF (C) . This contradicts the choice of G′ .

Suppose then that fc 6= c . Since P is a geometry, fc 6∈ aclPA({c}) . Thus
by (*) there is 0 < i ≤ n such that ai ∈ aclPA({c, fc, a1, ..., ai−1, ai+1, ..., an}) .
Applying (*) again, fc ∈ aclPA({c, a0, ..., ai−1, ai+1, ..., an}) . Thus the dimension
of c(fc)a is n+ 1, but this contradicts the choice of c .

7.10 Exercise.

(i) Show that for all f ∈ G and generic a = (a0, ..., an) ∈ Pn+1

dim((a0, ..., an, fa0, ..., fan)) =≤ 2n+ 1.

Hint: Use Assumption 7.4 (v) (b).
(ii) Show that for all f ∈ G and generic a = (a0, ..., an) ∈ Pn+1 , fan ∈

aclPA({a0, ..., an, fa0, ..., fan−1}) . Hint: Suppose not and show first that there are
a generic (a0, ..., an+1) ∈ Pn+2 and g ∈ G such that gai = ai for all i < n and
gan = an+1 .

We write A∗ = acleq(A) and notice that for all X ⊆ P , acleq(XA∗)m ∩ P =
aclPA(X) . Let Σ = Aut(M eq/A∗) . Now Σ acts on M eq ∪G as follows: For δ ∈ Σ
and x ∈M eq , δx = δ(x) and for g = h/K ∈ G , δg = hδ/K . We say that f, g ∈ G
have the same type if there is δ ∈ Σ such that δf = g . This is an equivalence
relation and the equivalence class of f ∈ G is called the type of f .

7.11 Exercise. Show that for all δ ∈ Σ , f, g ∈ G and x ∈ P , (δg)(δx) =
δ(gx) and δ(fg) = (δf)(δg) (i.e. the action of each δ ∈ Σ is an automorphism of
the action of G on P ).

We say that a = (a0, ..., a2n+1) ∈ P 2n+2 is a quasicode of f ∈ G if (a0, ..., an)
is generic and for all i ≤ n , an+i+1 = fai .

7.12 Exercise. Show that if δ ∈ Σ , f, g ∈ G , a is a quasicode of f , b is a
quasicode of g and δ(a) = b , then δf = g .
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We say that a quasicode a is generic over B ⊆ M eq if dim(a/AB) = 2n+ 1
We say that f ∈ G is generic over B ⊆M eq ∪G if there is B ∩M eq ⊆ C ⊆M eq

such that every g ∈ B ∩G has a quasicode in C2n+2 and f has a quasicode that
is generic over C . We say that f ∈ G is generic if it is generic over ∅ . Similarly
a ∈ Pm is generic over A ⊆ B ⊆ M eq ∪ G if there is B ∩M eq ⊆ C ⊆ M eq such
that every g ∈ B ∩ G has a quasicode in C2n+2 and a is generic over C . We
say that a quasicode a = (a0, ..., a2n+1) ∈ P 2n+2 of f ∈ G is a semicode of f if
(a0, ..., an) is generic over {f} .

7.13 Exercise.

(i) Show that the number of types of generic f ∈ G is at most maximum of
ω and the cardinality of L .

(ii) Show that if a = (a0, ..., a2n+1) ∈ P 2n+2 and b = (b0, ..., b2n+1) ∈ P 2n+2

are semicodes of f , then there is δ ∈ Σ such that for all i ≤ 2n+ 1 , δai = bi .
(iii) Show that if a is a semicode of a generic f , then dim(a) = 2n+ 1 .
(iv) Show that if g ∈ G and f ∈ G is generic over g ∈ B ⊆ M eq ∪ G ,

then f−1 , fg and gf are generic over B . Hint: E.g. for fg generic over B , let
a = (a0, ..., an) ∈ Pn+1 be generic over B∪{f} and study dimP

aclP
A

(fa0...fan/Ba)

and dimP
aclP

A

((fg)a0...(fg)an/Ba) .

(v) Show that if a ∈ P is generic over {f, g} ⊆ G and fa = ga , then f = g .

Let S be the set of all types of generic elements f ∈ G . Then G acts on S
as follows: For p ∈ S and g ∈ G , gp is the type of gf , where f is any generic
element of G over {g} such that its type is p .

7.14 Exercise. Show that the definition above gives a well-defined action
of G on S .

We let G◦ be the kernel of the action of G on S and call it the connected
component of G .

7.15 Lemma. G◦ is a normal subgroup of G , for all δ ∈ Σ , δG◦ = G◦ ,
G◦ contains a generic element of G and the cardinality of G/G◦ is at most (the
maximum of) ω (and the cardinality of L). In particular the cardinality of G/G◦

is strictly less than the cardinality of M .

Proof. The first claim follows from Exercise 3.2 (i). The second claim follows
from the observation that if f is generic over {g} then δf is generic over δg and
δ(gf) = (δg)(δf) and thus gf and (δg)(δf) have the same type i.e. if the type of
f is p ∈ S , then (δg)p = gp .

For the third claim, let g ∈ G be generic. From what we showed above, it
follows that if f ∈ G is such that its type is the same as that of g , f−1g ∈ G◦ (f
and g act on S the same way). So by choosing f so that it is in addition generic
over {g} , by Exercise 7.13 (iv), f−1g is a generic element of G◦ .

For the last claim, we notice that by what we have seen above, if f, g ∈ G
are generic and have the same type, then f/G◦ = g/G◦ . Also since G◦ contains
a generic element, by Exercise 7.13 (iv), for all g ∈ G there is generic f ∈ G such
that, f/G◦ = g/G◦ . Thus the claim follows from Exercise 7.13 (i).
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7.16 Lemma. If f, g ∈ G◦ are generic, then they have the same type.

Proof. Let f, g ∈ G◦ be generic and we need to show that they have the
same type. W.o.l.g. we may assume that f is generic over {g, g−1} . Then by
Exercise 7.13 (iv), fg−1 is generic over {g, g−1} . But then g is generic over
{fg−1} (check) and since fg−1 ∈ G◦ , the type of (fg−1)g is the same as the type
of g . Since (fg−1)g = f , the claim follows.

7.17 Exercise.

(i) Show that G◦ has unique generics i.e. if g, f ∈ G◦ are generic over B ,
A ⊆ B ⊆ M eq and the cardinality of B is less than the cardinality of M , then
there is δ ∈ ΣB such that δf = g .

(ii) Show that if a = (a0, ..., an−1) and b = (b0, ..., bn−1) are elements of Pn

and generic over A , then there is f ∈ G◦ such that for all i < n , fai = bi .

8 M eq and interpretability of groups

From now on in these notes we will assume that M is ω -stable. We will use
this assumption only to be able to use Fact 8.2 below. A proof for Fact 8.2 can be
found from [Po] (Corollary 5.19).

8.1 Definition.

(i) We say that X ⊆ M eq is ∞ -definable if there are a countable B ⊆ M eq

and a type q over B such that X is the set of all realizations of q .
(ii) Suppose X ⊆ M eq is ∞ -definable and R ⊆ Xk . We say that R is

definable inside X if there is a definable R′ such that R = R′∩Xk . For functions
f : Xk → X , definability inside X is defined similarly.

(iii) We say that an L∗ -structure A is ∞ -interpretable in M eq if there is a
one-to-one function F : A →M eq such that F (A) is ∞ -definable, for all R ∈ L∗ ,
F (RA) is definable inside F (A) and for all f ∈ L∗ , F ◦fA◦F−1 is definable inside
F (A) . As before, we say that a structure is ∞ -definable in A if id witnesses that
it is interpretable in A .

8.2 Fact. Every group ∞ -definable in M eq is definable in M eq . In partic-
ular, every group ∞ -interpretable in M eq is interpretable in M eq .

Now with the help of Fact 8.2, we will show that G◦ is interpretable in M eq .

8.3 Exercise. Show that there is a formula φ(x, y, z, d) , d is a finite se-
quence of elements of A∗ , such that for all semicodes a of generic elements f ∈ G◦

and b ∈ P generic over Aa the following holds: for all c ∈M eq , M eq |= φ(c, b, a)
iff fb = c .

We let P ∗ be the set of all semicodes of generic elements of G◦ . We let E
be a binary relation on M4n+4 such that for all (a, b), (a′, b′) ∈ (M4n+4)2 the
following holds: (a, b)E(a′, b′) holds if a = a′ and b = b′ or for all c ∈ P generic
over Aaa′bb′ , we have: there are some d, d′, e, e′ ∈ P such that

M eq |= φ(d, c, a) ∧ φ(d′, c, a′) ∧ φ(e, d, b) ∧ φ(e′, d′, b′),
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and for any such elements d, d′, e, e′ ∈ P , e = e′ . Notice that E is an equivalence
relation on M4n+4 . By Lemma 5.17 E is definable over A∗ in M eq . By Exercise
7.2 (v), E is definable already in M .

Keeping in mind Exercise 7.2 (vi), we let P ◦ = (P ∗)2/E ⊆M eq .

8.4 Exercise.

(i) Show that there is a type over A∗ such that P ◦ is the set of all realizations
of p . Hint: Suppose q(x, y) is a type. If for all all finite q′ = {φi(x, y)| i < m} ⊆ q ,
a realizes ∃x ∧i<m φi(x, y) , then there is b such that (b, a) realizes q .

(ii) Show that for all f ∈ G◦ there are generic g, h ∈ G◦ such that f = gh .
(iii) Show that if (ai, bi) ∈ (P ∗)2 , i < 2 , (a0, b0)E(a1, b1) and ai is a semicode

of fi and bi is a semicode of gi , then f0g0 = f1g1 . Hint: Exercise 7.13 (v).
(iv) Show that there is R ⊆ (M eq)3 definable over A∗ such that for all

ci = (ai, bi)/E ∈ P ◦ , i < 3 , if ai is a semicode of fi and bi is a semicode of gi ,
then (c0, c1, c2) ∈ R iff f0g0f1g1 = f2g2 . Hint: Using the idea from (i), show first
that some such R is ∞ -definable. Then notice that for all c0 and c1 from P ◦

there is exactly one c2 ∈ P ◦ such that (c0, c1, c2) ∈ R . Now use the saturation of
M eq to find the formula that defines (good enough) R (i.e. not necessarily exactly
the same R).

8.5 Theorem. G◦ is interpretable in M eq .

Proof. From Exercise 8.4 it follows immediately that G◦ is ∞ -interpretable
(let F from Definition 8.1 (iii) be: F (f) is (a, b)/E for any semicodes a of g ∈ G◦

and b of h ∈ G◦ such that g and h are generic and f = gh). Thus by Fact 8.2,
G◦ is interpretable im M eq .

8.6 Exercise. Suppose H ′ is a subgroup of H and that both are definable
in M eq . Show that if the cardinality of H/H ′ is strictly less than the cardinality
of M , then H/H ′ is finite. Hint: See the hint for Exercise 7.2 (iv).

9 The case n=1 and corollaries

If n = 1, we define a closure operation cl on G◦ as follows: For f ∈ G◦ and
X ⊆ G◦ , f ∈ cl(X) if there are some g1, ..., gk ∈ X , k ∈ IN, and a ∈ P generic
over {f, g1, ..., gk} such that fa ∈ aclPA({a, g1a, ..., gka} .

9.1 Exercise. Suppose n = 1 .
(i) Show that cl is a pregeometry on G◦ .
(ii) Show that (G◦, cl) is a group carrying an ω -homogeneous pregeometry.

9.2 Theorem. If n = 1 , then G◦ is commutative and the action of G◦ on
P is regular.

Proof. The claim that G◦ is commutative follows immediately from Exercise
9.1, Theorem 8.5 and Theorem 6.4. So we prove that the action is regular. Since
the action is transitive, it suffices to show that if f, g ∈ G◦ and fx = gx for some
x ∈ P , then f = g . Notice that the proof for this does not use the assumption
that (P, aclPA) is a geometry (in fact it does not use aclPA at all). This is important
because later we often need a similar fact in the case when the pregeometry is not
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a geometry and there we want to say just that the proof goes as the one in here,
see also Remark 9.3 below.

Clearly it suffices to show that if f ∈ G◦ is such that fx = x for some x ∈ P ,
then f = id . So for a contradiction, suppose that there are f ∈ G◦ and some
x, y ∈ P such that x 6= y , fx = x but fy 6= y . Since G◦ acts transitively on P ,
there is g ∈ G◦ such that gx = y . Then obviously (fgf−1)x = fy 6= y . But by
commutativity, fgf−1 = g , a contradiction.

9.3 Exercise. Assume n = 1 . Show that the action of G◦ on P is
isomorphic with the first of the two possible actions of G◦ on G◦ from Example
3.3.

As corollaries of Theorem 9.2, we will show that the action of G◦ on P is
n -determined and that n ≤ 3.

Suppose n > 1. Let x = (x1, ..., xn−1) ∈ Pn−1 be generic. Let H = (G◦)x
and P ′ = P −aclPA(x) . Then H acts on P ′ by the action induces from the action
of G◦ on P (i.e. if π is the action of G◦ on P , then f 7→ π(f) � P ′ gives the
action of H on P ′ ). Clearly, since the action of G◦ on P has rank n , see Exercise
7.17 (ii), the action of H is transitive. Also P ′ = (P ′, aclP

′

Ax) is a pregeometry,
see Exercise 5.3 (iii), and so since the action of G is n+1-determined, the action
of H on P ′ is 2-determined. Thus exactly as in the case of G , we can find H◦ ,
the connected component of H , and show that it is interpretable in M eq and
that H/H◦ is countable (in fact, from the proof of Corollary 9.5, it follows that
H◦ = H ). And so, still as in the case of G , H◦ is commutative and the action of
it is regular.

9.4 Remark. Since there is no guarantee that P ′ is a geometry but we
had assumed that P is a geometry, one may wonder, if it really is so that for H
everything goes as for G? It does: So far we have used the assumption that P is
a geometry only once, when we showed that the action of G is n+ 1 -determined
and this does imply that the action of H is 2 -determined. In the next section we
will analyze the case n = 2 and there the assumption is used again. And when we
analyze the case n = 3 , we will use results from the case n = 2 , again by way of a
localization, and there we need to show that the localization is indeed a geometry.
Another difference is that P is definable but P ′ need not be. But this was not
used in the analysis of G◦ (check), e.g. in the proof of ∞ -interpretability of G◦ ,
everything was based on Lemma 5.17 (and uniqueness of generics) and P ′ inherits
the property from P .

9.5 Corollary. The action of G◦ on P is n -determined, i.e. if y =
(yi)i<n ∈ Pn is generic and f, g ∈ G◦ are such that fyi = gyi for all i < n , then
f = g .

Proof. In the case n = 1, we have already shown this so we assume that
n > 1. Choose h ∈ H◦ so that for some (a0, b0) ∈ P generic over x (i.e. a generic
pair of elements of P ′ ) ha0 = b0 (h exists since the action of H◦ is transitive).
Notice that since the action of H◦ on P ′ is regular, for all y 6∈ aclPA(x) , hy 6= y
(i.e. the dimension of the set {y ∈ P | hy = y} is n− 1).
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Now choose ai ∈ P , 0 < i < n , so that letting bi = hai , for all 0 < i < n ,

ai 6∈ aclPAx({aj, bj| j < i}).

9.5.1 Claim. h is a generic element of G◦ .

Proof. It suffices to show that dimP
aclP

A

({ai, bi| i < n}) = 2n . If not, then

since
dimP

aclP
A

({x1, ..., xn−1} ∪ {ai, bi| i < n}) ≥

dimP
aclP

A

({x1, ..., xn−1, a0, b0}) + n− 1 = n+ 1 + n− 1 = 2n,

there is 0 < j < n such that xj 6∈ aclPA({ai, bi| i < n}) . Choose c ∈ P−aclPA({xj}∪
{ai, bi| i < n}) . By Exercise 7.10 (ii), letting d = hc , xj 6∈ aclPA({c, d}∪{ai, bi| i <
n}) . But then hy = y for all y ∈ P generic over {h} and thus h = id , a
contradiction. Claim 9.5.1.

Now for a contradiction suppose that G◦ is not n -determined i.e. that there
are x0 ∈ P and g ∈ G◦ such that (xi)i<n ∈ Pn is generic (xi , 0 < i < n are as
above), gxi = xi for all i < n and g 6= id . Again, choose ai ∈ P , i < n , so that
for all i < n , letting bj = gaj ,

ai 6∈ aclPA({xj | j < n} ∪ {aj , bj| j < i}).

Then
dimP

aclP
A

({x0, ..., xn−1} ∪ {ai, bi| i < n}) ≥ 2n

and so as in the proof of Claim 9.5.1, since g 6= id , g must be a generic element
of G◦ . Since G◦ has unique generics, there is δ ∈ Σ such that δg = h . But
by the choice of Σ, this is not possible since the sets {y ∈ P | gy = y} and
{y ∈ P | hy = y} have different dimensions.

9.6 Corollary. n ≤ 3 .

Proof. For a contradiction, assume that n > 3. Let (xi)i<n ∈ Pn be generic
and let f ∈ G◦ be such that fx0 = x1 , fx1 = x0 and fxi = xi for 1 < i < n .
Notice that by Corollary 9.5, f is an involution and the set X = {x ∈ P |fx = x}
has dimension ≤ n− 1. Also if g ∈ G◦ commutes with f , then for all 1 < i < n ,
g(xi) ∈ X (otherwise gxi 6= (f ◦ g ◦ f−1)xi although g = f ◦ g ◦ f−1 ).

Now choose (a0, a1) ∈ P 2 generic over X ∪ {x0, x1} . Let bi = fai for i < 2.
Then the dimension of {xi| i < n} ∪ {ai, bi| i < 2} at least n + 2 and so the
dimension of {xi| i < n − 2} ∪ {ai, bi| i < 2} must be n + 2 since otherwise, as
in the proof of Corollary 9.5, either xn−2 or xn−1 is generic over {f} and since
fxn−2 = xn−2 and fxn−1 = xn−1 , f = id (which it is not). But then by Exercise
7.17 (ii), there is g ∈ G◦ such that gxi = xi , for all i < n − 2, ga0 = a1 and
gb0 = b1 .

Since f is an involution it is easy to see that letting h = gfg−1f−1 , hxi = xi
for all i < n − 2, hb1 = b1 and ha1 = a1 . By Corollary 9.5, h = id i.e. g and
f commute. Thus gxn−2 ∈ X and gxn−1 ∈ X . So by Exercise 7.10 (ii), the
dimension of (a0, a1) over X ∪ {x0, x1} is at most 1. But this contradicts the
choice of the pair (a0, a1) .
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10 The case n=2

Through out this section we assume that n = 2. Since P was assumed to
be a geometry, this means that the action of G◦ on P is 2-regular (by Corollary
9.5).

The following lemma was proved in Claim 9.5.1 (only for elements of H◦ ⊆ G◦

but this was not used in the proof of the claim).

10.1 Lemma. Suppose (a, b, c) ∈ P 3 is generic and g ∈ G◦ is such that
ga = a and gb = c . Then g is generic.

So since G◦ has unique generics, for every generic g there is a ∈ P such that
ga = a . Now fix 0 ∈ P and let G◦

0 = (G◦)0 . Then G◦
0 acts on P − {0} regularly

and thus G◦
0 = (G◦

0)
◦ i.e. = H◦ , see Section 9, and thus by Section 9, G◦

0 is
commutative and interpretable in M eq .

10.2 Exercise. Let F : G◦ → M eq be as in the proof of Theorem 8.5.
Show that F � G◦

0 witnesses that G◦
0 is interpretable in M eq .

Now we let I be the set of all involutions of G◦ . Notice that

(*) for all distinct b, c ∈ P , there is exactly one f ∈ I such that fb = c .

10.3 Lemma. If f, g ∈ I , then f and fg are not generic elements of G◦ .

Proof. For a contradiction, suppose f is generic. Then we can find b, c ∈ P
such that dimP

aclP
A

({b, c, fb, fc}) = 4. Choose δ ∈ Σ so that δ � {b, c, fb} = id

and δ(fc) 6= fc . So δf 6= f and δf is an involution but (δf)b = fb 6= b , a
contradiction with (*) above.

Again for a contradiction, suppose fg is generic and by Lemma 10.1 find
b ∈ P such that (fg)b = b . If gb 6= b , then f = g−1 and thus fg = id , a
contradiction. So gb = b and thus fb = b . Choose any distinct c, d ∈ P − {b} .
Since g is not generic, dimP

aclP
A

({b, c, gc}) = 2 and similarly for d and thus

aclPA({b, c, d, gc, gd})⊆ aclPA({b, c, d}).

By repeating the argument for the non-generic element f ∈ I and distinct gc, gd ∈
P − {b} , we get

aclPA({b, gc, gd, (fg)c, (fg)d})⊆ aclPA({b, gc, gd}).

But then dimP
aclP

A

({b, c, d, (fg)c, (fg)d}) ≤ 3 and since this holds for all distinct

c, d ∈ P −{b} (including (c, d) generic over fg ) fg is not generic, a contradiction.

We let N be the set of all g ∈ G◦ such that for all but countably many
f ∈ I , gf ∈ I . We say that f ∈ I is generic over B ⊆ M eq ∪ G in I if there is
B ∩M eq ⊆ C ⊆M eq such that every g ∈ B ∩G has a quasicode in C6 and f has
a quasicode c ∈ P 6 such that dimP

aclP
A

(c/C) = 4 (i.e. the largest possible).
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10.4 Exercise.

(i) Show that f ∈ I is generic over B ⊆M eq∪G in I iff there are B∩M eq ⊆
C ⊆ M eq and b ∈ P such that C6 contains a quasicode of every g ∈ B ∩ G
(b, fb) ∈ P 2 is generic over C .

(ii) Show that if f, g ∈ I are generic over countable B ⊆M eq ∪G in I , then
there is δ ∈ Σ such that δ � B = id and δf = g . Hint: Use (*) above.

(iii) Show that for all g ∈ G◦ the following are equivalent:

(a) g ∈ N ,

(b) for all f ∈ I generic over {g} in I , gf ∈ I ,

(c) for some f ∈ I generic over {g} in I , gf ∈ I .

10.5 Lemma. If f, g ∈ N and fb = gb for some b ∈ P , then f = g .

Proof. Choose h ∈ I such that both fh and gh belong to I and c = hb 6=
fb . Then (fh)c = fb = gb = (gh)c 6= c and since fh, gh ∈ I , fh = gh and so
f = g .

10.6 Lemma. N is a normal subgroup of G◦ .

Proof. Clearly N is fixed as a set under all automorphisms of G◦ and thus
under all inner automorphism and so if it is a subgroup, it is also normal. So it is
enough to show that for all f, g ∈ N , fg, f−1 ∈ N .

For fg ∈ N , choose any finite B ⊆ P so that B6 contains quasicodes of f ,
g and fg and then choose c ∈ P so that c, gc 6∈ aclPA(B) (e.g. by the pigeon hole
principle). Finally choose d ∈ P generic over B ∪ {c, gc} . Let h ∈ I be such that
hd = c . Then By Exercise 10.4, gh ∈ I and it is generic over {f} in I . Thus
f(gh) ∈ I . But f(gh) = (fg)h and h is generic over {fg} and so fg ∈ N .

For f−1 ∈ N , choose h ∈ I generic over {f, f−1} in I . Then fh ∈ I
and thus (fh)2 = id i.e. f−1 = hfh . Since h = h−1 , hf−1h = f But then
(f−1h)2 = f−1f = id i.e. f−1h ∈ I . Since h is generic over f−1 in I , f−1 ∈ N
(see Exercise 10.4).

10.7 Exercise. For all δ ∈ Σ , δN = {δf | f ∈ N} = N .

10.8 Lemma. The action of N on P is regular.

Proof. By Lemma 10.5, it suffices to show that for any (a, b) ∈ P 2 there is
f ∈ N such that fa = b . Since id ∈ N , it suffices to show this in the case a 6= b
i.e. (a, b) is generic. For this choose c ∈ P − aclPA({a, b}) and let g, h ∈ I be such
that ha = c and gc = b . We claim that f = gh is as wanted. Clearly fa = b and
since fh = g ∈ I , it suffices to show that h is generic over {f} in I .

Choose (x1, x2, y) ∈ P 3 generic over {a, b, c, h} . Since by Lemma 10.3, f is
not generic, for i ∈ {1, 2} , fxi ∈ aclPA({a, b, x1, x2}) . So it suffices to show that
(y, hy) is generic over {a, b, x1, x2} . If not, then hy ∈ aclPA({a, b, x1, x2, y}) and
since h is not generic by Lemma 10.3, hy 6= y by Lemma 10.1. Then since δh = h
for all δ ∈ Σ such that δy = y and δ(hy) = hy , c ∈ aclPA({a, b, x1, x2, y}) . But
this contradicts the choice of the elements a, b, c, x1, x2 and y .
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10.9 Exercise. N is interpretable in M eq . Hint: Let H : G◦ → M eq

witness that G◦ is interpretable in M eq . Show that H(N) in ∞ -definable by
using Exercise 10.4 (iii). (Alternatively one can use Lemma 10.8 and repeat the
argument from Section 9.)

Now we define a closure operation on N as in Section 9: For f ∈ N and
(finite) X ⊆ N , f ∈ clN (X) if there are a finite Y ⊆ X and a ∈ P generic over
Y ∪ {f} such that fa ∈ acl({a} ∪ {ga| g ∈ Y }) .

10.10 Exercise. Show that clN is well-defined and that (N, clN ) is a group
carrying an ω -homogeneous pregeometry.

10.11 Corollary. N is commutative.

Proof. Immediate by Exercise 10.9 and 10.10 and Theorem 6.4.
For every x ∈ P , let fx ∈ N be such that fx0 = x . By Lemma 10.8,

x 7→ fx is a one-to-one function from P onto N . Now pick 1 ∈ P − {0} . For
all x ∈ P − {0} , let gx ∈ G◦

0 be such that gx1 = x . Since G◦
0 acts regularly on

P − {0} , x 7→ gx is a one-to-one function from P − {0} onto G◦
0 .

10.12 Lemma. For all x ∈ P−{0} and g ∈ G◦
0 , g = gx iff fg

1 (= gf1g
−1) =

fx .

Proof. By Lemma 10.6, fg
1 ∈ N . Thus by Lemma 10.8, it suffices to show

that g1 = x iff (fg
1 )0 = x (i.e. fg

1 = fx ). But (gf1g
−1)0 = (gf1)0 = g1 and thus

the claim follows.
Now we can define an addition + and multiplication × on N as follows: The

addition is the group operation of N . Also for all f ∈ N , f0 × f = f × f0 = f0 .
And finally, for x, y ∈ P − {0} , fx × fy = fgx

y (= f
gxgy
1 ).

10.13 Exercise.

(i) Show that FN = (N,+,×, f0, f1) is a field.
(ii) Show that (FN , (clN)f1) is a field carrying an ω -homogeneous pregeom-

etry. Conclude that FN is algebraically closed.
(iii) Show that g 7→ fg

1 is an isomorphism from G◦
0 onto F×

N .

By Lemma 10.6, G◦
0 acts on N by conjugation and so G◦

0oN can be formed.

10.14 Exercise. Show that (f, g) 7→ (x 7→ g(fx)) is an action of G◦
0 oN

on P (where f 7→ (x→ fx) is the action of G◦
0 on P induced from the action of

G◦ on P and similarly for N ).

Let H : G◦
0 o N → G◦ be such that H((f, g)) = gf , H∗ : G◦

0 o N →
(FN )× o (FN )+ be such that H∗(f, g) = (h, g) , where h ∈ N is the unique
element such that h0 = f1, and F : P → N be such that F (x) = fx .

10.15 Exercise.

(i) Show that (H, id) witnesses that the actions of G◦
0 oN and G◦ on P are

isomorphic.
(ii) Show that (H∗, F ) witnesses that the action of G◦

0 o N on P and the
action of (FN )× o (FN )+ on FN are isomorphic. Conclude that the action of G◦
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on P and the action of (FN )× o (FN )+ on FN are isomorphic. Hint: (gf)x =
(gffx)0 = (gffxf

−1)0 = (gff
x )0 and if h ∈ N is such that h0 = f1 , then

H∗(fg)F (x) = g + hfx = g + ff
x = gff

x .

(iii) Show that FN is definable in M eq .

11 The case n=3 and the conclusion

Excluding the conclusion below, throughout this section we assume that n =
3. Fix some ∞ ∈ P . As already mentioned in Remark 9.4, the main point here
is to show that (misusing the notation a bit) P∞ = P − {∞} with aclP∞

A∪{∞} is a

geometry. Because if this is the case, by using the case n = 2 and Exercise 4.14, it
is easy to work out what is going on. In fact we do this first and then later prove
that P∞ indeed is a geometry.

11.1 Theorem. Suppose that P∞ is a geometry. Then there an an alge-
braically closed field F interpretable in M eq such that the action of G◦ on P is
isomorphic with the action of PGL2(F ) on P1(F ) .

Proof. We let Σ∞ be Aut(M eq/acleq(A ∪ {∞})) . Denote G◦
∞ = (G◦)∞ .

Now we can define (G◦
∞)◦ using Σ∞ as G◦ was defined in Section 7. Since

P∞ is a geometry, G◦
∞ acts 2-regularly on P∞ and so (G◦

∞)◦ = G◦
∞ . Now,

again since P∞ is a geometry, we are exactly in the same situation as in the case
n = 2, when P is replaced by P∞ , G◦ is replaced by G◦

∞ and Σ is replaced
by Σ∞ . Thus we can find 0, 1 ∈ P∞ , a normal subgroup N∞ of G◦

∞ and the
subgroup G◦

∞0 = (G◦
∞)0 = (G◦){∞,0} of G◦

∞ and go on defining the addition
and multiplication on N∞ to get an algebraically closed field FN∞

such that it is
interpretable in M eq and the action of G◦

∞ on P∞ is isomorphic with the action of
(FN∞

)× o (FN∞
)+ on FN∞

. Let (H,H ′) be the isomorphism (keep in mind that
H ′(x) is the unique fx ∈ N∞ such that fx0 = x and for g ∈ G◦

∞0 and h ∈ N∞ ,
H(hg) = (f, h) where f ∈ N∞ is the unique element such that f0 = g1). So by
Exercise 4.14 (v), if we identify x ∈ P∞ with H ′(x) , it is enough to find α ∈ G◦

such that α0 = ∞ , α∞ = 0, α1 = 1 and

(*) for all x ∈ P∞ − {0} , αx = x−1 .

Since the action of G◦ on P is 3-regular, there is unique α ∈ G◦ such that
α0 = ∞ , α∞ = 0 and α1 = 1. We show that this α satisfies (*). Notice that α
is an involution.

To prove (*), it suffices to show that for all g ∈ G◦
∞0 , g

α = g−1 : Clearly,
for all g ∈ G◦

∞0 , g
α ∈ G◦

∞0 and since gαx1 = (αgx)1 = αx , gαx = gαx and so if
gαx = g−1

x , fαx = f−1
x (see Exercise 10.12 (iii)).

Since every element of G◦
∞0 is a product of two elements of G◦

∞0 both generic
over {∞, 0, 1} and G◦

∞0 is commutative, it is enough to show that for every
g ∈ G◦

∞0 generic over {∞, 0, 1} , gα = g−1 . But for every δ ∈ Σ∞ , if δ0 = 0 and
δ1 = 1, then δα = α , and thus by the uniqueness of generics of G◦

∞0 (i.e. since
the action of G◦

∞ on P∞ is 2-regular), it is enough to find one g ∈ G◦
∞0 generic

over {∞, 0, 1} such that gα = g−1 . An easy calculation shows that ((gα)g−1)α =
((gα)g−1)−1 (exercise, keep in mind that G◦

∞0 is commutative and that α is an
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involution). And so if there is g ∈ G◦
∞0 such that gαg−1 is generic over {∞, 0, 1} ,

we are done.
So for a contradiction, assume that for all g ∈ G◦

∞0 , g
αg−1 is not generic

over {∞, 0, 1} . As in the previous sections, one can see that f ∈ G◦
∞0 is generic

over {∞, 0, 1} iff f1 is generic over {∞, 0, 1} . Since f1 determines f , for all
g, h ∈ G◦

∞0 generic over {∞, 0, 1} ,
(**) gαg−1 = hαh−1

(if g ∈ G◦
∞0 is generic over the set {∞, 0, 1} , then it is generic also over the

set {∞, 0, 1, (gαg−1)1}). Choose these so that in addition g−1h is generic over
{∞, 0, 1} . An easy calculation shows that (**) implies that (g−1h)α = g−1h .
Since g−1h is generic, (g−1h)1 is generic over {0, 1,∞} and thus because α 6= id ,
(g−1h)α1 = (αg1h)1 = α((g−1h)1) 6= (g−1h)1, a contradiction.

To prove the following theorem we need to go through much of the theory
from Section 10 without the assumption that the pregeometry is a geometry.

11.2 Theorem. P∞ is a geometry.

Proof. By Exercise 5.3, P∞ is a pregeometry and since P is a geometry,
aclP∞

A∞(∅) = ∅ . Thus it suffices to show that for all a ∈ P∞ , aclP∞

A∞({a}) = {a} .
Clearly it is enough to show this for some a ∈ P∞ .

We denote by cl the closure operation aclP∞

A∞ and we write dim(x1, ..., xn)

for dimP∞

cl ({x1, ..., xn}) . We denote H = G◦
∞ and notice the following:

11.2.1 Exercise.

(i) If the pairs (a, b), (c, d) ∈ (P∞)2 have dimension 2 , then there is g ∈ H
such that ga = c and gb = d .

(ii) Suppose (a, b) ∈ (P∞)2 has dimension 2 and fa = ga and fb = gb for
f, g ∈ H , then f = g .

Fix 0 ∈ P∞ . In the proof of Corollary 9.5 we showed the following:

11.2.2 Claim. Suppose b 6∈ cl({0}) and g ∈ H is such that g0 = 0 and
gb 6∈ cl({b, 0}) . Then g is a generic element of H i.e. there are x1, x2 ∈ P∞ such
that dim(x1, x2, gx1, gx2) = 4 .

11.2.3 Claim. If g ∈ H is generic and g0 = 0 , then ga = a for all
a ∈ cl({0}) .

Proof. By Exercise 11.2.1 and Claim 11.2.2, it is enough to find b, c ∈ P∞ and
h ∈ H such that dim(0, b, c) = 3, h0 = 0, hb = c and ha = a for all a ∈ cl({0}) .
Fix e 6∈ cl({0}) and for all d 6∈ cl({0, d}) let gd ∈ H be such that gd0 = 0
and gde = d . By the pigeon hole principle and ω -stability, there are d, d′ ∈ P∞

such that dim(d, d′, e, 0) = 4 and the actions of gd and gd′ on cl({0}) are the
same (exercise, hint: if x and y are semicodes of g and f and t(x/cl({0})) =
t(y/cl({0})) , there is δ ∈ Σ such that δ(x) = δ(y) and δ � cl({0}) = id and then
for a ∈ cl({0}) , fa = δgδ−1a = ga). Then g = gdg

−1
d′ , b = d′ and c = d are as

wanted. Claim 11.2.3.

11.2.4 Claim. If g ∈ H , a ∈ P∞−cl({0}) , g0 = 0 and ga ∈ cl({a})−{a} ,
then g is generic.
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Proof. Again choose x1, x2 ∈ P∞ so that dim(0, a, x1, x2) = 4 and for a
contradiction suppose dim(x1, x2, gx1, gx2) ≤ 3. If 0 6∈ cl({x1, x2, gx1, gx2}) ,
then g = id , a contradiction. So a 6∈ cl({x1, x2, gx1, gx2}) . Thus if y1, y2 ∈
P∞ are such that dim(y1, y2, x1, x2, gx1, gx2) = dim(x1, x2, gx1, gx2) + 2, then
dim(y1, y2, gy1, gy2) = 2. But then 0 6∈ cl({y1, y2, gy1, gy2}) and so g = id , a
contradiction. Claim 11.2.4.

As before, we let I∞ be the set of all involutions of H . Exactly as in Section
10, one can prove the following claim.

11.2.5 Claim. If dim(a, b) = 2 , then there is a unique g ∈ I∞ such that
ga = b . Furthermore, if f, g ∈ I∞ , then f and fg are not generic elements of H .
Claim 11.2.5.

Again we let N∞ to be the set of all g ∈ H such that for all but countably
many h ∈ I , gh is an involution. Still essentially as in Section 10, one can show
the following claim.

11.2.6 Claim.

(i) For all g, h ∈ N∞ and a ∈ P∞ , if ga = ha , then g = h .
(ii) N∞ is a normal subgroup of H .
(iii) For all a, b ∈ P∞ there is g ∈ N∞ such that ga = b (and so the action

of N∞ on P∞ is regular). Claim 11.2.6.

11.2.7 Claim. Suppose a ∈ cl({0}) − {0} and b 6∈ cl({0}) . Let f ∈ N∞

be such that f0 = a and h ∈ I∞ be such that ha = b . Then fb ∈ cl({b})− {b} ,
fh = hf and f ∈ I∞ .

Proof. It is easy to see using the definition of N∞ and Claim 11.2.6, that
fh ∈ I∞ . Thus f = hf−1h (since h and fh are involutions, fh = (fh)−1 =
h−1f−1 = hf−1 ) and so fb = (hf−1)a . Since a ∈ cl({0}) , f−1a ∈ cl({a}) and so
fb = hf−1a ∈ cl({b}) . By Claim 11.2.6 again, fb 6= b (since otherwise f = id)
and we have prove the first of the three claims.

11.2.7.1 Exercise. Show that for fh = hf , it is enough to show that
fg = gf for any g ∈ H such that dim(a, b, ga, gb) = 4 . Conclude that it is
enough to show this for some such g . Hint: (gh)f = f(gh) = (gf)h .

Let g, g′ be as g in Exercise 11.2.7.1. As above, f(ga) ∈ cl({ga}) and thus
(g−1fg)a ∈ cl({a}) and similarly for g′ . So by the pigeon hole principle, we can
find these so that in addition dim(a, b, (g′g−1)a, (g′g−1)b) = 4 and (g−1fg)a =
(g′−1fg′)a . Then by Claim 11.2.6, g−1fg = g′−1fg′ and so g′g−1 commutes with
f and we have proved the second claim.

Finally, id = (fh)(fh) = f2h2 = f2 and so f ∈ I∞ . Claim 11.2.7.
Now we are ready to show that P∞ is a geometry. As pointed out in the

beginning of this proof, it is enough to show that cl({0}) = {0} . For a contradic-
tion, suppose that this is not the case. Then there is a ∈ cl({0})−{0} . By Claim
11.2.6, there is f ∈ N∞ such that f0 = a . Pick b 6∈ cl({0}) (and choose h ∈ I∞
such that ha = b). Then by Claim 11.2.7, f ∈ I∞ and fb ∈ cl({b})− {b} . Since
fb 6∈ cl({0}) , there is g ∈ H such that gb = fb and g0 = 0. By Claim 11.2.4,
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g is a generic element of H and thus it fixes cl({0}) pointwise by Claim 11.2.3.
Thus (gfg−1)0 = f0. Since N∞ is normal, gfg−1 ∈ N∞ . So by Claim 11.2.6,
gfg−1 = f i.e. f and g commute. So g2b = g(fb) = f(gb) = f2b = b . Thus
g2 = id (since also g20 = 0). So g ∈ I∞ , which contradicts Claim 11.2.5.

So we have proved:

11.3 Conclusion. Suppose M is an uncountable saturated ω -stable struc-
ture (in a countable vocabulary) and P ⊆Mm , m ∈ IN , and Q ⊆M are infinite
sets definable over finite A ⊆M such that

(i) P is strongly minimal over A and (P, aclPA) is a geometry,
(ii) there is n ∈ IN− {0} such that
(a) for all generic a ∈ Pn and finite B ⊆ Q , dimP

aclP
A

(a/B) = n ,

(b) for some generic a ∈ Pn+1 and finite B ⊆ Q , dimP
aclP

A

(a/B) ≤ n .

Let G = Aut(M/QA)/K , where K is the kernel of the natural action of the group
Aut(M/QA) on P and let G◦ be the connected component of G . Then n ≤ 3
and G◦ is interpretable in M eq . In addition,

• if n = 1 , then G◦ is commutative and the action of G◦ on P is regular,
• if n = 2 , then there is an algebraically closed field F interpretable in M eq

such that the action of G◦ on P is isomorphic to the action of F× o F+ on F ,
• if n = 3 , then there is an algebraically closed field F interpretable in M eq

such that the action of G◦ on P is isomorphic to the action of PGL2(F ) on
P1(F ) .

As pointed out in Section 1, the assumption that M is uncountable and
saturated is to a large extension without loss of generality. We demonstrate this
by giving one easy consequence of Conclusion 11.3 to the case when the model is
not assumed to be saturated nor uncountable.

Suppose A ⊆ A is finite and P ⊆ Am is definable over A . For an elementary
extension B of A , we write PB for the set φ(B, c) , where φ(x, c) is any formula
that defines P in A (PB does not depend on the choice of φ(x, c) , exercise). For
the following fact, see e.g. the lecture notes on model theory.

11.4 Fact. If A is an infinite ω -stable structure, then it has a saturated
uncountable elementary extension (which by the definition is ω -stable).

11.5 Exercise. Suppose A � B , P ⊆ Am is strongly minimal over finite
A ⊆ A , B ⊆ P is finite and a ∈ P . Then the following hold:

(i) a ∈ aclPA(B) iff a ∈ aclP
B

A (B) .
(ii) (P, aclPA) is a pregeometry.
(iii) If Q ⊆ A is definable over A and there is finite C ⊆ QB such that

a ∈ aclP
B

AC(B) , then there is finite D ⊆ Q such that a ∈ aclPAD(B) .

11.6 Exercise. Suppose A is an infinite ω -stable structure (in a countable
vocabulary) and P ⊆ Am , m ∈ IN , and Q ⊆ A are infinite sets definable over
finite A ⊆ A such that

(i) P is strongly minimal over A and (P, aclPA) is a geometry,
(ii) there is n ∈ IN− {0} such that
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(a) for all generic a ∈ Pn , dimP
aclP

A

(a/Q) = n ,

(b) for some generic a ∈ Pn+1 , dimP
aclP

A

(a/Q) ≤ n .

Then n ≤ 3 and
• if n = 1 , then a commutative group is interpretable in Aeq ,
• if n ≥ 2 , then an algebraically closed field interpretable in Aeq .

Hint: First show by using Fact 11.4 and Exercise 11.5, that one can find an
elementary extension M of A such that the the assumptions of Conclusion 11.3
hold for PM and QM . The by going through the proofs, one can see that all the
interpretable objects are interpretable over A∪{∞, 0, 1} and that one can choose
∞ , 0 and 1 so that they belong to A . Then just apply the fact that A is an
elementary submodel of M .

12 On local modularity

In this section we sketch a proof of a special case of a result by B. Zilber from
[Zi]. Our proof uses ideas also from [Hr2] and [Hy2]. The result is only a special
case because again we want to avoid the use of stability theory.

12.1 Assumptions. We assume that the vocabulary L is countable and
that M satisfies the following:

(i) M is uncountable, strongly minimal and (M, acl) is a geometry.
(ii) M is ω -categorical i.e. all countable elementary submodels of M are

isomorphic (and thus by Ryll-Nardzewski, see the lecture notes on model theory,
acl(A) is finite for all finite A ⊆M , exercise).

(iii) M has the elimination of imaginaries i.e. for all a ∈ Mn , n ∈ IN ,
and (finite) B there is e = eaB ∈ acl(B)m , m ∈ IN , called a canonical basis of
p = t(a/acl(B)) (denoted also cb(p)), such that it depends only on t(a/acl(B))
and

(a) a ↓e B (i.e. dimM
acl(a/B) = dimM

acl(a/e)),
(b) e = acl(e) (for convenience),
(c) t(a/e) is stationary i.e. for all (finite) B ⊆ C ⊆ M and b , if t(b/e) =

t(a/e) , a ↓e C and b ↓e C , then t(b/C) = t(a/C) ,
(d) if B′ ⊆ M is such that, a ↓B B′ and a ↓B′ B , then cb(t(a/acl(B′))) =

cb(t(a/acl(B))) .

12.2 Fact. If L is countable, then Assumptions 12.1 (i) and (ii) imply that
Assumptions 1.16 are satisfied.

Assumption 12.1 (iii) is made just to avoid the use of stability theory, suitable
sequences e can always be found from M eq .

12.3 Exercise. Let V be an uncountable vector space over a finite field F
(i.e. for some uncountable I , the universe of V consists of all f : I → F such
that {i ∈ I| f(i) 6= 0} is finite, (f +g)(i) = f(i)+g(i) and (λf)(i) = λf(i) for all
λ ∈ F ). Show that excluding the requirement that (M, acl) is a geometry (but
see Example 12.5), V satisfies Assumptions 12.1. Hint: Let cb(t(a/acl(A))) be
span(a) ∩ span(A) .
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12.4 Fact. Algebraically closed fields satisfy the assumption (iii) above
if in (iii), e ∈ acl(B)m is replaced by e = acl(e′) for some e′ ∈ acl(B)m (in
algebraically closed fields acl(e) is not finite even if e is, of course).

Also Assumption 12.1 (i) is ‘w.o.l.g.’:

12.5 Exercise. Suppose M satisfies Assumptions 1.16, is ω -categorical and
P ⊆ Mn is strongly minimal over finite A ⊆ M . Let P ∗/ ∼⊆ M eq and (aclPA)

∗

be as in Exercise 5.3 (iv). Show that there is M ′ that satisfies Assumptions 12.1
(i) and (ii), the universe of M ′ is P ∗/ ∼ and aclM

′

∅ = (aclPA)
∗ . Hint: Code

the types over A that are realized in P ∗/ ∼ as predicates and keep in mind
Ryll-Nardzewski.

12.6 Definition.

(i) We say that a pregeometry (S, cl) is modular if dim(AB) = dim(A) +
dim(B)− dim(cl(A) ∩ cl(B)) for all finite A,B ⊆ S .

(ii) We say that a pregeometry (S, cl) is locally modular if for some a ∈ S ,
(S, cl{a}) is modular.

12.7 Exercise.

(i) Let F be a field and V = Vn(F ) , n > 2 , an n -dimensional vector space
over F . We say that A ⊆ V is an affine subspace if there are a subspace S ⊆ V
and a ∈ V such that A = {x + a| x ∈ S} . We define a closure operation cl on
V as follows: cl(∅) = ∅ and for non-empty X ⊆ V , we let cl(X) be the least
affine subspace that contains X . Show that cl is well-defined (i.e. the least affine
subspace exists) and that (V, cl) is a geometry that is locally modular but not
modular.

(ii) Let (V, cl) be as in (i) above. Describe (V/ ∼, (cl{0})
∗) (see Exercise 5.3

(iv)).
(iii) Show that a pregeometry (S, cl) is locally modular iff the geometry

(S∗/ ∼, cl∗) is locally modular.

12.8 Fact. If F is an algebraically closed field, then (F, acl) is not locally
modular.

The result of which proof we will sketch is the following:

12.9 Theorem. Under Assumptions 12.1, (M, acl) is locally modular.

Proof. (Sketch) For a contradiction, we suppose that (P, aclP∅ ) is not locally
modular.

12.9.1 Definition. Suppose Q ⊆ Mn , n ∈ IN , is strongly minimal over
finite A ⊆ M . We say that Q is k -pseudolinear if for all B ⊆ Q and a, b ∈
Q− aclQA(B) such that dimQ

acl
Q

A

(ab/B) = 1 ,

dimM
acl(cb(t(ab/acl(AB)))/A) ≤ k.

The proofs of the following facts can be found from [Pi].
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12.9.2 Facts.

(i) If Q ⊆ Mn , n ∈ IN , is strongly minimal over finite A ⊆ M , then Q is
2 -pseudolinear.

(ii) (M, acl) is not 1 -pseudolinear (1 -pseudolinearity implies local modular-
ity).

So we can find e ∈Mm , m ∈ IN, and a, b ∈M−e such that dimM
acl(ab/e) = 1,

e = cb(t(ab/e)) and dimM
acl(e) = 2. Now choose e′ so that t(e′/∅) = t(e/∅) and

e′ ↓∅ eab . Choose d ∈ M so that t(ade′/∅) = t(abe/∅) and finally choose c ∈ M
so that t(cd/e) = t(ab/e) .

|

|

|

|

|

| |

|

e

a

b

e′
d

c

g

h

Let e∗ = cb(t(abcd/acl(ee′))) and notice that for any x ∈ {a, b, c, d} ,

dimM
acl(xee

′) = dimM
acl(abcdee

′) = 5,

dimM
acl(ee

′) = 4 and dimM
acl(e

∗/e) = dimM
acl(e

∗/e′) = 2 in fact e∗ = acl(ee′)
(exercise).

12.9.3 Claim. cd is definable from abe∗ .

Proof. Let c′d′ ∈ M be such that t(c′d′/abe∗) = t(cd/abe∗) . By saturation
of M , it suffices to show that d′ = d and c′ = c . We prove first that d′ = d .
Since (M, acl) is a geometry, it suffices to show that d′ ∈ acl(d) .

Let g = cb(t(bd/e∗)) ⊆ e∗ = acl(ee′) . We start by some remarks on g : First,
a ∈ acl(ge′b) and so e ⊆ acl(ge′) . Thus dimM

acl(g/e
′) = 2. By 2-pseudolinearity,

dimM
acl(g) ≤ 2 and so dimM

acl(g) = 2 and g ↓∅ e
′ .

Now for a contradiction, suppose dimM
acl(d

′d) = 2. Since d, d′ ∈ acl(e′a) ,
dimM

acl(e
′/dd′) = 1. Similarly, by the remarks above, dimM

acl(g/dd
′) = 1. Thus

dimM
acl(ge

′dd′) ≤ 4. But acl(ge′dd′) contains e and thus dimM
acl(ge

′dd′) = 5, a
contradiction.

Now to see that c′ = c , let h = cb(t(ab/e∗)) . Exactly as with g and e′ , we
can see that dimM

acl(h) = 2 and h ↓∅ e . Thus exactly as above, if dim(cc′) = 2,
dim(h/cc′) = 1. Since d′ = d , c′ ∈ acl(ed) and so as above, also dim(e/cc′) = 1.
Thus dim(hecc′) ≤ 4 which is impossible since acl(he) contains e′ . Claim 12.9.3

Similarly:
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12.9.4 Claim. ab is definable from cde∗ .

We let D be the set of realizations of t(ab/e) , where a, b and e are as above.
Since acl(A) is finite for all finite A ⊆M , D is definable over e . By Assumption
12.1 (iii) (c), D is strongly minimal.

We let G′ be the set of all triples (a, b, e∗) such that a, b ∈ D , b is de-
finable from ae∗ and a is definable from be∗ , e∗ = cb(t(ab/e∗)) , e ⊆ e∗ and
dimM

acl(ab/e
∗) = 1. Notice that for all (a, b, e∗) ∈ G′ , dim(e∗/e) ≤ 2 by Fact

12.9.2 (i). Let ∼ be the following equivalence relation on G′ : as sets e∗0 = e∗1 and
t(a0b0/e

∗
0) = t(a1b1/e

∗
0) . And let G = G′/ ∼ . For simplicity we write (a, b, e∗)

also for (a, b, e∗)/ ∼ .
We say that c ∈ Dn is generic over AB , where A = {(ai, bi, e

∗
i )| i ∈ I} ⊆ G′

and B ⊆M eq , if dimD
aclDe

(c/B ∪
⋃

i∈I e
∗
i ) = n . Now G ‘acts generically’ on D as

follows: If g = (a, b, e∗) ∈ G and c ∈ D is generic over {g} , then gc is the unique
d ∈ D such that t(cd/e∗) = t(ab/e∗) .

12.9.5 Exercise. Show that if c ∈ D is generic over {g, g′} ⊆ G and
gc = g′c , then g = g′ .

Now we define a group structure on G according to this ‘action’ i.e. gh = f
if for some (any) c ∈ D generic over {g, h, f} , g(hc) = fc .

12.9.6 Exercise. Show that G is a group.

We say that g = (a, b, e∗) ∈ G is generic over A ⊆M eq∪G if dimM
acl(e

∗/A′) =
2 where A′ = (A∩M eq)e∪

⋃
(a′,b′,e′)∈G∩A e

′ (keep in mind that dimM
acl(e

∗/e) ≤ 2

always). Now as in Section 7 we can find a connected component G◦ of G so
that if both g = (a0, b0, e

∗
0) and h = (a1, b1, e

∗
1) ∈ G◦ are generic over finite

A ⊆ M eq , then there is F ∈ Aut(M eq/Aacleq(e)) such that F (e∗0) = e∗1 and
t(F (a0)F (b0)/e

∗
1) = t(a1, b1/e

∗
1) i.e. ‘F (g) = h ’.

12.9.7 Exercise. G◦ is interpretable in M eq . Hint: One can use method
from Section 8 but there is also an easy way (keep in mind that acl(A) is finite
for all finite A ⊆M ).

12.9.8 Claim.

(i) There are c, d ∈ D and g ∈ G◦ such that dimD
aclDe

(c, d, gc, gd) = 4 . Thus if

(c0, c1), (d0, d1) ∈ D2 are generic over ∅ , then there is g ∈ G◦ such that gci = di
for i < 2 .

(ii) There are no g = (a, b, e∗) ∈ G◦ and (ci)i<3 ∈ D3 such that for all i < 3 ,
ci is generic over g and dimD

aclDe
(c0, c1, c2, gc0, gc1, gc2) = 6 .

Proof. (i) Let g = (a, b, e∗) ∈ G be such that dimM
acle

(e∗) = 2 and c, d ∈ D

such that dimD
aclDe

((c, d)/e∗) = 2. For a contradiction, suppose

gd ∈ aclDe ({c, d, gc}.

Then (d, gd) ↓{e,c,gc} e
∗ and thus since e∗ = cb(t((d, gd)/e∗)) , e∗ ∈ acl({e, c, gc}) .

Since c ↓e e
∗ , dim(e∗/e) ≤ 1, a contradiction.
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(ii) For a contradiction, suppose there are such elements. Since dimM
acle

(e∗) ≤

2 and dimM
acle

(c0, c1, e
∗) = dimM

acle
(c0, c1, gc0, gc1, e

∗) , e∗ ∈ acle({c0, c1, gc0, gc1}) .

Thus dimM
acle

((c2, gc2)/e
∗) ≥ dimM

acle
((c2, gc2)/{c0, c1, gc0, gc1}) = 2, a contradic-

tion. Claim 12.9.8
Now we would like to analyze G◦ as a group was analyzed in Section 10. But

for this we need a real action, not just ‘action’ i.e. we need to make the generic
action total. For this we need to change D and G◦ a bit.

Let C′ be the set of pairs (g, a) such that g ∈ G◦ and a ∈ D . Let ≈ be an
equivalence on C′ such that (g, a) ≈ (f, b) if for some (any) h ∈ G◦ generic over
{g, a, f, b} , (hg)a ∈ aclDe ({(hf)b}) . Let C be the set of all ≈-equivalence classes
and as before we write (g, a) also for (g, a)/ ≈ . Notice that C is a definable
set in M eq (and even definable over e). On C we define a closure operation cl
as follows: (gn, an) ∈ cl({(g1, ai)| i < n}) if for some (any) h ∈ G◦ generic over
{gi, ai| i < n} , (hgn)an ∈ aclDe ({(hgi)ai| i < n}) . We let G◦ act on C the obvious
way i.e. f(g, a) = (fg, a) .

12.9.9 Exercise.

(i) Show that (C, cl) is a well-defined geometry and that for all ai ∈ D , i ≤ n ,
(id, a0) ∈ cl({(id, ai)| 1 ≤ i ≤ n}) iff a0 ∈ aclDe ({ai| 1 ≤ i ≤ n}) .

(ii) Show that if a ∈ D is generic over h ∈ G◦ and g ∈ G◦ , then (g, a) ≈
(gh−1, ha) (and so if a is generic over g , (g, a) ≈ (id, ga)).

(iii) Show that the action is well-defined and, indeed, an action.
(iv) Show that for all (gi, ai) ∈ C , i ≤ n , and h ∈ G◦ ,

(gn, an) ∈ cl({(g1, ai)| i < n})

iff
((hgn), an) ∈ cl({((hg1), ai)| i < n}).

(v) Show that the action of G◦ on C is 2-transitive.

We let K be the set of all g ∈ G◦ such that for some (any) a ∈ D generic
over g , ga ∈ aclDe ({a}) . We let H = G◦/K .

12.9.10 Exercise.

(i) Show that H is a finite normal subgroup of G◦ , it is interpretable in M eq

and if (f, b) = (h, c) and g/K = g′/K , then (gf, b) = (g′h, c) . Hint for the last
claim: Using Exercise 12.9.9 (ii), show that we may assume that f = h , see also
the proof of Claim 12.9.11 below.

(ii) Show that for f, g ∈ G◦ , and a ∈ D generic over {f, g} , f/K = g/K iff
f(id, a) = g(id, a) .

12.9.11 Claim. If xi = (gi, ai) ∈ C , i < 3 , are such that dimC
cl({xi| i <

3}) = 3 and f, h ∈ G◦ are such that for all i < 3 , fxi = hxi , then f/K = g/K .

Proof. Using Exercise 12.9.9 (ii), it is easy to see that then w.o.l.g we may
assume that for all i < j < 3, gi = gj = g . Also since it is enough to show
that fg/K = hg/K , we may assume that g = id . By Exercise 12.9.9 (i),
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dimD
e ({a0, a1, a2}) = 3. Now choose h′ ∈ G◦ such that it is generic over the

set that contains all the elements mentioned in the assumptions. Then for all
i < 3, (h′f)ai ∈ aclDe ((h′h)ai) . Denote bi = (h′f)ai . Since ai is generic over
h′h , (h−1h′−1)bi ∈ aclDe (ai) . Denote ci = (h−1h′−1)bi . Then h−1f(id, ai) =
h−1h′−1h′f(id, ai) = h−1h′−1(id, bi) = (id, ci) . Since ci ∈ aclDe (ai) and ai is
generic over h−1f for some i < 3, h−1f/K = id/K by Exercise 12.9.10 (ii).
Thus f/K = h/K . Claim 12.9.11

12.9.12 Claim. There are only finitely many x ∈ C such that for all
a ∈ D , x 6= (id, a) .

Proof. Suppose not. Let (gi, ai) , i < ω , witness this. By Exercise 12.9.9
(ii), we may assume that there is a such that for all i < ω , ai = a (exercise). Let
f = (c, d, e∗) be generic over {gi| i < ω} ∪ {a} . For a contradiction, it suffices
to show that (fgi)a ∈ aclDe (e∗) for all i < ω . But this is clear, since otherwise,
f−1 is generic over (fgi)a and so by Exercise 12.9.9 (ii), (gi, a) ≈ (f−1, (fgi)a) ≈
(id, f−1((fg)a)) . Claim 12.9.12

12.9.13 Exercise.

(i) Show that there is finite Ac ⊆ C such that for all finite B ⊆ C − Ac

cl(AB) = Acl(B) and for all a, b ∈ C−cl(AB) , there is F ∈ Aut(M eq/ABe) such
that F (a) = b . Hint: Let Ac be set set of (g, x) ∈ C such that for all y ∈ D ,
(g, x) 6≈ (id, y) . Then to find F , choose h ∈ G◦ generic enough and find F so
that F (h) = h , F (ha) = hb and for all c ∈ AB , F (hc) = hc .

(ii) Show that there are no a, b, c ∈ C and g ∈ G◦ such that

dimC
cl({a, b, c, ga, gb, gc}) = 6.

Hint: For any f ∈ G◦ , dimC
cl({fa, fb, fc, (fg)a, (fg)b, (fg)c}) = 6 if and only if

dimC
cl({a, b, c, ga, gb, gc}) = 6 .

12.9.14 Claim. M eq interprets an algebraically closed field.

Proof. Now we have everything we needed in Sections 9 and 10, except that
the property in Exercise 12.9.13 (i) is weaker than what we had earlier. However, it
is good enough to make the proofs go through (to show that if fx = gx , fy = gy
and x 6= y , then f = g , notice first that it is enough to prove this under the
additional assumption that x, y ∈ C−Ac , see Exercise 12.9.13, and then, working
in C −Ac , apply the proofs from Section 9.) Claim 12.9.14

But now the following exercise gives the needed contradiction:

12.9.15 Exercise. M eq does not interpret an algebraically closed field.
Hint: Use the fact that algebraically closed fields are not ω -categorical and Ryll-
Nardzewski (and keep in mind that M eq is not ω -categorical - but it is very close
of being ω -categorical).

This finishes the proof of Theorem 12.9.
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12.10 Remark. One reason why B. Zilber studied these questions was the
following. He looked at totally categorical theories T (see the literature). After
knowing that the pregeometries of strongly minimal sets in models of such theories
are locally modular, he was able to coordinatize the structure with elements of a
strongly minimal set (not completely unlike in Fact 4.13) and show that every first-
order sentence true in a model of T is true already in some finite substructure.
He concluded that the theory is not finitely axiomatizable i.e. there is no finite
theory T ′ with exactly the same models as T .
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