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0. Introduction

In the mid 60’s, Michael Morley made a number of findings. E.g. he showed
that if the theory is ω -stable, then a Cantor-Bendixon rank can be defined for types.
This work was continued by Saharon Shelah. During 70’s and 80’s he created single-
handedly a large piece of model theory known as classification theory. The idea
behind this work was to determine for which model classes of the form {A| A |= T} ,
T a complete first-order theory, a structure theorem can be proved. In this paper we
try to give a compact introduction to this topic. We concentrate on cases in which
T is stable, so a large part of classification theory is left outside the scope of this
paper. We also concentrate on ideas and techniques in classification theory, not on
results. So our results are not always the best possible.

Unless otherwise stated, all results proved in this paper are from [Sh], but all
proofs are not. Some of the proofs are new and also proofs from [HS1], [HS2] and
[Hy1] are used. The first version [Hy3] of these notes was written in mid 90’s.

To read these notes one needs to know the basic concepts of model theory and
how to use them. Also some basic facts from cardinal arithmetics are needed (e.g.
(2κ)κ = 2κ ).

This paper is full of exercises. Usually they are simple but vital parts of the
theory, and so they are often used later in the proofs. If an exercise is not needed
later in this paper, then it is marked by ∗ . If an exercise is more than just checking
definitions, a generous hint is given.

We give examples of the concepts we define. In the text, the underlying theory in
those examples is usually either Tω or T2 : Tα = Th((αω, En)n<ω), where En(η, ξ)
holds if η � (n+1) = ξ � (n+1). From the appendix one can find two ’real’ examples
with more challenging exercises.

Under the name Fact, we give additional information without proofs but which
we sometimes use, in particular, in exercises.

0.1 Fact. T2 and Tω have elimination of quantifiers, see [Hy2].

Throughout this paper we assume that T is a complete theory in a language
L and that T has an infinite model. In order to simplify the notation, we use ’the
monster model technique’, i.e. we work inside M , where M |= T is a saturated
model of power κ , and κ is assumed to be larger than the cardinality of any object
that we come across. So by a model we mean an elementary submodel of M (of
power < κ). We write A , B etc. for these. This means e.g. that if A ⊆ B then
A ≺ B . Similarly by a set we mean a subset of M . We write A , B etc. for these.
By a , b etc. we mean a finite sequence of elements of M . By a ∈ A we mean
a ∈ Alength(a) .

If T is stable, then the existence of M is not a problem (in this paper from
Chapter 2 on). Otherwise we have to assume that the inaccessible cardinals form a
proper class or use just κ-saturated strongly κ-homogeneous monster model. But
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this assumption is not ’used’, it is not hard to see how to modify the definitions and
the proofs so that M is not needed.

Our notation is standard. So e.g. Sm(A) is the set of all complete consistent
types over A in m variables (modulo a change of variables) and in fact, by a type
we always mean a consistent type. S(A) = ∪m<ωS

m(A) and by t(a,A) we mean
the complete type of a over A (in M). We write p(x) when we want to point out,
which are the free variables in the type p . |= ϕ means M |= ϕ and ϕ(M, b) is the
set {a ∈ M| |= ϕ(a, b)} . p ⊢ q means that every tuple that satisfies p satisfies also
q .

1. Stability and ranks

1.1 Definition.
(i) We say that T is ξ -stable if for all A of power ≤ ξ , |S(A)| ≤ ξ .
(ii) We say that T is stable, if for some infinite ξ , T is ξ -stable.
(iii) If T is stable, then by λ(T ) we mean the least λ such that T is λ -stable.

1.2 Exercise.
(i)∗ For all A , |S1(A)| ≥ |A| .
(ii)∗ Show that the theory of dense linear-orderings without end-points is un-

stable. (Hint: Choose κ so that it is the least cardinal such that ωκ > ξ and extend
the ordering of the tree Q<κ to a linear-order.)

(iii)∗ Show that if for all A of power ≤ ξ , |S1(A)| ≤ ξ , then T is ξ -stable.
(iv)∗ Show that Tω and T2 are stable.
(v) If T is ξ -stable and ξ is regular, then for all A of power ≤ ξ , there exists

a saturated model A of power ξ such that A ⊆ A . (Hint: Choose an increasing
continuous sequence Ai , i < ξ , of sets of power ξ such that every type over Ai is
realized in Ai+1 and A ⊆ A0 . Then A = ∪i<ξAi is as wanted.)

Below, when we write ϕ(x), we mean that the free variables of ϕ are contained
in x . When we talk about a formula ϕ we assume that ϕ is of the form ϕ(x, y)
and that we always know, which variables belong to the first sequence and which
belong to the second. When we talk about ϕ-types, the variables in y are for
parameters, and x remains free. By ∆ we always mean a finite set of formulas and
if ϕ(x, y), ψ(x′, y′) ∈ ∆ then x = x′ . When we talk about p∪{ϕ(x, a)} we of course
assume that x is the sequence of free variables of p .

We will not do, what we said above, in a precise form; We rely on the common
sense of the reader.

1.3 Definition. Let ∆ be a finite set of formulas.
(i) Let A ⊆ B and p ∈ S(B) . We say that p ∆ -splits over A if there are

a, b ∈ B and ϕ ∈ ∆ such that t(a,A) = t(b, A) and ϕ(x, a),¬ϕ(x, b) ∈ p . We write
ϕ-splits instead of {ϕ} -splits.

(ii) Let A ⊆ B and p ∈ S(B) . We say that p splits over A if it ϕ-splits over
A for some ϕ .
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(iii) We say that ∆ is stable, if there are no Ai , i < ω , and a such that for all
i < ω , Ai ⊆ Ai+1 and t(a,Ai+1) ∆-splits over Ai . We say that ϕ is stable instead
of {ϕ} is stable. (Notice that this definition differs from the one given in [Sh], but
as we shall see, they are equivalent.)

(iv) We say that p is an ∆ -type if it is a set of formulas of the form ϕ(x, a)
or ¬ϕ(x, b) , a, b ∈ M and ϕ ∈ ∆ . By t∆(a,A) we mean the complete ∆ -type of a
over A . We write S∆(A) for the set of all complete ∆-types over A . As above, we
write tϕ(a,A) , Sϕ(A) and ϕ-type instead of t{ϕ}(a,A) , S{ϕ}(A) and {ϕ} -type.

1.4 Exercise.
(i) If ϕ is not stable, then for all κ , there are Ai , i < κ , and a such that for

all i < j < κ , Ai ⊆ Aj and t(a,Ai+1) ϕ -splits over Ai . (Hint: Use compactness.)
(ii) If every formula is stable, then every finite ∆ is stable.
(iii)∗ Find an infinite splitting sequence from (2ω, En)n<ω |= T2 .

1.5 Lemma. If ϕ is not stable, then for all infinite ξ , there is A of power
≤ ξ such that |Sϕ(A)| > ξ and so T is not stable.

Proof. Let κ be the least cardinal such that 2κ > ξ . Then κ ≤ ξ . By Exercise
1.4, we can find a , ai and bi , i < κ , such that for all i < κ , t(ai,∪j<i(aj ∪ bj)) =
t(bi,∪j<i(aj ∪ bj)) and |= ϕ(a, ai) ∧ ¬ϕ(a, bi).

By induction on i ≤ κ we define automorphisms fη�i of M , η ∈ 2κ , as follows:
(i) fη�0 = idM ,
(ii) fη�(i+1) = fη�i if η(i) = 0 and otherwise fη�(i+1) is any automorphism of

M such that fη�(i+1)(ai) = fη�i(bi) (or fη�(i+1)(bi) = fη�i(ai)) and for all j < i ,
fη�(i+1)(aj) = fη�i(aj), fη�(i+1)(bj) = fη�i(bj),

(iii) if i is limit, then fη�i is any automorphism of M such that for all j < i ,
fη�i(aj) = fη�(j+1)(aj) and fη�i(bj) = fη�(j+1)(bj).
Let A =

∪
i<κ ∪{fη�i(∪j<i(aj ∪ bj)| η ∈ 2κ} and for all η ∈ 2κ , we let pη =

tϕ(fη(a), A). Then |A| = 2<κ and by (ii) above, if η ̸= η′ , then pη and pη′ are
contradictory. By the choice of κ , A is as wanted.

1.6 Exercise. If T is ξ -stable and 2κ > ξ , then there are no Ai , i < κ , and
a such that for all i < j < κ , Ai ⊆ Aj and t(a,Ai+1) splits over Ai . (Hint: The
proof of Lemma 1.5 works also here.)

We say that a type p over A (∆, ϕ)-splits over B ⊆ A , if there are a, b ∈ A
such that t∆(a,B) = t∆(b,B), ϕ(x, a) ∈ p and ¬ϕ(x, b) ∈ p .

1.7 Lemma. If ϕ is stable, then for all infinite A , |Sϕ(A)| ≤ |A| .

Proof. Let c , ci and di , i < ω , be sequences of new constants and Ci =
∪j<i(cj ∪ dj). Since ϕ is stable, there are finite ∆ and n such that the following
set is not consistent

{ϕ(c, ci) ∧ ¬ϕ(c, di)| i < n} ∪ {ψ(ci, d) ↔ ψ(di, d)| i < n, d ∈ Ci, ψ ∈ ∆}.
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But then for all A and p ∈ Sϕ(A), we can find a finite B ⊆ A such that p does not
(∆, ϕ)-split over B . Since B and ∆ are finite, S∆(B) is finite and so also

{q ∈ Sϕ(A)| p � B ⊆ q, q does not (∆, ϕ)-split over B}
is finite. Because the number of finite subsets of A is ≤ |A| , the claim follows.

1.8 Definition. For every finite set ∆ of formulas and cardinal ξ (not nec-
essarily infinite), we define R∆(p, ξ) , for all types p , in the following way:

(i) R∆(p, ξ) ≥ 0 if p is consistent.
(ii) R∆(p, ξ) ≥ α + 1 if for all finite q ⊆ p and γ < ξ there are ∆ -types qi ,

i ≤ γ , such that
(a) for all i < j ≤ γ there are ϕ(x, y) ∈ ∆ and a such that ϕ(x, a) ∈ qi and

¬ϕ(x, a) ∈ qj or vice versa (in this case we say that qi and qj are ∆ -contradictory),
(b) for all i ≤ γ , R∆(q ∪ qi, ξ) ≥ α .
(iii) If α is limit, then R∆(p, ξ) ≥ α if R∆(p, ξ) ≥ β for all β < α .

We say that R∆(p, ξ) = α if α is the least ordinal such that R∆(p, ξ) ̸≥ α + 1 . If
such α does not exist, then we write R∆(p, ξ) = ∞ . We write R∆(p, ξ) = −1 if p
is not consistent and Rϕ for R{ϕ} .

1.9 Exercise.
(i) If R∆(p, ξ) = ∞ , then R∆(p, ξ) ≥ α , for all ordinals α .
(ii) If p ⊢ q , then R∆(p, ξ) ≤ R∆(q, ξ) .
(iii) If R∆(p, ξ) ≥ α and β < α , then R∆(p, ξ) ≥ β .
(iv) If ξ ≥ ξ′ and ∆ ⊆ ∆′ then R∆(p, ξ) ≤ R∆′(p, ξ′) .
(v) R∆(p, ξ) = min{R∆(q, ξ)| q ⊆ p finite} .
(vi) If p is algebraic, then R∆(p, ω) = 0 .
(vii) If p = p(x0, ..., xn) , xi = y ∈ ∆ for all i ≤ n and R∆(p, ω) = 0 , then p is

algebraic.

1.10 Lemma. Let ξ > 1 be a cardinal and ∆ a finite set of formulas.
(i) There is α such that for all finite p , R∆(p, ξ) ≥ α implies R∆(p, ξ) = ∞ .
(ii) If R∆(p, ξ) = ∞ and p is finite then there are finite p1 and p2 such that

p ⊆ p1 ∩ p2 , for some d and ϕ ∈ ∆ , ϕ(x, d) ∈ p1 , ¬ϕ(x, d) ∈ p2 and R∆(p1, ξ) =
R∆(p2, ξ) = ∞ .

(iii) If for all infinite A , |S∆(A)| ≤ |A| , then for all p , R∆(p, ξ) <∞ .

Proof. (i) follows immediately from the fact that the number of t(A, ∅) for
finite A , and the number of finite p over a finite A are bounded.

(ii) Immediate by (i) and the definition of R∆ .
(iii) By Exercise 1.9 (v), it is enough to prove this for finite p . But this follows

immediately from (ii).

1.11 Exercise. Let ∆ be a finite set of formulas.
(i) For all finite types p , a ∈ M and ϕ ∈ ∆ , if R∆(p, 2) < ∞ , then either

R∆(p ∪ {ϕ(x, a)}, 2) < R∆(p, 2) or R∆(p ∪ {¬ϕ(x, a)}, 2) < R∆(p, 2) .
(ii) Assume p ⊆ q ∩ r , q, r ∈ S∆(A) and p is finite. If R∆(q, 2) = R∆(r, 2) =

R∆(p, 2) <∞ , then q = r .
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We write |T | for the number of L-formulas modulo the equivalence T ⊢ ∀x(ϕ(x)
↔ ψ(x)).

1.12 Theorem. The following are equivalent:

(i) T is stable.

(ii) Every formula is stable.

(iii) Every finite ∆ is stable.

(iv) For every ϕ and infinite A , |Sϕ(A)| ≤ |A| .
(v) For every finite ∆ and infinite A , |S∆(A)| ≤ |A| .
(vi) For every finite ∆ , cardinal ξ > 1 and type p , R∆(p, ξ) <∞
(vii) T is ξ -stable for all ξ such that ξ|T | = ξ .

Proof. (i)⇒(ii): This is Lemma 1.5.

(ii)⇒(iii): This is Exercise 1.4 (ii).

(iii)⇒(iv): This follows from Lemma 1.7.

(iv)⇒(v): Every type p ∈ S∆(A) is determined by the sequence (p � ϕ)ϕ∈∆ ,
from which the claim follows.

(v)⇒(vi): This is Lemma 1.10 (iii).

(vi)⇒(v): Let p ∈ S∆(A). By Exercise 1.9 (v), choose finite B ⊆ A such that

(∗) R∆(p � B, 2) = R∆(p, 2).

By Exercise 1.11 (ii), p is determined by p � B and (*). Since for finite B , S∆(B)
is finite and the number of finite subsets of A is |A| , |S∆(A)| ≤ ω × |A| = |A| .

(v)⇒(vii): Assume |A| = ξ and ξ|T | = ξ . Every type p ∈ S(A) is determined
by the sequence (p � ϕ)ϕ∈L . So |S(A)| ≤ |

∏
ϕ∈L Sϕ(A)| = |A||T | = ξ .

(vii)⇒(i): Trivial.

1.13 Exercise. If T is stable, then for every cardinal ξ > 1 , finite ∆ and
type p , R∆(p, ξ) < ω . (Hint: By Exercise 1.9 (iv), it is enough to prove the claim
for ξ = 2 . For a contradiction, assume that the claim does not hold for ξ = 2 and
use compactness to show that the following set of formulas is consistent (cη and di
are sequences of new constants):

{¬
∧

ϕ∈∆, d⊆di

(ϕ(cη, d) ↔ ϕ(cη′ , d))| η, η′ ∈ 2ω, η � i = η′ � i, η(i) ̸= η′(i)}.)

1.14 Fact. ([Sh]) If T is not stable, then there is ϕ(x, y) such that for all
linear-orderings η there are ai ∈ M , i ∈ η , such that |= ϕ(ai, aj) iff i < j . (Notice
that by the proof of Exercise 1.2 (ii), this ϕ is not stable.)

We say that p and q are ∆-contradictory if there are ϕ ∈ ∆ and a such that
ϕ(x, a) ∈ p and ¬ϕ(x, a) ∈ q or vice versa.
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1.15 Theorem. Assume T is stable. Then

R∆(p ∪ {∨i<nϕi}, ω) = maxi<nR∆(p ∪ {ϕi}, ω).

Proof. By Exercise 1.9 (ii), it is enough to show that for all p , R∆(p∪{∨i<nϕi},
ω) ≥ α implies maxi<nR∆(p∪{ϕi}, ω) ≥ α . We prove this by induction on α . The
cases α = 0 and α is limit, are trivial.

We prove the case α = β + 1: For a contradiction, assume that for all i < n ,
there are a finite pi ⊆ p and ni < ω , which satisfy the following: there are no
pairwise ∆-contradictory qij , j < ni , such that pi ⊆ qij and R∆(q

i
j ∪ {ϕi}, ω) ≥ β .

Let p∗ = ∪i<npi and n∗ = n · (maxi<nni). Then p∗ ∪ {∨i<nϕi} ⊆ p ∪ {∨i<nϕi} is
finite and there are no pairwise ∆-contradictory qi , i < n∗ such that for all i < n∗ ,
p∗ ⊆ qi and for all i < n∗ , there exists j < n , such that R∆(qi ∪ {ϕj}, ω) ≥ β
(i.e. if qi , i < n∗ , are ∆-contradictory and p∗ ⊆ qi , then for some i < n∗ ,
maxj<nR∆(qi ∪ {ϕj}, ω) < β ). By the induction assumption there are no pairwise
∆-contradictory qi , i < n∗ such that p∗ ⊆ qi and R∆(qi ∪ {∨j<nϕj}, ω) ≥ β . So
R∆(p ∪ {∨i<nϕi}, ω) ̸≥ α , a contradiction.

1.16 Exercise. Assume T is stable. If p is over A and R∆(p, ω) = α , then
there is q ∈ S(A) such that p ⊆ q and R∆(q, ω) = α . (Hint: By Theorem 1.15,
show that

{¬ϕ(x, a)| a ∈ A, R∆(p ∪ {ϕ(x, a)}, ω) < α}

is consistent.)

1.17 Exercise∗ . Suppose M ≼ M ′ are κ -saturated and strongly κ -homo-
geneous (or saturated of power ≥ κ) and ξ < κ . Let RM

∆ (p, ξ) and RM ′

∆ (p, ξ) be
R∆(p, ξ) as defined in M and M ′ , respectively. Show that if A ⊆ M is of power
< κ and p is over A , then RM

∆ (p, ξ) = RM ′

∆ (p, ξ) .
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PART I: INDEPENDENCE

Forking was invented by S. Shelah in the mid 70’s. Since then, the use of this
concept has dominated research in model theory. In this part we prove the basic
properties of forking in a compact style. We follow the approach of [Sh], so we do not
try to find the simplest way to see the basic properties of forking. The reason for this
is that the author of this paper believes, that it is important to know the relations
between indiscernible sets and ranks, forking, and finite equivalence relations. In
details we do not necessarily follow [Sh], e.g. our definition of forking differs from
the one given in [Sh]. For other approaches to forking, see [Ba], [Bu], [La] and/or
[Pi].

2. Forking

From now on in these notes we assume that T is stable.

2.1 Definition.
(i) We say that a consistent formula ϕ(x,m) , m ∈ M , forks over A if for all

p = p(x) ∈ S(A) the following holds: If p ∪ {ϕ(x,m)} is consistent, then there is a
finite ∆ such that for all finite ∆′ ⊇ ∆ , R∆′(p∪{ϕ(x,m)}, ω) < R∆′(p, ω) . (Notice
that this definition differs from the one given in [Sh], but, as we shall see, they are
equivalent.)

(ii) We say that p forks over A if there is a finite q ⊆ p such that ∧q forks over
A .

(iii) We write a ↓A B if t(a,A ∪B) does not fork over A .

Below we give examples of forking. We delay, until Exercise 5.12, the proof
that the claims in the example are actually true. (The reader may try to prove this
straight from the definition. It is of course possible, but needs a bit work.)

2.2 Example.
(i) Assume T = Tω . Let a be a singleton. Then t(a,B) forks over A ⊆ B iff

a ∈ B − A or there are n < ω and b ∈ B such that |= En(a, b) but for all c ∈ A
|= ¬En(a, c) .

(ii) Assume T = T2 . Let a be a singleton. Then t(a,B) forks over A ⊆ B iff
a ∈ B −A .

2.3 Exercise.
(i) If p is a consistent type over A then p does not fork over A .
(ii) If p ∈ S(B) forks over A ⊆ B , then there is ϕ(x, b) ∈ p such that ϕ forks

over A , especially if a ̸ ↓A B then there is finite B′ ⊆ B such that a ̸ ↓A B′ .
(iii) If t(a,A) is algebraic, then a ↓A B for all B . (Hint: Use Exercise 1.9 (vi).)

2.4 Lemma. Assume A ⊆ B , t(a,B) is algebraic but t(a,A) is not algebraic.
Then a ̸ ↓A B .
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Proof. Choose ϕ(x, b) ∈ t(a,B) such that ϕ(x, b) is algebraic. Since t(a,A) is
not algebraic and ϕ(M, b) is finite, there is ψ(x, c) ∈ t(a,A) such that for all a′ , if
|= ϕ(a′, b) ∧ ψ(a′, c), then t(a′, A) is not algebraic. By Exercise 1.9 (vi) and (vii),
ϕ(x, b) ∧ ψ(x, c) forks over A .

2.5 Lemma. If ϕi , i < n , fork over A and p ⊢ ∨i<nϕi , then p forks over A .

Proof. Clearly we may assume that p is finite. We show that ∧p forks over
A . Let q ∈ S(A) be such that q ∪ p is consistent. Let I ⊆ n be such that
I ̸= ∅ , q ∪ p ⊢ ∨i∈Iϕi and for all i ∈ I , q ∪ p ∪ {ϕi} is consistent (as an exercise,
prove the existence of I ). Then for all i ∈ I there is a finite ∆i such that for
all finite ∆′ ⊇ ∆i , R∆′(q ∪ {ϕi}, ω) < R∆′(q, ω). Let ∆ = ∪i∈I∆i . Then for all
i ∈ I and finite ∆′ ⊇ ∆, R∆′(q ∪ p ∪ {ϕi}, ω) < R∆′(q, ω). By Theorem 1.15,
R∆′(q ∪ p ∪ {∨i∈Iϕi}, ω) < R∆′(q, ω). Since q ∪ p ⊢ ∨i∈Iϕi(x,mi), Exercise 1.9 (ii)
implies that R∆′(q ∪ p, ω) < R∆′(q, ω).

Notice that from Lemma 2.5 it follows that if q ⊢ p and p forks over A , then
q forks over A .

2.6 Lemma. If p is over B and does not fork over A ⊆ B , then there is
q ∈ S(B) such that p ⊆ q and q does not fork over A .

Proof. By Exercise 2.3 (ii), it is enough to show that the type p∪q is consistent,
where q = {¬ϕ(x, b)| b ∈ B, ϕ(x, b) forks over A} . If p ∪ q is not consistent then
there are ¬ϕi(x, bi) ∈ q , i < n , such that p ⊢ ∨i<nϕi(x, bi). By Lemma 2.5, this
implies that p forks over A , a contradiction.

2.7 Exercise∗ . Let A = (2ω × κ,En)n<ω , where (f, α)En(g, β) if f � (n +
1) = g � (n+ 1) .

(i) Show that A is a saturated model of T2 (i.e. we can think A as the monster
model).

(ii) Let A = {(f, 0)| f ∈ 2ω} ⊆ A . Show that for all a = (g, α) ∈ A , if
α ̸= 0 , then a ↓∅ A . Hint: Find some b = (h, β) ∈ A such that b ↓∅ A and use an
automorphism.

Before we can prove further properties of forking, we have to study indiscernible
sets and finite equivalence relations.

3. Indiscernible sets

Recall that we have assumed that T is stable.
The following fact may help understanding this section. (As an exercise, prove

this fact after reading this Part I.) Assume |= ϕ(a, b) and t(b, A) is not algebraic. If
we want to test whether ϕ(x, b) forks over A or not, then we can do the following:
Choose I = {bi| i < ω} , so that {b} ∪ I is indiscernible over A (see the definition
below) and for all i < ω , bi ↓A b ∪

∪
j<i bj . If |{c ∈ {b} ∪ I| |= ϕ(a, c)}| = ω (i.e.

ϕ(a, y) ∈ Av(I, A ∪ a)), then ϕ(x, b) does not fork over A .
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3.1 Definition. Assume I is a set of finite sequences. We say that I is
indiscernible over A if for all ak, bk ∈ I , k < n , a ∈ A and ϕ(x0, ..., xn−1, y) the
following holds: If for all k < k′ < n , ak ̸= ak′ and bk ̸= bk′ , then

|= ϕ(a0, ..., an−1, a) ↔ ϕ(b0, ..., bn−1, a).

We say that I is indiscernible if it is indiscernible over ∅ .

3.2 Exercise.
(i) If I is infinite indiscernible over A then for all ξ there is J such that |J | = ξ

and I ∪ J is indiscernible over A .
(ii) Let I = (I,<) be a linearly ordered set. We say that {bi| i ∈ I} is order

indiscernible over A if for all ik, jk ∈ I , k < n , a ∈ A and ϕ(x0, ..., xn−1, y) the
following holds: If for all k < k′ < n , ik < ik′ and jk < jk′ , then

|= ϕ(bi0 , ..., bin−1 , a) ↔ ϕ(bj0 , ..., bjn−1 , a).

Show that if I is infinite and {bi| i ∈ I} is order indiscernible over A , then it is
indiscernible over A . (Hint: Clearly we may assume that if i, j ∈ I and i ̸= j
then bm ̸= bn (otherwise {bi| i ∈ I} is a singleton) and that A is finite. For a
contradiction assume that the claim does not hold. Show that we may assume that
I = (R, <) and find ϕ , a ∈ A , n and k < n such that for all i0 < ... < in from R ,
|= ϕ(bi0 , ..., bin , a) but

|= ¬ϕ(bi0 , ..., bik−1
, bik+1

, bik , bik+2
, ..., bin , a).

Let B = A∪{bi| i ∈ Q} and for every irrational r , let pr = tϕ(br, B) . Finally show
that if r ̸= r′ , then pr ̸= pr′ .)

(iii) Assume that {bi| i < ω} and A are such that for all j < i < ω t(bi, A ∪∪
k<j bk) = t(bj , A ∪

∪
k<j bk) and t(bi, A ∪

∪
j<i bj) does not split over A . Then

{bi| i < ω} is indiscernible over A .

3.3 Theorem. If T is ξ -stable, |A| ≤ ξ and I has power > ξ , then there is
J ⊆ I of power > ξ such that J is indiscernible over A .

Proof. We show first:
Claim. There are B , C and p ∈ S(C) such that
(i) A ⊆ B ⊆ C and |C| ≤ ξ ,
(ii) for all C ′ ⊇ C of power ξ , there is b ∈ I such that t(b, C ′) ⊇ p , b ̸∈ C ′ and

t(b, C ′) does not split over B ,
(iii) for all c there is c′ ∈ C such that t(c′, B) = t(c,B).
Proof. Assume not. Then by induction on i ≤ ξ , we define Bi of power ≤ ξ

the following way: B0 = A and for limit i , Bi = ∪j<iBi . Assume Bi is defined.
Let Ci ⊇ Bi be such that for all c there is c′ ∈ Ci such that t(c′, Bi) = t(c,Bi) and
|Ci| ≤ ξ . Let p ∈ S(Ci). Since (ii) above does not hold for Bi , Ci and p , there is
Cp ⊇ Ci of power ξ such that
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(*) for every b ∈ I , if b ̸∈ Cp and t(b, Cp) ⊇ p , then t(b, Cp) splits over B .
Let Bi+1 =

∪
p∈S(Bi)

Cp .

Choose b ∈ I so that b ̸∈ Cξ . Then by (*), t(b,Bi+1) splits over Bi for all
i < ξ (choose p = t(b, Ci)). This contradicts Exercise 1.6. Claim.

Let B , C and p be as in the claim. For i < ξ+ we define Ji as follows: J0 = ∅
and for limit i , Ji = ∪j<iJj . Assume Ji is defined. Then by (ii) in the claim, we
can find b ∈ I such that b ̸∈ C ∪ Ji and t(b, C ∪ Ji) ⊇ p does not split over B . Let
Ji+1 = Ji ∪ {b} . By (iii) in the claim and Exercise 3.2 (ii) and (iii), it is easy to see
that J = ∪i<ξ+Ji is as wanted (exercise).

3.4 Exercise∗ . Prove so called ∆-lemma: If Ai , i ∈ I , are finite sets and
{Ai| i ∈ I} is uncountable then there are uncountable J ⊆ I and B such that for all
i, j ∈ J , if i ̸= j then Ai ∩Aj = B . (Hint: the theory of an infinite set is ω -stable.)

3.5 Exercise. For all ϕ(x, y) there is n < ω such that for all indiscernible I
and a either

|{b ∈ I| |= ϕ(b, a)}| < n

or

|{b ∈ I| |= ¬ϕ(b, a)}| < n.

(Hint: If not, then by compactness find indiscernible I and a such that |{b ∈ I| |=
ϕ(b, a)}| = |{b ∈ I| |= ¬ϕ(b, a)}| = ω , and show that this implies that for every
infinite ξ there is B such that |B| = ξ and |Sϕ(B)| = 2ξ .)

3.6 Definition. Let I be an infinite indiscernible set. We define Av(I, A) ,
the average type of I over A , to be the set

{ϕ(x, a)| a ∈ A, ϕ ∈ L, |{b ∈ I| |= ϕ(b, a)}| ≥ ω}.

3.7 Exercise.
(i) If I is an infinite indiscernible set, then Av(I, A) is consistent for all A .
(ii) Assume I is an infinite indiscernible set over A and a ̸∈ I . Then I ∪ {a}

is indiscernible over A iff t(a, I ∪A) = Av(I, I ∪A) .
(iii) Assume I and J are infinite and I ∪ J is indiscernible. Then for all A ,

Av(I, A) = Av(J,A) .

3.8 Definition. Let I be an infinite indiscernible set over A . We say that I
is based on A , if for all B ⊇ A , Av(I,B) does not fork over A .

The fact in the beginning of this section, may clarify the idea behind Definition
3.8, see also the proof of Theorem 3.9.

3.9 Theorem. Assume A ⊆ B and p ∈ S(B) is non-algebraic and does not
fork over A . Then there is an infinite indiscernible set I based on A such that for
all b ∈ I , t(b,B) = p .

11



Proof. Let ξ > |B| + ω such that ξ|T | = ξ . Then by Theorem 1.12, T is
ξ -stable and ξ+ -stable. Let A ⊇ B be a saturated model of power ξ+ . Let Ai ,
i < ξ+ , be an increasing continuous sequence of sets of power ξ , such that B ⊆ A0

and ∪i<ξ+Ai = A . For all i < ξ+ , choose ai ∈ A so that t(ai, B) = p and
t(ai, Ai ∪

∪
j<i aj) does not fork over A . By Lemma 2.4, if i ̸= j , then ai ̸= aj . So

by Theorem 3.3, we may assume that {ai| i < ξ+} is indiscernible over A .
We show that I = {ai| i < ω} is as wanted. By Lemma 2.4, I is infinite. So it

is enough to show that it is based on A . For this let C ⊇ A . Clearly we may assume
that C − A is finite and so we may assume also that for some i∗ < ξ+ , C ⊆ Ai∗ .
By Theorem 3.3, choose in > i∗ , n ≤ ω , such that {ain | n ≤ ω} is indiscernible
over C . Let J = {ain | n < ω} . Then aiω ↓A C and by Exercise 3.7,

t(aiω , C) = Av(J,C) = Av(I, C).

3.10 Definition. Assume A ⊆ B and p ∈ S(B) . We say that p strongly
splits over A , if there are bi ∈ B , i < ω , such that {bi| i < ω} is an infinite
indiscernible set over A and for some ϕ , ϕ(x, b0),¬ϕ(x, b1) ∈ p .

3.11 Lemma. Assume A ⊆ B and p ∈ S(B) . If p strongly splits over A ,
then p forks over A .

Proof. Let ϕ and bi , i < ω , be as in the definition of strong splitting. Let n
be the number given by Exercise 3.5 for ϕ and let

ψ(x, y0, ..., yn) = ϕ(x, y0) ∧
∧

0<i≤n

¬ϕ(x, yi).

Without loss of generality we may assume ψ(x, b0, ..., bn) ∈ p .
We show that ψ(x, b0, ..., bn) forks over A . For this let q ∈ S(A) be such

that q ∪ {ψ} is consistent. For a contradiction, assume that there is finite ∆ such
that ϕ ∈ ∆ and R∆(q ∪ {ψ}, ω) = R∆(q, ω) = α . By Exercise 1.16, for i < ω ,
there are types qi ∈ S(A ∪ {bi| i < ω}) such that q ⊆ qi , R∆(qi, ω) = α and
ψ(x, bi·(n+1), ..., bi·(n+1)+n) ∈ qi . By the choice of n , there is infinite I ⊆ ω such
that qi � ϕ , i ∈ I , are pairwise contradictory. But then R∆(q, ω) ≥ α + 1, a
contradiction.

3.12 Lemma. Assume A ⊆ B ⊆ C , ξ = (|A|+ 2)|T | and B is ξ+ -saturated.
If a ↓A C , b ↓A C and t(a,B) = t(b,B) , then t(a,C) = t(b, C) .

Proof. Assume not. Choose ϕ(x, c), c ∈ C , so that |= ϕ(a, c) ∧ ¬ϕ(b, c). By
Exercise 1.6, choose A′ ⊇ A such that A′ ⊆ B , |A′| ≤ ξ and t(c,B) does not split
over A′ . For all i < ω , choose ci ∈ B so that t(ci, A

′ ∪
∪

j<i cj) = t(c, A′ ∪
∪

j<i cj).
By Exercise 3.2 (iii), {c} ∪ {ci| i < ω} is indiscernible over A′ and so also over A .
But then either t(a,C) or t(b, C) splits strongly over A . By Lemma 3.11, either
t(a,C) or t(b, C) forks over A , a contradiction.
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3.13 Exercise. For all A ⊆ B , the set {t(a,B)| a ∈ M, a ↓A B} has power
≤ ((|A|+ 2)|T |)+ .

4. Finite equivalence relations

We write Aut(A) for the set of all automorphisms of M , which fixes A point-
wise.

4.1 Definition.
(i) We say that a relation R(x) of M is over A if it is definable by some formula

ϕ(x, a) , a ∈ A .
(ii) We say that ϕ(x, b) is almost over A if the set {ϕ(M, f(b))| f ∈ Aut(A)}

is finite. We say that p is almost over A , if every formula ϕ ∈ p is almost over A .
(iii) We say that an equivalence relation E(x, y) in M is finite, if the number

of equivalence classes is finite. We write FE(A) for the set of all finite equivalence
relation over A .

4.2 Exercise.
(i)∗ : R = ϕ(M, b) is over A iff {ϕ(M, f(b))| f ∈ Aut(A)} is a singleton. (Hint

for ⇐ : First show that |= ϕ(a, b) iff for all c such that t(c, A) = t(b, A) , |= ϕ(a, c) .
Then use compactness.)

(ii) If E ∈ FE(A) , then for all a , E(x, a) is almost over A .
(iii)∗ Suppose a ∈ acl(A) . Find E ∈ FE(A) such that for all b , bEa implies

b = a .

4.3 Lemma. ϕ(x, b) is almost over A iff there is E(x, y) ∈ FE(A) such that

∀x, y(E(x, y) → (ϕ(x, b) ↔ ϕ(y, b))).

(In this case we say that ϕ(x, b) depends on E .)

Proof. ⇐ : Clearly if t(c, A) = t(b, A), then ϕ(x, c) depends on E . So the
cardinality of {ϕ(M, f(b))| f ∈ Aut(A)} is at most 2n , where n is the number of
equivalence classes of E .

⇒ : Now there is n < ω , such that the set

{θ(yi, a)| θ(yi, a) ∈ t(b, A), i < n} ∪ {¬∀x(ϕ(x, yi) ↔ ϕ(x, yj))| i < j < n}
is contradictory. Let n be minimal. Then there is θ(y, a) ∈ t(b, A) such that

{θ(yi, a)| i < n} ∪ {¬∀x(ϕ(x, yi) ↔ ϕ(x, yj))| i < j < n}
is contradictory.

We define E(x, y) to be

∀z(θ(z, a) → (ϕ(x, z) ↔ ϕ(y, z))).

Clearly E is an equivalence relation, ϕ(x, b) depends on E and E is over A .
For all i < n − 1, choose bi so that |= θ(bi, a) and for all i < j < n −

1, |= ¬∀x(ϕ(x, bi) ↔ ϕ(x, bj)). For all w ⊆ n − 1, let Ew =
∩

i∈w ϕ(M, bi) ∩∩
i∈(n−1)−w ¬ϕ(M, bi). Then for all w ⊆ n− 1 and c, d ∈ Ew , |= E(c, d) (exercise).

So the number of equivalence classes of E is ≤ 2n−1 .
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4.4 Exercise.
(i) If ϕ(x, b) is almost over A , then there are E ∈ FE(A) , n < ω and ai ,

i < n , such that |= ∀x(ϕ(x, b) ↔ ∨i<nE(x, ai)) .
(ii) If ϕ(x, b) is almost over A and A is a model, then ϕ(x, b) is over A . (Hint:

Every equivalence class of a finite equivalence relation over A is represented in A .)

4.5 Lemma.
(i) Assume p ∈ S(B) does not fork over A ⊆ B . If p′ is almost over A and

p ∪ p′ is consistent, then p ∪ p′ does not fork over A .
(ii) Assume q ∈ S(A) , p is almost over A and q ∪ p is consistent. Then for all

finite ∆ , R∆(q ∪ p, ω) = R∆(q, ω) .

Proof. (i): It is easy to see that if ϕi , i < n , are almost over A then so does
∧i<nϕi . So we may assume that p′ = {ϕ(x, b)} . Let ϕ(x, b) depend on E ∈ FE(A)
and choose a so that it realizes p and |= ϕ(a, b). Clearly p∪{E(x, a)} ⊢ p∪{ϕ(x, b)} ,
and so by Lemma 2.5, it is enough to show that p∪{E(x, a)} does not fork over A .

Let ai , i < n , be a maximal sequence such that for all i < n , t(ai, B) = t(a,B),
and for i ̸= j , ¬E(ai, aj). Then p ⊢ ∨i<nE(x, ai). By Lemma 2.6, there is p ⊆
p∗ ∈ S(B ∪

∪
i<n ai) such that it does not fork over A . Now E(x, ai) ∈ p∗ for some

i < n . Since t(ai, B) = t(a,B), the claim follows (there is f ∈ Aut(M/B) such that
f(ai) = a).

(ii): As above, we may assume that p = {ϕ(x, b)} and choose E ∈ FE(A) and
a so that ϕ(x, b) depends on E and a realizes q ∪ p . Then q ∪ {E(x, a)} ⊢ q ∪ p
and so by Exercise 1.9 (ii), it is enough to show that

(*) R∆(q ∪ {E(x, a)}, ω) = R∆(q, ω).
As above we can find ai , i < n , such that for all i < n , t(ai, A) = t(a,A) and
q ⊢ ∨i<nE(x, ai). By Exercise 1.9 (ii) and Theorem 1.15, there is i < n such that
R∆(q ∪ {E(x, ai)}, ω) = R∆(q, ω). Since t(a,A) = t(ai, A), (*) follows.

4.6 Exercise. If p is consistent and almost over A then p does not fork over
A (Hint: Choose a so that it realizes p and apply Lemma 4.5 (i) to t(a,A) ∪ p .)

4.7 Lemma. For all ϕ(x, y) there is m < ω such that for all infinite indis-
cernible sets I = {bi| i < ω} based on A and n ≥ m ,

ϕn(x, I) =
∨

w⊆2n−1, |w|=n

(∧i∈wϕ(x, bi))

is almost over A .

Proof. Let m be the number given by Exercise 3.5 for ϕ and n ≥ m . Let
I = {bi| i < ω} be an infinite indiscernible set based on A . For a contradiction,
assume ϕn(x, I) is not almost over A . Let ξ = ((|A| + 2)|T |)++ . By compactness,
we can find Ii , i < ξ , copies of I over A such that ϕn(x, Ii) are pairwise non-
equivalent. So for all i < j , we can choose aij such that |= ϕn(aij , Ii)∧¬ϕn(aij , Ij).
Let B = A ∪

∪
i<j<ξ aij . Then for all i < j < ξ , Av(Ii, A) = Av(Ij , A) and by the

choice of m , Av(Ii, B) ̸= Av(Ij , B). Since I is based on A , for all i < ξ , Av(Ii, B)
does not fork over A . This contradicts Exercise 3.13.
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4.8 Lemma. Assume A ⊆ B and B is (|A|+ω)+ -saturated. If p, q ∈ Sm(B) ,
p ̸= q and both p and q do not fork over A , then there is E ∈ FE(A) such that
p(x) ∪ q(y) ⊢ ¬E(x, y) .

Proof. Choose ϕ(x, b), b ∈ B , such that ϕ(x, b) ∈ p and ¬ϕ(x, b) ∈ q .
Claim. There is ψ(x, d), d ∈ B , such that it is almost over A and ψ(x, d) ∈ p

and ¬ψ(x, d) ∈ q .
Proof. If t(b, A) is algebraic, then we can let ψ(x, d) = ϕ(x, b). So we may

assume that t(b, A) is not algebraic. By Theorem 3.9, let I ⊆ B be an infinite
indiscernible set over A such that it is based on A and for all c ∈ I , t(c, A) = t(b, A).
Clearly we may assume that b ∈ I . By Lemma 4.7, for some n , ϕn(x, I) is almost
over A . By Lemma 3.11, ϕn(x, I) ∈ p and ¬ϕn(x, I) ∈ q . Claim.

By Lemma 4.3, choose E ∈ FE(A) so that ψ(x, d) depends on E . Clearly E
is as wanted.

4.9 The finite equivalence relation theorem. If p, q ∈ Sm(B) , p ̸= q
and both p and q do not fork over A ⊆ B , then there is E ∈ FE(A) such that
p(x) ∪ q(y) ⊢ ¬E(x, y) .

Proof. Assume not. Then there are a and b such that a realizes p , b realizes
q and for all E ∈ FE(A), |= E(a, b). Let C ⊇ B be (|A| + ω)+ -saturated model.
By Exercise 4.2 (ii), Lemma 4.5 (i) and Lemma 2.6, there are a′ and b′ such that
a′ realizes p , b′ realizes q , a′ ↓A C , b′ ↓A C and for all E ∈ FE(A), |= E(a′, a) ∧
E(b′, b). Clearly this contradicts Lemma 4.8.

4.10 Definition.
(i) We define stp(a,A) , the strong type of a over A , to be the set

{E(x, a)| E ∈ FE(A)}.

By stp(a,A) = stp(b, A) we mean, that for all E ∈ FE(A) , |= E(a, b) .
(ii) We say that p ∈ S(A) is stationary, if for all a, b and B ⊇ A the following

holds: if t(a,A) = t(b, A) = p , a ↓A B and b ↓A B , then t(a,B) = t(b, B) .

Notice that stp(a,A) is not over A (but it is almost over A).

4.11 Exercise.
(i) If A ⊆ B , stp(a,A) = stp(b, A) , a ↓A B and b ↓A B , then t(a,B) = t(b,B)

(in fact stp(a,B) = stp(b,B) , see Lemma 10.2 (iii)).
(ii) stp(a,A) ⊢ t(a, acl(A)) .
(iii) If A is a model, then t(a,A) ⊢ stp(a,A) . (Hint: Exercise 4.4 (ii).)
(iv) If A is a model, then every p ∈ S(A) is stationary.
(v) For all A ⊆ B and a , there is b such that stp(b, A) = stp(a,A) and b ↓A B .

(Hint: Exercise 4.6 and Lemma 2.6.)
(vi) Suppose (ai)i<ω is indiscernible over A and E ∈ FE(A) . Show that

E(ai, aj) holds for all i, j < ω and conclude that if i0 < ... < in < ω and j0 < ... <
jn < ω , then stp(∪k≤naik/A) = stp(∪k≤najk/A) .
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5. Further properties of forking

In this section we collect the rewards of the hard work done in the two previous
sections.

5.1 Theorem. For all A , a and b , a ↓A b implies b ↓A a .

Proof. Suppose not. By Lemma 2.6 and Theorem 3.3, we can find sequences
ai and bi , i < ω , so that a0 = a , b0 = b , (ai ∪ bi)i<ω is indicernible over A and for
all i < ω , bi ↓A

∪
j<i(aj ∪ bj) and ai ↓A bi ∪

∪
j<i(aj ∪ bj). By Exercise 4.11 (vi),

stp(ai/A) = stp(a0/A) for all i < ω and thus by Exercise 4.11 (i), t(a1/A ∪ b0) =
t(a0/A ∪ b0) and so b0 ̸ ↓A a1 . Clearly b1 ↓A a0 . This contradicts the fact that
(ai ∪ bi)i<ω is indiscernible over A .

5.2 Exercise.
(i) If a ∪ b ↓A B , then a ↓A B .
(ii) For all A ⊆ B and C , there is an automorphism f ∈ Aut(A) such that

for all a ∈ C , stp(f(a), A) = stp(a,A) and f(a) ↓A B . (Hint: For every singleton
a ∈ C , choose a new constant ca . For a = (a0, ..., an) , write ca = (ca0 , ..., can−1) .
By (v), for a ∈ C , choose ba so that stp(ba, A) = stp(a,A) and ba ↓A B . Then, by
(i) above, show that the following set is consistent:

{E(ca, a)| a ∈ C, E ∈ FE(A)} ∪ {ϕ(ca, d)| ϕ(x, d) ∈ t(ba, B)}.)
Exercise 5.2 (i) allows us to write for all sets A , A ↓B C if for all finite sequences

a ∈ A , a ↓B C since now, by the exercise, if A = rng(a), a ↓B C iff A ↓B C .

5.3 Lemma. Assume A ⊆ B and a ↓A B . Then for all finite ∆ and
1 < ξ ≤ ω ,

R∆(t(a,B), ξ) ≥ R∆(stp(a,A), ξ).

Proof. We prove only the case ξ = 2, the other cases are similar. In order to
simplify the notation we assume that ∆ = {ϕ} . By Exercise 1.13, Rϕ(stp(a,A), 2) =
n < ω . So by compactness, for all η ∈ 2n , there is aη such that

(i) stp(aη, A) = stp(a,A),
(ii) for all m < n and ξ ∈ 2m , there is bξ such that if η, η′ ∈ 2n , η � m = η′ �

m = ξ and η(m) ̸= η′(m), then |= ¬(ϕ(aη, bξ) ↔ ϕ(aη′ , bξ)).
By Exercise 5,2 (ii), we may assume that for all η ∈ 2n , aη ↓A B . But then by
Exercise 4.11 (i), for all η ∈ 2n , t(aη, B) = t(a,B) and so (ii) above, implies that
R∆(t(a,B), 2) ≥ n .

5.4 Theorem. Assume A ⊆ B . Then a ↓A B iff for all finite ∆ ,

R∆(t(a,B), ω) = R∆(t(a,A), ω).

Proof. From right to left the claim follows immediately from the definition of
forking and Exercise 1.9 (ii). We prove the other direction: By Exercise 1.9 (ii), it is
enough to show that for all finite ∆, R∆(t(a,B), ω) ≥ R∆(t(a,A), ω). By Lemma
5.3, it is enough to show that for all finite ∆, R∆(stp(a,A), ω) ≥ R∆(t(a,A), ω).
This follows from Lemma 4.5 (ii) (and Exercise 1.9 (ii)).
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5.5 Exercise.
(i) Assume A ⊆ B ⊆ C . Then a ↓A C iff a ↓A B and a ↓B C .
(ii)Show that a ∪ b ↓B C iff a ↓B C and b ↓B∪a C .

5.6 Exercise.
(i) For every B and a , there is A ⊆ B of power < |T |+ such that a ↓A B .

(Hint: By Exercise 1.9 (v), for every finite ∆ there is finite A∆ ⊆ B such that
R∆(t(a,A∆), ω) = R∆(t(a,B), ω) .)

(ii) There are no increasing continues sequence Ai , i < |T |+ , and a such that
a ̸ ↓Ai

Ai+1 for all i .

We finish this section by giving two characterizations for non-forking.
We prove the following lemma for Exercise 5.8 (ii) below.

5.7 Lemma. Assume A ⊆ B and a ∪ b ↓A B . Then a ↓A b iff a ↓B b .

Proof. From right to left this follows immediately from Exercise 5.5 (i). So we
prove the other direction. By a∪ b ↓A B and Theorem 5.1, B ↓A a∪ b . By Exercise
5.5 (i), B ↓A∪b a . By Theorem 5.1, a ↓A∪b B . By Exercise 5.5 (i) and a ↓A b ,
a ↓A B ∪ b . By Exercise 5.5 (i) again, a ↓B b .

5.8 Exercise.
(i) Assume that A is a model, for all i < j < ω , t(ai,A) = t(aj ,A) and for all

i < ω , ai ↓A ∪j<iaj . Show that {ai| i < ω} is indiscernible over A . (Hint: It is
enough to show that {ai| i < ω} is order indiscernible over A .)

(ii) If for all i < j < ω , stp(ai, A) = stp(aj , A) and for all i < ω , ai ↓A ∪j<iaj ,
then {ai| i < ω} is indiscernible over A . (Hint: By Exercise 5.2 (ii), choose a model
A ⊇ A so that A ↓A ∪i<ωai and apply Lemma 5.7 and (i) above.)

(iii)∗ Why cannot we prove (ii) as (i) was proved?

5.9 Definition. We say that A is strongly ξ -saturated, if for all a and A ⊆ A
of power < ξ , there is b ∈ A such that stp(b, A) = stp(a,A) .

5.10 Lemma. Assume ξ > |T | . If A is ξ -saturated, then A is strongly
ξ -saturated.

Proof. Let A ⊆ A be of power < ξ and a arbitrary. Choose a model B ⊆ A
of power < ξ such that A ⊆ B . Choose b ∈ A so that t(b,B) = t(a,B). By Exercise
4.11 (iii), b is as wanted.

5.11 Theorem. Assume A ⊆ B . Then a ↓A B iff for all C ⊇ B there is b
such that t(b,B) = t(a,B) and t(b, C) does not split strongly over A .

Proof. From left to right this follows from Lemmas 2.6 and 3.11. We prove the
other direction: For a contradiction assume a ̸ ↓A B . Let ξ = |T |+ |A| and C ⊇ B
be a ξ+ -saturated model. Choose b so that t(b,B) = t(a,B) and t(b, C) does not
split strongly over A . Since a ̸ ↓A B , we can choose c ∈ B ⊆ C so that b ̸ ↓A c .

For all i < ξ+ , choose ci ∈ C so that stp(ci, A) = stp(c, A) and ci ↓A c∪
∪

j<i cj .

Then by Exercise 5.8 (ii), {c} ∪ {ci| i < ξ+} is indiscernible over A . Since t(b, C)
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does not split strongly over A , b ̸ ↓A ci for all i < ξ+ . Because ci ↓A
∪

j<i cj ,
b ̸ ↓A∪

∪
j<i

cj
ci (exercise). This contradicts Exercise 5.6 (ii).

We write λ(T ) for the least cardinal λ such that T is λ -stable.

5.12 Exercise∗ .

(i) Assume A is λ(T )-saturated model and B ⊇ A . Then a ↓A B iff there is
A ⊆ A of power < λ(T ) such that t(a,B) does not split over A . (Hint: Notice that
by Theorem 5.11 and Exercises 1.6 and 4.11 (iv), it is enough to show the following:
If A ⊆ A is such that |A| < λ(T ) and t(a,A) does not split over A , then there is b
such that t(b,A) = t(a,A) and t(b,B) does not split over A . Furthermore, if c is
another such sequence, then t(c,B) = t(b,B) . This not easy.)

(ii) Suppose I is an infinite indiscernible sequence and J is such that I ∪ J is
indiscernible. Show that for all a ∈ J , a ↓I J − {a} .

(iii) Assume I is an infinite indiscernible set. Show that Av(I, I ∪A) does not
fork over I and that Av(I, I) is stationary. (Hint: Show that it is enough to prove
that if t(a, I) = Av(I, I) and t(a, I ∪ b) ̸= Av(I, I ∪ b) then a ̸ ↓I b . For this,
for a contradiction, assume that this does not hold and choose ai , i < ω , so that
t(ai, I ∪ a ∪

∪
j<i aj) = Av(I, I ∪ a ∪

∪
j<i aj) and ai ↓I∪a∪

∪
j<i

aj
b . Then prove a

contradiction using Exercise 3.5 and basic properties of non-forking.)

(iv) Prove that the claims in Example 2.2 are true. (Hint for (i): Clearly we may
assume that a ̸∈ A . Let q′ be the set of formulas En(x, b) such that b ∈ B and there
is c ∈ A , such that |= En(b, c)∧En(a, c) . Let q = t(a,A)∪q′∪{¬En(x, b)| En(x, b) ̸∈
q′} ∪ {x ̸= b| b ∈ B} . Show first that if p ∈ S(B) and q ̸⊆ p , then p forks over
A . Then show that there is exactly one p ∈ S(B) , such that q ⊆ p . Finally apply
Lemma 2.6. Notice that above we proved that every p ∈ S1(A) is stationary.

Hint for (ii): As (i), except now the type t(a,A) need not be stationary. So
instead of one, define a set Q of types q ∈ S(B) such that if p ∈ S(B) − Q then
p forks over A and if some q ∈ Q forks over A , then every q ∈ Q forks over A .
Notice that if t(a,B) forks over A ⊆ B and f ∈ Aut(A) , then t(f(a), f(B)) forks
over A .)

5.13 Definition. Assume p ∈ S(B) . We say that ψ(y) defines p � ϕ(x, y) ,
if for all b ∈ B , ϕ(x, b) ∈ p iff |= ψ(b) . If in addition, ψ is almost over A ⊆ B , we
say that p � ϕ is definable almost over A . If for all ϕ , p � ϕ is definable almost over
A , then we say that p is definable almost over A .

5.14 Theorem.

(i) If p ∈ S(B) does not fork over A ⊆ B , then p is definable almost over A .

(ii) p ∈ S(B) does not fork over A ⊆ B iff for all C ⊇ B , there is q ∈ S(C)
such that p ⊆ q and q is definable almost over A .

Proof. (i): If p � A is algebraic, then the claim is easy (if a realizes p , then
ϕ(a, y) is almost over A). So we assume that p � A is not algebraic. By Lemma
2.4, p is not algebraic. By Theorem 3.9, choose an infinite indiscernible I based on
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A so that for all a ∈ I , t(a,B) = p . Let ϕ = ϕ(x, y) be arbitrary. By Lemma 4.7,
there is n such that ϕn(I, y) is almost over A . Trivially ϕn(I, y) defines p � ϕ .

(ii): From left to right this follows from Lemma 2.6 and (i). For the other
direction, let ξ = |T | + |A| . Choose ξ+ -saturated C ⊇ B and q ⊇ p definable
almost over A . For a contradiction assume that q forks over A . Choose ϕ(x, b) ∈ q
so that it forks over A . For i < ξ+ , choose bi ∈ C so that stp(bi, A) = stp(b, A)
and bi ↓A ∪j<ibj . Since q � ϕ is definable almost over A and stp(bi, A) = stp(b, A),
ϕ(x, bi) ∈ q for all i < ξ+ . Let a realize q . Then for all i < ξ+ , a ̸ ↓A bi . Because
bi ↓A ∪j<ibj , a ̸ ↓A∪

∪
j<i

bj
bi . This contradicts Exercise 5.6 (ii).

Theorem 5.14 (ii) is often used as a definition of forking. Notice that if A is a
model and A ⊆ B , then a ↓A B iff t(a,B) is definable over A .

5.15 Exercise∗ .
(i) If B is a model and p ∈ S(B) is definable almost over A ⊆ B , then for all

C ⊇ B , there is q ∈ S(C) such that p ⊆ q and q is definable almost over A . (Hint:
Notice that if r ∈ S(C) is definable over A′ ⊆ B and r � B = p , then r is definable
almost over A and with the same defining formulas as p .)

(ii) If B is a model, then p ∈ S(B) does not fork over A ⊆ B iff p is definable
almost over A .

5.16 Definition. Suppose A ⊆ B . We say that t(a,B) Lascar splits over A
if there are b, c ∈ B such that stp(b, A) = stp(c, A) but t(b, A ∪ a) ̸= t(c, A ∪ a) .

5.17 Exercise∗ . Suppose A ⊆ B . Show that a ↓A B iff for all C ⊇ B , there
is b such that t(b,B) = t(a,B) and t(b, C) does not Lascar split over A .

6. An example of the use of forking

To give an example of the use of forking we prove a structure theorem for a class
of theories. Since our knowledge of classification theory is still somewhat limited,
the class must be very simple. Our class will be the class of theories which are
trivial, superstable and unidimensional. An example of such theory is the theory of
an equivalence relation which says that the number of equivalence classes is infinite
and each equivalence class has size n , n < ω . Although our class of theories is as
simple as one can think of, in the proof of the structure theorem, many ideas from
the proofs of ’the proper structure theorems’ are present.

6.1 Definition.
(i) A theory is superstable if it is stable and there are no Ai , i < ω , and a such

that for all i < ω , Ai ⊆ Ai+1 and a ̸ ↓Ai
Ai+1 .

(ii) A stable theory is trivial if for all a, b, c and A , a ̸ ↓A b ∪ c and b ↓A c
imply that a ̸ ↓A b or a ̸ ↓A c .

(iii) Assume p, q ∈ S(A) . We say that p is almost orthogonal to q if for all a
and b the following holds: If a realizes p and b realizes q then a ↓A b . We say that
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p is orthogonal to q if for all a, b and B ⊇ A the following holds: If a realizes p , b
realizes q , a ↓A B and b ↓A B then a ↓B b .

(iv) A stable theory is unidimensional if for all A and p, q ∈ S(A) , the following
holds: If p and q are not algebraic, then p is not orthogonal to q .

6.2 Exercise∗ .
(i) Show that T2 is superstable but Tω is not.
(ii) Assume T = Tω . Show that non-algebraic types p, q ∈ S(A) are orthogonal

iff there are n < ω and a ∈ A such that En(x, a) ∈ p but En(x, a) ̸∈ q or vice versa
(i.e. p ̸= q ). Conclude that Tω is not unidimensional.

(iii) Show that Tω is trivial. (Hint: Modify Example 2.2 so that it holds for all
finite sequences a .)

6.3 Fact. ([Hr]) Every unidimensional stable theory is superstable.

6.4 Lemma. Assume T is trivial. If p, q ∈ S(A) are almost orthogonal, then
they are orthogonal.

Proof. Assume not. Choose a, b and B ⊇ A so that a realizes p , b realizes q ,
a ̸ ↓B b and

(*) a ↓A B and b ↓A B .
Then a ̸ ↓A B ∪ b and so triviality and (*) imply that a ̸ ↓A b , a contradiction.

6.5 Lemma. Assume T is superstable and C ⊆ B . If C ̸= B , then there is
a singleton b ∈ B − C and ϕ(x, c) , c ∈ C , such that |= ϕ(b, c) and for all b′ ∈ B
and c′ ∈ C , if t(c′, ∅) = t(c, ∅) , |= ϕ(b′, c′) and b′ ̸ ↓c′ C , then b′ ∈ C .

Proof. If not then we can easily find ϕi(x, ci), i < ω , such that for all i < ω ,
∧j≤iϕi(x, ci) is consistent and ϕi(x, ci) forks over ∪j<icj . Clearly this contradicts
the assumption that T is superstable.

6.6 Definition. Assume κ is a cardinal, not necessarily infinite. We write
A ⊆κ B , if for all C ⊆ A of power < κ and b ∈ B , there is a ∈ A such that
t(a,C) = t(b, C) .

6.7 Exercise∗ .
(i) For all B and regular (infinite) κ , there is A such that A ⊆κ B and

|A| ≤ κ|T | .
(ii) If B is a model and A ⊆ω B , then A is a model.

6.8 Theorem. Assume T is trivial, superstable and unidimensional and B
is a model. Choose any A ⊆1 B and ai ∈ B − A , i < α , so that (ai)i<α is a
maximal sequence satisfying the following: for all i < α , ai ↓A ∪j<iaj . Then
B = acl(A ∪

∪
i<α ai) .

Proof. Let C = acl(A∪
∪

i<α ai). For a contradiction, assume C ̸= B . Choose
b and ϕ(x, c) as in Lemma 6.5. Choose c′ ∈ A so that t(c′, ∅) = t(c, ∅). Since C is
algebraicly closed, t(b, C) is not algebraic. So we can find a ̸∈ C such that |= ϕ(a, c′)
and a ↓A C . Then t(a,C) is not algebraic and since T is unidimensional, t(a,C)
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is not orthogonal to t(b, C). By Lemma 6.4, we may assume that a ̸ ↓C b . Choose
ψ(x, d, b), d ∈ C , so that it forks over C and |= ψ(a, d, b). Since B is a model, we
can choose a′ ∈ B so that |= ϕ(a′, c′) ∧ ψ(a′, d, b). Then a′ ̸ ↓C b and so a′ ̸∈ C .
So by the choice of ϕ(x, c), a′ ↓c′ C . Since c′ ∈ A , a′ ↓A C . This contradicts the
maximality of (ai)i<α .

6.9 Exercise∗ . We write I(κ, T ) for the number of non-isomorphic models
in {A |= T | |A| = κ} . Assume T is trivial, superstable and unidimensional theory.

Then for all β , I(ℵβ , T ) ≤ |ω + β|(2|T |) . (Hint: Use Theorem 6.8 and show first
that the isomorphism type of B is determined by the isomorphism type of A ∪∪

i<α ai . Show then that if A is a model then the isomorphism type of A∪
∪

i<α ai
is determined by the isomorphism type of A and the cardinals κp , p ∈ S(A) , where
κp = |{i < α| ai realizes p}| . Finally count the number of possible choices of A and
(κp)p∈S(A) , in the case A is chosen to be as small as possible.)

Notice that usually |ω+ β|(2|T |) is very small compared to ℵβ , and so it is also
very small compared to 2ℵβ , which is the maximal number of models any theory
can have in power ℵβ .

6.10 Fact. Our structure theorem and the estimate of the number of models
are very weak (in every cardinality the number of models is ≤ 2(2

|T |) ). The idea in
this section was to demonstrate the use of forking.

6.11 Exercise∗ . Find p and q such that p is almost orthogonal to q but
not orthogonal to q . (Hint: Look at types over the empty set in the theory of
the following model A : The domain of A consists of complex numbers C and
a copy C ′ of complex numbers. On C we have the field structure of complex
numbers (see Appendix D) and on top of this the affine action of the additive group
of complex numbers on the copy C ′ i.e. a funcion a such that for c ∈ C and x ∈ C ′ ,
a(c, x) = x+ c′ ∈ C ′ , where c′ is c in the copy. Start by showing that if c ∈ C and
x ∈ C ′ , then c ↓∅ x by showing that for all c ∈ C , there is an automorphism fc of
A such that fc � C = idC and for all x ∈ C ′ , fc(x) = a(c, x) .)
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PART II: PRIME MODELS

In many cases, as in section 6, by using the independence notion studied in
the previous part, we can find a ’base’ for every model of T . To get a structure
theorem, we need to show that this ’base’ determines the structure of the model.
Prime (primary) models provide a method to do this. In section 6, we assumed
triviality in order to be able to use algebraic closure instead of prime models.

7. General isolation notion

We will construct the required prime models by using isolation as a tool. It
depends on the properties of T , which isolation notion F is the right one. So in
order to avoid repeating same arguments several times, our approach is axiomatic.
When reading the axioms, one may keep in his mind the following two examples:
(p,A) ∈ F s

λ if (p,A) ∈ Pλ (see below) and p � A ⊢ p and (p,A) ∈ F f
λ if (p,A) ∈ Pλ

and p does not fork over A . In the next section we give more examples.
Let λ be an infinite cardinal and Pλ be the class of those pairs (p,A) such that

|A| < λ and for some B ⊇ A , p ∈ S(B). Let Fλ ⊆ Pλ be such that Axioms I-IX
below are satisfied. We write (t(C,B), A) ∈ Fλ if for all c ∈ C , (t(c,B), A) ∈ Fλ .

Ax I: If rng(a) = rng(b), then (t(a,B), A) ∈ Fλ iff (t(b, B), A) ∈ Fλ and for
all automorphisms f , (p,A) ∈ Fλ iff (f(p), f [A]) ∈ Fλ .

Ax II: If a ∈ A ⊆ B and |A| < λ , then (t(a,B), A) ∈ Fλ .
Ax III: If A ⊆ B ⊆ C ⊆ dom(p), |B| < λ and (p,A) ∈ Fλ , then (p � C,B) ∈

Fλ .
Ax IV: If (t(a ∪ b,B), A) ∈ Fλ , then (t(a,B), A) ∈ Fλ .
Ax V: If |C| < λ and (t(a ∪ C,B), A) ∈ Fλ , then (t(a,B ∪ C), A ∪ C) ∈ Fλ .
Ax VI: If A,B ⊆ C , (t(b, C ∪ a), B) ∈ Fλ and (t(a,C), A) ∈ Fλ , then (t(a,C ∪

b), A) ∈ Fλ .
Ax VII: If A ⊆ B , (t(a,B ∪ C), A ∪ C) ∈ Fλ and (t(C,B), A) ∈ Fλ , then

(t(a ∪ C,B), A) ∈ Fλ .
Ax VIII: If Bi , i < δ , is increasing sequence of sets, p ∈ S(∪i<δBi) and for all

i < δ , (p � Bi, A) ∈ Fλ , then (p,A) ∈ Fλ .
Ax IX: If (p,A) ∈ Fλ and dom(p) ⊆ B , then there are A′ ⊆ B and q ∈ S(B)

such that p ⊆ q and (q,A′) ∈ Fλ .
Notice that ∅ satisfies all the axioms except Ax II and {(t(a,B), A) ∈ Pλ|a ∈ A}

satisfies them all. So the axioms alone do not guarantee a good behaviour of an
isolation notion.

7.1 Definition.
(i) We say that (A, (ai, Bi)i<α) is an Fλ -construction over A if for all i < α ,

(t(ai, Ai), Bi) ∈ Fλ , where Ai = A ∪
∪

j<i aj . In addition, unlike what is the usual
definition, we require that for all i < α , ai∩Ai = ∅ . This simplifies some proofs and

22



by Ax IV it is without loss of generality. We say that C is Fλ -constructible over A
if there is an Fλ -construction (A, (ai, Bi)i<α) over A such that C = A ∪

∪
i<α ai .

(ii) We say that C is (Fλ, κ)-saturated if for all B ⊆ C of power < κ and
p ∈ S(B) the following holds: if for some A , (p,A) ∈ Fλ , then p is realized in C .
We say that C is Fλ -saturated if it is (Fλ, |C|+)-saturated.

(iii) We write µ(Fλ) for the least cardinal µ such that for all κ ≥ µ and C , if
C is (Fλ, µ)-saturated then it is (Fλ, κ)-saturated. If such µ does not exist, then
we write µ(Fλ) = ∞ .

(iv) We say that C is Fλ -primary ((Fλ, κ)-primary) over A if it is Fλ -con-
structible over A and Fλ -saturated ((Fλ, κ)-saturated).

(v) We say that C is Fλ -primitive over A if for all Fλ -saturated B ⊇ A there is
an elementary map f : C → B such that f � A = idA . We say that C is Fλ -prime
over A if it is Fλ -primitive and Fλ -saturated.

7.2 Exercise.
(i) Show that for all A and κ , there is an (Fλ, κ)-primary set over A and if

µ(Fλ) <∞ then there is also an Fλ -primary set over A . (Hint: Use Ax IX.)
(ii) Show that if C is Fλ -constructible over A , then it is Fλ -primitive over A

and so Fλ -primary sets over A are Fλ -prime over A .

7.3 Fact. ([Sh]) In many cases, Fλ -prime models are Fλ -primary. E.g. If T
is superstable, then for all λ and A , F a

λ -prime models over A are F a
λ -primary over

A . (For F a
λ , see section 10.)

Notice that from Exercise 7.2 (ii) it follows that if (A, (ai, Bi)i<α) is an Fλ -
construction over A , for all i < j < α , ai ̸= aj and C ⊇ A is an infinite Fλ -
saturated set, then α < |C|+ .

Notice also that in Exercise 7.2, only axioms AX I and Ax IX and the assumption
µ(Fλ) < ∞ were used. (In (ii) only Ax I is needed.) In most cases this exercise
together with Lemma 10.7 and Exercise 10.9 are all we need to know about primary
models to prove a structure theorem. However, if all the axioms are satisfied and λ
is regular, then a lot more is known about Fλ -primary models. In the case of our
structure theorem in section 11, all the axioms are satisfied and λ = ω , which is a
regular cardinal and this is used in order to make the proof short. For an alternative
way of proving a structure theorem, see [HS2]. See also Exercise 11.9 (i).

Assumption. From now on in this section, we assume that λ is regular.

Let (A, (ai, Bi)i<α) be an Fλ -construction. We say that X ⊆ α is closed if for
all i ∈ X , Bi ⊆ A ∪

∪
j∈X,j<i aj .

7.4 Lemma. If (A, (ai, Bi)i<α) is an Fλ -construction and X ′ ⊆ α is of power
< λ , then there is closed X ⊆ α such that X ′ ⊆ X and |X| < λ .

Proof. We construct a tree (forest) R such that it’s first level consists of ele-
ments of X ′ and if i ∈ R then the set of the immediate successors of i is (a copy of)
of a minimal set that satisfies the requirement of X for i in the definition of closed
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set. Clearly R does not have infinite branches and since λ is regular, each level of
R is of power < λ . But then |R| < λ (if λ = ω use König’s lemma). Clearly R is
closed.

7.5 Definition. We say that C is Fλ -atomic over A if for all c ∈ C , there is
B ⊆ A such that (t(c, A), B) ∈ Fλ .

7.6 Theorem. (λ regular) If C is Fλ -constructible over A then it is Fλ -
atomic over A . (We in fact prove more, see Claim below.)

Proof. Let (A, (ai, Bi)i<α) be an Fλ -construction of C .
Claim. If X ⊆ α is closed and |X| < λ , then there is B ⊆ A such that

(t(∪i∈Xai, A), B) ∈ Fλ .
Proof. We prove this by induction on i = ∪{j + 1| j ∈ X} ≤ α . The case i is

limit is left as an exercise. (Hint: Use Ax III, the assumption that λ is regular and
the fact that for all j < i , X∩j is closed.) So assume that the claim holds for i . We
prove it for i+1. For this let X ⊆ α be closed, |X| < λ and ∪{j+1| j ∈ X} = i+1.
Let D = ∪{aj |j ∈ X ∩ i} . By the induction assumption, there is B′ such that
(t(D,A), B′) ∈ Fλ . Let B = B′ ∪ (Bi ∩A). By Ax VII and Ax III, B is as wanted.
Claim.

Now let c ∈ C . Choose a ∈ A and b ∈ C − A such that c = a ∪ b . By Ax
IV, we may assume that there is finite X ′ ⊆ α such that b = ∪i∈X′ai . By Lemma
7.4, there is closed X ⊆ α such that X ′ ⊆ X and |X| < λ . By Claim, we can
choose B′ so that (t(b, A), B′) ∈ Fλ . Let B = B′ ∪ a . By Ax VII, Ax II and Ax
III, (t(c, A), B) ∈ Fλ .

7.7 Lemma. Let (A, (ai, Bi)i<α) be an Fλ -construction.
(i) For all β < α , (Aβ , (ai, Bi)β≤i<α) is an Fλ -construction (Aβ = A∪

∪
i<β ai ).

(ii) If D ⊆ A ∪
∪

i<α ai is of power < λ , then there are Ci , i < α , such that
(A ∪D, (a′i, Ci)i<α) is an Fλ -construction where a′i = ai −D .

(iii) If D ⊆ A ∪
∪

i<α ai has power < λ , then A ∪D is Fλ -constructible over
A .

Proof. (i) is immediate and (iii) is left as an exercise, so we prove (ii): By (i),
Theorem 7.6, Ax III and the assumption that λ is regular, for all i < α we can find
C ′

i such that (t(ai ∪D,Ai), C
′
i) ∈ Fλ . Let Ci = C ′

i ∪D . Then by Ax IV and Ax V,
(t(a′i, Ai ∪D), Ci) ∈ Fλ .

7.8 Exercise. For l ∈ {1, 2} , let (Al, (ali, B
l
i)i<αl) be an Fλ -construction of

an Fλ -primary set Cl over Al . Assume that f is an elementary function such that
A1 ⊆ dom(f) ⊆ C1 , A2 ⊆ rng(f) ⊆ C2 , |dom(f)−A1| < λ and |rng(f)−A2| < λ .

(i) For all i < α1 , there is an elementary function g ⊇ f such that dom(g) =
dom(f) ∪ a1i and rng(g) ⊆ C2 . (Hint: Use Lemma 7.7 and Theorem 7.6.)

(ii) For all i < α1 , there is an elementary function g ⊇ f and strongly closed
X ⊆ α1 and Y ⊆ α2 such that i ∈ X , dom(g) = A1 ∪

∪
i∈X a1i and rng(g) =

A2 ∪
∪

i∈Y a
2
i . (Hint: Use (i) and Lemma 7.4.)
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7.9 Lemma. Let (A, (ai, Bi)i<α) be an Fλ -construction and s : β → α be
one-one and onto. If for all i < β , Bs(i) ⊆ A ∪

∪
j<i as(j) , then (A, (as(i), Bs(i))i<β)

is an Fλ -construction.

Proof. Let i < β . For all j ≤ α , we write Dj = A ∪ Bs(i) ∪
∪
{as(k)| k <

i, s(k) < j} . By induction on j ≤ α , we show that (t(as(i), Dj), Bs(i)) ∈ Fλ . This
is enough, since Dα = A ∪

∪
k<i as(k) .

If j ≤ s(i) + 1, then Dj ⊆ A ∪
∪

k<s(i) ak and so by Ax III, the claim follows.
If j is limit, then the claim follows from the induction assumption and Ax VIII. So
assume j = k + 1 and k > s(i). We may also assume that Dj = Dk ∪ {ak} , since
otherwise there is nothing to prove. Then there is m < i such that s(m) = k . By
the assumption on s , Bk ⊆ Dk . Then by Ax III, (t(ak, Dk ∪ as(i)), Bk) ∈ Fλ . By
the induction assumption and Ax VI, the claim follows.

7.10 Lemma. For l ∈ {1, 2} , let (A, (ali, Bl
i)i<αl) be an Fλ -construction of an

Fλ -primary set Cl over A . Assume that f is an elementary function and X l ⊆ αl ,
i ∈ {1, 2} , are closed sets such that dom(f) = A∪

∪
i∈X1 a1i , rng(f) = A∪

∪
i∈X2 a2i

and f � A = idA . Then for all i∗ < α1 , there are an elementary function g ⊇ f and
closed Y l ⊆ αl such that X1 ∪ {i∗} ⊆ Y 1 , X2 ⊆ Y 2 , dom(g) = A ∪

∪
i∈Y 1 a1i and

rng(g) = A ∪
∪

i∈Y 2 a2i .

Proof. Clearly we may assume that i∗ ̸∈ X1 For l ∈ {1, 2} , let βl be the order
type of X l and γl be the order type of αl−X l . Let δl = βl+γl and sl : δl → αl be
such that for all i < βl , sl(i) is the i :th member of X l and for all i < γl , sl(βl + i)
is the i :th member of αl −X l . Then s1 and s2 satisfy the assumptions of Lemma
7.9 and so by Lemma 7.9, 7.7 (i) and Exercise 7.8 (ii), we can find an elementary
function g ⊇ f and closed Zl ⊆ δl − βl in the sense of the Fλ -construction

(A ∪
∪
j<βl

asl(j), (a
l
sl(i), B

l
sl(i))βl≤i<δl)

such that (s1)−1(i∗) ∈ Z1 , dom(g) = dom(f)∪
∪

i∈Z1 a1s1(i) and rng(g) = rng(f)∪∪
i∈Z2 a2s2(i) . Let Y l = X l ∪ sl[Zl] . Clearly, if the sets Y l are closed, g and Y l ,

l ∈ {1, 2} , are as wanted.
So let i ∈ Y l and a ∈ Bl

i be an element. We needs to show that a ∈ A ∪∪
j∈Y l,j<i a

l
j . If

(*) i ∈ X l or a ∈ A ∪
∪

j∈sl[Zl],j<i a
l
j ,

there is nothing to prove. So we assume that (*) is not true. By the definition
of Fλ -construction there is j < i such that a ∈ alj . By the choice of Zl there is

k ∈ Zl such that a ∈ alsl(k) . By the definition of Fλ -construction, j = sl(k), a

contradiction.

7.11 Theorem. (λ regular) Fλ -primary sets over A are unique up to iso-
morphism over A .
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Proof. Let (A, (bi, Bi)i<β) be an Fλ -construction of an Fλ -primary set B over
A and let (A, (ci, Ci)i<γ) be an Fλ -construction of an Fλ -primary set C over A .
By induction on i ≤ α = max{β, γ} , we choose elementary functions fi and closed
sets Xi ⊆ β and Yi ⊆ γ such that

(i) f0 = idA , X0 = Y0 = ∅ ,
(ii) for all i < j , fi ⊆ fj , Xi ⊆ Xj and Yi ⊆ Yj ,
(iii) dom(fi) = A ∪

∪
k∈Xi

bk and rng(fi) = A ∪
∪

k∈Yi
ck ,

(iv) if i < β , then i ∈ Xi+1 and if i < γ , then i ∈ Yi+1 .
If i is limit, we let fi = ∪j<ifj , Xi = ∪j<iXj and Yi = ∪j<iYj . Clearly these are
as wanted. If i = j + 1, then the existence of fi , Xi and Yi follows from Lemma
7.10. Clearly fα is an elementary function from B onto C and fα � A = idA .

8. Examples of isolatation notions

We recall that we have assumed that T is stable.

8.1 Definition.
(i) As already mentioned, we define F s

λ to be the set of all pairs (p,A) ∈ Pλ

such that p � A ⊢ p .
(ii) We define F t

λ to be the set of all pairs (p,A) ∈ Pλ which satisfy the following:
there is q ⊆ p � A such that |q| < λ and q ⊢ p .

Notice that F t
ω -isolation is the usual isolation notion.

8.2 Lemma. If λ > |T | , then F s
λ satisfies Ax IX.

Proof. Assume not. Let p , A and B exemplify this. Then for all η ∈ 2≤λ , we
can find pη and Aη ⊆ B such that

(i) p() = p � A and A() = A ,
(ii) for all η , pη ∈ S(Aη), Aη⌢(0) = Aη⌢(1) and |Aη⌢(0) −Aη| < ω ,
(iii) if η is an initial segment of ξ , then pη ⊆ pξ ,
(iv) if α = length(η) is limit, then pη = ∪β<αpη�β ,
(v) for all η , pη⌢(0) is contradictory with pη⌢(1) .

By Exercise 1.11 (ii), we can find η ∈ 2λ such that for all α < λ there is a singleton
∆ for which R∆(pη�(α+1) � ∆, 2) < R∆(pη�α � ∆, 2). Since λ > |T | , there are
infinite X ⊆ λ and a singleton ∆ such that for all α ∈ X , R∆(pη�(α+1) � ∆, 2) <
R∆(pη�α � ∆, 2), a contradiction.

8.3 Exercise.
(i) Show that F s

λ satisfies the axioms Ax I-VIII.
(ii) Show that F t

λ satisfies the axioms Ax I-VIII and if T is λ-stable, then it
satisfies also Ax IX. (Hint for Ax IV: If q(x, y) ⊢ t(a ∪ b, B) , then {∃y ∧ r| r ⊆
q finite} ⊢ t(a,B) . Hint for Ax VIII: Notice that p � B0 ⊢ p . Hint for Ax IX:
Assume not. Essentially as in the proof of Lemma 8.2, construct a tree of height κ ,
where κ is the least cardinal such that 2κ > λ . Use the tree to show that T is not
λ -stable.)
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8.4 Lemma. µ(F s
λ) ≤ λ .

Proof. Assume C is (F s
λ , λ)-saturated. We show that C is (F s

λ , |C|+)-satu-
rated. For this let (p,A) ∈ F s

λ be such that dom(p) ⊆ C . Then (p � A,A) ∈ F s
λ

and so there is c ∈ C which realizes p � A . But then c realizes p .

8.5 Exercise.
(i) µ(F t

λ) ≤ λ .
(ii) Show that every Fλ -saturated set is a model, if the following holds: For all

B and a formula ϕ(x) over B , if |= ∃xϕ , then there are A ⊆ B and p ∈ S(B) such
that ϕ ∈ p and (p,A) ∈ Fλ .

(iii) C is an F s
λ -saturated set iff it is a λ -saturated model.

(iv) Assume T is ω -stable. Then C is an F t
ω -saturated set iff it is a model.

(v)∗ Show that T2 has an F t
ω -prime model over ∅ .

9. Spectrum of stability

To continue our studies of prime models, we need more knowledge on stability.

9.1 Definition. Let κ(T ) be the least cardinal κ such that there are no Ai ,
i < κ , and a such that for all i < j , Ai ⊆ Aj and a ̸ ↓Ai

Aj .

In Exercise 5.6 we showed:

9.2 Recall.
(i) κ(T ) ≤ |T |+ .
(ii) For all A and p ∈ S(A) , there is B ⊆ A of power < κ(T ) such that p does

not fork over B .

9.3 Lemma. If ξ<κ(T ) > ξ , then T is not ξ -stable.

Proof. Choose κ < κ(T ) so that ξ<κ = ξ < ξκ . Then there are ai , i < κ , and
a such that for all i < κ , a ̸ ↓∪j<iaj

ai . Let < be a well-ordering of ξ≤κ such that

if η is an initial segment of η′ , then η < η′ . For all η ∈ ξ≤κ , choose aη so that
(i) for all η ∈ ξκ , the function that takes ai to aη�i and a to aη is elementary,
(ii) for all η ∈ ξ≤κ , if α = length(η), then aη ↓∪β<αaη�β ∪{aη′ | η′ < η} .

Then the following holds: If η ∈ ξκ and α < κ and A is the set of those aη′ such that
η′ ∈ ξ≤κ and η � α is not an initial segment of η′ , then aη ↓∪β<αaη�β A . (Exercise,
prove by induction on < .) So if η, η′ ∈ ξκ and η ̸= η′ , then t(aη, B) ̸= t(aη′ , B),
where B = ∪τ∈ξ<κaτ . By the choice of κ , T is not ξ -stable.

9.4 Exercise.
(i) If T is ξ -stable, then cf(ξ) ≥ κ(T ) , especially κ(T ) ≤ cf(λ(T )) .
(ii) If T is ξ -stable, then for all A of power ≤ ξ there is a model B ⊇ A of

power ≤ ξ . (Hint: For all i < ω , choose Ai of power ≤ ξ so that A0 = A , every
p ∈ Ai is realized in Ai+1 and if i < j , then Ai ⊆ Aj . Then ∪i<ωAi is as wanted.)
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(iii)∗ Show that for all A there is a model A such that A ⊆ A and |A| ≤
|A|+ λ(T ) .

(iv) Assume p ∈ S(A) and B ⊇ A . Then

|{q ∈ S(B)| p ⊆ q, q does not fork over A}| ≤ λ(T ).

(Hint: By (ii) and Exercise 4.11 (iv), prove the claim first under the additional
assumption |A| ≤ λ(T ) .)

9.5 Theorem. T is ξ -stable iff ξ = λ(T ) + ξ<κ(T ) .

Proof. From left to right this follows from Lemma 9.3 and the definition of
λ(T ). By Recall 9.2 (ii) and 9.4 (iv), for all A , |S(A)| ≤ λ(T ) × λ(T ) × |A|<κ(T ) ,
from which the other direction follows.

9.6 Lemma. If T is ξ -stable, then there is a saturated model of power ξ .

Proof. Choose an increasing continuous sequence Ai , i ≤ ξ , of models of power
≤ ξ so that for all i < ξ and a , there is b ∈ Ai+1 such that t(b, Ai) = t(a,Ai). We
show that A = Aξ is as wanted. For this let B ⊆ A be of power < ξ and b be
arbitrary. We show that t(b,B) is realized in A .

By Exercise 9.4 (i), there is α < ξ such that b ↓Aα A .
Claim. There is β < ξ such that β ≥ α and B ↓Aβ

Aβ+1 .
Proof. Assume not. Then by the pigeon hole principle, we can find d ∈ B such

that
|{γ < ξ| d ̸ ↓Aγ

Aγ+1}| ≥ cf(ξ).

This is impossible by Exercise 9.4 (i). Claim.
Choose c ∈ Aβ+1 so that t(c, Aβ) = t(b, Aβ). By Claim, c ↓Aβ

B and so by
stationarity, c realizes t(b,B).

9.7 Exercise. Let κ be the least regular cardinal ≥ κ(T ) . If B is F s
λ -

constructible over A , then |B| ≤ λ(T ) + (|A|+ λ)<κ .

10. a-prime models

10.1 Definition.
(i) We define F a

λ to be the set of the pairs (p,A) ∈ Pλ such that for some
a |= p , stp(a,A) ⊢ p .

(ii) We say that f is a strong automorphism over A , f ∈ Saut(A) , if f ∈
Aut(A) and for all a and E ∈ FE(A) , a E f(a) .

10.2 Lemma.
(i) Assume f ∈ Aut(A) and for all c ∈ C and E ∈ FE(A) , c E f(c) , then

there is g ∈ Saut(A) such that f � C ⊆ g .
(ii) Assume (p,A) ∈ Pλ . Then (p,A) ∈ F a

λ iff for all a |= p , stp(a,A) ⊢ p .
(iii) Assume A ⊆ B . If stp(a,A) = stp(b, A) , a ↓A B and b ↓A B , then

stp(a,B) = stp(b,B) .
(iv) If (t(a,B), A) ∈ F a

λ , then stp(a,A) ⊢ stp(a,B) .
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Proof. (i): By Exercise 5.2 (ii), choose a model B ⊇ A so that B ↓A C ∪ f(C).
Then t(C,B) = t(f(C),B) and so there is g ∈ Aut(B) such that f � C ⊆ g . Clearly
g is as wanted.

(ii): Assume not. Then there are a, b |= p and c such that stp(a,A) ⊢ p ,
stp(b,A)=stp(c,A) and c ̸|= p . Choose f ∈ Aut(dom(p)) such that f(b) = a . Let
a′ = f(c). Then stp(a′, A) = stp(a,A) but a′ ̸|= p , a contradiction.

(iii) Assume not. Choose a model C ⊇ B such that C ↓B a∪b . Then by Exercise
4.11 (iii), t(a, C) ̸= t(b, C). Since a ↓A C and b ↓A C , we have a contradiction.

(iv) Immediate by (ii), (iii) and Exercise 4.11 (iv).

10.3 Exercise. Show that stp(a ∪ b, A) = stp(a′ ∪ b, A) does NOT imply
stp(a,A ∪ b) = stp(a′, A ∪ b) . (Hint: PM ⊆ M infinite, RM ⊆ PM × (M − PM) ,
for all a ∈ PM , |R(a,M)| = 2 and {R(a,M)| a ∈ PM} is a partition of M−PM .)

10.4 Theorem. F a
λ satisfies Ax I-VIII and if λ ≥ κ(T ) , then it satisfies also

Ax IX.

Proof. We show Ax VII, the rest is left as an exercise. Assume Ax VII does not
hold. By Lemmas 10.2 (i) and (ii), choose a′ and C ′ so that there is f ∈ Saut(A)
such that f(a′∪C ′) = a∪C but t(a′∪C ′, B) ̸= t(a∪C,B). Since (t(C,B), A) ∈ F a

λ ,
B ↓A C and B ↓A C ′ . Let B′ = f(B). By Lemma 10.2 (iii) and (i), there is g ∈
Saut(A∪C) such that g(B′) = B . Let a′′ = g(a). Then t(a′′, B ∪C) ̸= t(a,B ∪C)
but stp(a′′, A ∪ C) = stp(a,A ∪ C), a contradiction.

By κr(T ) we mean the least regular cardinal ≥ κ(T ).

10.5 Lemma.
(i) If A is (F a

λ , κ)-saturated for any (infinite) κ , then it is a model.
(ii) If λ ≥ κ(T ) , then µ(F a

λ ) ≤ λ+ |T |+ .
(iii) If for all B ⊆ A of power < λ and a there is b ∈ A such that stp(b,B) =

stp(a,B) , then A is F a
λ -saturated. And if λ ≥ κ(T ) , then the other direction is

true also.
(iv) If T is λ-stable and A is a λ-saturated model, then A is F a

λ -saturated.
(v) If A is F a

λ -primary over B , then |A| ≤ λ(T ) + (λ+ |B|)<κr(T ) .

Proof. (i): Trivial.
(ii): Let µ = λ + |T |+ and A be (F a

λ , µ)-saturated. Assume B ⊆ A and
(t(a,B), C) ∈ F a

λ . We show that t(a,B) is realized in A . By Ax IX, we may assume
that B = A . Since the number of formulas over C (modulo equivalence) is < µ and
A is a model, we can find D such that C ⊆ D ⊆ A , |D| < µ and t(a,D) ⊢ stp(a,C).
Since (t(a,D), C) ∈ F a

λ , there is b ∈ A such that t(b,D) = t(a,D). Clearly b realizes
t(a,B).

(iii): The first claim is trivial, so we prove the second: Let a be arbitrary and
B ⊆ A be of power < λ . We show that stp(a,B) is realized in A . Since λ ≥ κ(T ),
we can choose C and b such that B ⊆ C ⊆ A , |C| < λ , stp(b,B) = stp(a,B) and
stp(b, C) ⊢ t(b, A). Then t(b, A) is realised in A . Clearly this implies the claim.

(iv): We prove the following claim. It is easy to see (exercise) that this suffices.
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Claim. If T is λ -stable, p ∈ S(A), |A| ≤ λ and (ai)i<α is a sequence of
realizations of p such that for all i < j < α , stp(ai, A) ̸= stp(aj , A), then |α| ≤ λ .

Proof. By Exercises 9.4 (ii) and 5.2 (ii), choose a model B ⊇ A such that |B| =
λ and B ↓A ∪i<αai . By Exercise 4.11 (iii), for all i < j < α , t(ai,B) ̸= t(aj ,B).
Since T is λ-stable, |α| ≤ λ . Claim.

(v): Immediate by (iv) and Lemma 9.6.

10.6 Exercise. Assume T is λ -stable, A is λ -saturated and A ⊆ A and B
are of power < λ . Then there is f ∈ Saut(A) such that f [B] ⊆ A . (Hint: Use
Lemma 10.5 and the fact that if stp(a,A) = stp(b, A) , then t(a,A∪ b) ⊢ stp(a,A) .)

10.7 Lemma. Assume x = a and λ ≥ κr(T ) or x = s and λ > |T | . If A is
F x
λ -saturated, A ⊆ B ∩D , D ↓A B and (B, (ci, Ci)i<α) is an F x

λ -construction over
B , then (B ∪D, (ci, Ci)i<α) is an F x

λ -construction over B ∪D .

Proof. We prove the first case, the other is similar. Assume not. Then we
can find F a

λ -saturated A , B , B′ , D , a and b such that A ⊆ B ∩ D , D ↓A B ,
(t(a,B), B′) ∈ F a

λ , stp(b,B′) = stp(a,B′) and t(b,B ∪ D) ̸= t(a,B ∪ D). Clearly
we may assume that d = D−A is finite, B′ ↓A∩B′ A and t(b,B′∪d) ̸= t(a,B′∪d).
By Lemma 10.5 (iii), choose d′ ∈ A such that stp(d′,A ∩ B′) = stp(d,A ∩ B′).
By Lemma 10.2 (iii) and (i), there is f ∈ Saut(B′) such that f(d) = d′ . Then
t(f(b), B) ̸= t(a,B) or t(f(a), B) ̸= t(a,B). Clearly this contradicts the assumption
that (t(a,B), B′) ∈ F a

λ .

10.8 Definition. We write A ◃B C (A dominates C over B ) if for all d ,
d ↓B A implies d ↓B C .

10.9 Exercise.
(i) Assume x = a and λ ≥ κr(T ) or x = s and λ > |T | . If A is F x

λ saturated
and C is F x

λ -constructible over A ∪B , then B ◃A C . (Hint: Use Lemma 10.7.)
(ii) Assume B ⊆ A and a ∪ b ↓B A . Then a ◃A b iff a ◃B b .
(iii) Show that if b ∈ acl(Aa) , then a ◃A b .

11. Structure of a-saturated models

In this chapter, as an example of structure theorems, we prove a structure
theorem for a-saturated models assuming that T is superstable and does not have
dop.

Through out this section we assume that T is superstable (i.e. κ(T ) = ω ). We
write a-primary, a-saturated etc. for F a

κ(T ) -primary, F a
κ(T ) -saturated etc. If (P,<)

is a tree without branches of length > ω and t ∈ P is not the root, then by t− we
mean the unique immediate predecessor of t .

11.1 Definition.
(i) We say that p ∈ S(A) is (almost) orthogonal to B ⊆ A if p is (almost)

orthogonal to every q ∈ S(A) which does not fork over B , see Definition 6.1.
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(ii) We say that {ai| i < α} is A -independent if for all i < α ai ↓A ∪{aj | j <
α, j ̸= i} .

(iii) We say that (P, f, g) is a decomposition of a -saturated A if the following
holds:

(a) P = (P,<) is a tree without branches of length > ω , f : P − {r} → A ,
where r is the root of P , and g : P → {A| A ⊆ A} ,

(b) g(r) is an a -primary model over ∅ ,
(c) for all t ∈ P , {f(u)| u− = t} is a maximal g(t) independent set of sequences

from A such that t(f(u), g(t)) is not algebraic and if t ̸= r , then also (e) below holds,
(d) for all t, u ∈ P , if u− = t , then g(u) is a -primary over g(t) ∪ f(u) ,
(e) for all t , u and v from P , if u− = t and t− = v , then t(f(u), g(t)) is

orthogonal to g(v) .

11.2 Exercise.
(i) If A is a -saturated, B ⊆ A and p ∈ S(A) , then p is orthogonal to B iff p

is almost orthogonal to B . (Hint: See the proof of Lemma 10.7.)
(ii) Show that {ai| i < α} is A-independent iff for all i < α ai ↓A ∪{aj | j < i} .
(iii) Show that for all a-saturated A , there exists a decomposition of A .
(iv) Assume (P, f, g) is a decomposition of A . If t ∈ P is not the root, then

g(t) ↓g(t−) ∪{g(u)| u ∈ P, t ̸≤ u} . (Hint: Clearly it is enough to show that for all
finite downwards closed P ′ ⊆ P , the claim holds for (P ′, f � P ′, g � P ′) . Prove this
by induction on |P ′| .)

11.3 Definition.
(i) Assume A is a-saturated. We say that a non-algebraic type t(a,A) is a

c-type (c for compulsion) if the following holds: If B ⊆ A is a -saturated and t(a,A)
is not orthogonal to B , then there is b ̸∈ A such that b ↓B A and a ◃A b .

(ii) We say that a stationary non-algebraic type p ∈ S(A) is regular if the
following holds: if q ∈ S(B) is a non-forking extension of p and r ∈ S(B) is a
forking extension of p , then q is orthogonal to r .

Given A ⊆ A and p ∈ S(A), it would be nice if we could define a dimension
of p(A) by using forking as a dependence relation. However, this is not possible,
since not all the axioms of the general dependence relation are satisfied, transitivity
is lacking. Regularity is a property designed to give the transitivity, see Exercise
11.5 (ii).

We want to mention also, that if in the definition of c-type we replace domina-
tion by compulsion (whatever it is) we can give a marginally simpler proof for the
structure theorem. We do not do this because domination is a widely used concept
and compulsion is not. The notion of c-type is used only by the author.

11.4 Lemma. If A ⊆ B are a-saturated, A ̸= B , then there is a ∈ B such
that t(a,A) is a c-type.

Proof. Since T is superstable, we can find finite A ⊆ A and a ∈ B such that
a ̸∈ A and for all A′ ⊆ A and a′ ∈ B , if t(a′ ∪A′, ∅) = t(a∪A, ∅) and a′ ̸∈ A , then
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a′ ↓A′ A . We show that t(a,A) is a c-type. For this let C ⊆ A be a-saturated and
assume that t(a,A) is not orthogonal to C . By Exercise 11.2 (i), choose c so that
c ↓C A and c ̸ ↓A a . Without loss of generality we may assume that A ↓A∩C C ∪ c
and c ̸ ↓A a . Notice that then A ∪ a ↓A∩C C .

By Exercise 11.2 (ii), choose (A∩C)∪ c -independent set I = {ai∪Ai| i < ω} of
realizations of t(a ∪A, (A ∩ C) ∪ c) such that a0 = a and A0 = A (we could choose
these so that in addition I is indiscernible over (A ∩ C) ∪ c). Then I is not A ∩ C -
independent, since otherwise for all i < ω , c ̸ ↓∪j<iaj∪Aj

ai ∪Ai . Let n < ω be the
largest number such that every J ⊆ I of power n is A ∩ C -independent. Without
loss of generality we may assume that a0 ∪A0 ̸ ↓∪0<i<nai∪Ai

an ∪An . Then

(∗) a0 ̸ ↓A0
∪0<i≤nai ∪Ai.

By the choice of n , a0 ∪A0 ↓A∩C An ∪
∪

0<i<n ai ∪Ai .
For all 0 < i < n , choose bi ∈ C and Bi ⊆ C and Bn ⊆ C such that

stp(Bn ∪
∪

0<i<n

bi ∪Bi, A ∩ C) = stp(An ∪
∪

0<i<n

ai ∪Ai, A ∩ C).

Then
t(Bn ∪

∪
0<i<n

bi ∪Bi, A ∪ a) = t(An ∪
∪

0<i<n

ai ∪Ai, A ∪ a).

Let D ⊆ B be a-primary over A ∪ a . Then we can find b ∈ D such that

t(b ∪Bn ∪
∪

0<i<n

bi ∪Bi, A ∪ a) = t(an ∪An ∪
∪

0<i<n

ai ∪Ai, A ∪ a).

By (*), b ̸∈ A . By the choice of A and a , b ↓Bn A , especially b ↓C A . Since
b ∈ D , by Exercise 10.8 (i) a ◃A b .

11.5 Exercise∗ .
(i) Let a and A be as in the proof of Lemma 11.4. Show that t(a,A) is regular.

(Hint: Show first that t(a,A) is regular.)
(ii) Suppose p ∈ S(A) is regular and let X be the set of all realizations of p .

For all Y ⊆ X , let cl(Y ) be the set of all a ∈ X such that a ̸ ↓A Y . Show that
(X, cl) is a pregeometry, for pregeometry see [Hy2].

11.6 Fact. ([Sh]) Regular types over a-saturated models are c-types.

11.7 Definition. We say that T has dop (dimensional order property) if
there are a-saturated Ai , i < 4 , and non-algebraic p ∈ S(A3) such that

(i) A0 ⊆ A1 ∩ A2 and A1 ↓A0 A2 ,
(ii) A3 is a-primary over A1 ∪ A2 ,
(iii) p is orthogonal to A1 and to A2 .

We say that T has ndop if it does not have dop.
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11.8 Fact. ([Sh]) Assume T is λ -stable, has dop and λ > µ ≥ κr(T ) . Then
T has 2λ non-isomorphic F a

µ -saturated models of cardinality λ .

11.9 Theorem. Assume T is superstable with ndop, A is a -saturated and
(P, f, g) is a decomposition of A . If B ⊆ A is a-primary over ∪t∈P g(t) , then B = A .
In particular, A is a-primary over ∪t∈P g(t) and thus unique upto isomorphism over
∪t∈P g(t) .

Proof. Assume not. Choose a ∈ A such that a ̸∈ B . By Theorem 7.6, we can
find finite downwards closed P ∗ ⊆ P and C ⊆ B such that C is a -primary over
∪t∈P∗g(t) and a ↓C B . So choose a so that in addition |P ∗| is minimal. Let D ⊆ A
be a-primary over C ∪ a . By Lemma 11.4, pick b ∈ D such that t(b, C) is a c-type.
Then b ↓C B and b ̸∈ B . There are three cases:

1. There is no t ∈ P ∗ such that P ∗ = {u ∈ P ∗| u ≤ t} . Let t be a leaf of P ∗

and P ′ = P ∗ − {t} . By Theorem 7.11 and Lemma 10.7, we can find C′ ⊆ C such
that it is a-primary over ∪u∈P ′g(u) and C is a-primary over g(t) ∪ C′ . By ndop,
t(b, C) is not orthogonal to C′ or to g(t). We assume that t(b, C) is not orthogonal
to C′ , the other case is similar. Since t(b, C) is a c-type, we can find c′ ̸∈ C such
that c′ ↓C′ C and b◃C c

′ . By Exercise 10.9 (ii), we can find c from A so that c ↓C′ B
and c ̸∈ B . This contradicts the choice of a and P ∗ .

2. There is t ∈ P ∗ such that P ∗ = {u ∈ P ∗| u ≤ t} , t is not the root of P and
t(b, C) is not orthogonal to g(t−). As in case 1 above, we get a contradiction with
the choice of a and P ∗ .

3. There is t ∈ P ∗ such that P ∗ = {u ∈ P ∗| u ≤ t} and t is the root of P
or t(b, C) is orthogonal to g(t−). Clearly this contradicts (c) in the definition of
decomposition.

11.10 Exercise∗ .
(i) Show, without using Theorem 7.11, that if Theorem 11.9 holds, A and B

are a-saturated and (P, f, g) is a decomposion of both A and B , then A ∼= B .
(ii) Assume (P, f, g) is a decomposition of A , (P ′, f ′, g′) is a decomposition of

A′ , h : (P,<) → (P ′, <′) is an isomorphism and H : ∪t∈P g(t) → ∪t∈P ′g(t) is such
that for all t ∈ P , H � g(t) is an isomorphism onto g(h(t)) . Then H is elementary.

(iii) Show that we can add (f) below to the definition of decomposition and still
prove Theorem 11.9:

(f) if t ∈ P is not the root, then t(f(t), g(t−)) is regular.

12. A non-structure theorem for strictly stable theories

In this chapter we prove the following theorem:

12.1 Theorem. Assume T is a stable unsuperstable theory and κ = cf(κ) >
(2|T |)+ . Then there are models Ai , i < 2κ , such that for all i < 2κ , |Ai| = κ and
for all i < j < 2κ , Ai ̸∼= Aj .
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Theorem 12.1 holds for all unsuperstable theories (even κ = cf(κ) > (2|T |)+

replaced by κ > |T |). We assume stability since this makes it possible for us to
prove the theorem by using forking and primary models which are the topic of this
paper. The proof is from [HS1]. Notice that below we construct the models Ai so
that they are F a

ω -saturated (and more).
Through out this section, we assume that T is a stable unsuperstable theory.

Let λ = (2|T |)+ We write s-primary, s-saturated etc. for F s
λ -primary, F s

λ -saturated
etc. We say that t(a,A) s -isolates t(a,B) if (t(a,B), A) ∈ F s

λ .
Let J ⊆ κ≤ω be such that it is closed under initial segments. If η, ξ ∈ J then

by r′(η, ξ) we mean the longest element of J which is an initial segment of both η
and ξ . If u, v ∈ I = Pω(J) (=the set of all finite subsets of J ) then by r(u, v) we
mean the largest set R which satisfies

(i) R ⊆ {r′(η, ξ)| η ∈ u, ξ ∈ v}
(ii) if η ∈ R , ξ ∈ u , τ ∈ v and η is an initial segment of r′(ξ, τ), then

η = r′(ξ, τ).
We order I by u ≤ v if for every η ∈ u there is ξ ∈ v such that η is an initial segment
of ξ i.e. r(u, v) = r(u, u) (= {η ∈ u| ¬∃ξ ∈ u(η is a proper initial segment of ξ)}).

12.2 Definition. Assume J ⊆ κ≤ω is closed under initial segments and
I = Pω(J) . Let Σ = {Au| u ∈ I} be an indexed family of sets. We say that Σ is
strongly independent if

(i) for all u, v ∈ I , u ≤ v implies Au ⊆ Av ,
(ii) if u, ui ∈ I , i < n , and B ⊆ ∪i<nAui has power < λ , then there is an

automorphism f = fΣ,B
(u,u0,...,un−1)

(of M) such that f � (B ∩ Au) = idB∩Au and

f(B ∩Aui) ⊆ Ar(u,ui) .

The model construction in Lemma 12.3 below is a generalized version of the
construction used in [Sh1] XII.4.

12.3 Lemma. Assume that Σ = {Au| u ∈ I} , I = Pω(J) , is strongly
independent. Then there are sets Au , u ∈ I , such that

(i) for all u, v ∈ I , u ≤ v implies Au ⊆ Av ,
(ii) for all u ∈ I , Au is s-primary over Au , (and so by (i), ∪u∈IAu is a model),
(iii) if v ≤ u , then Au is s -atomic over ∪u∈IAu and s -primary over Av ∪Au ,
(iv) if J ′ ⊆ J is closed under initial segments and u ∈ Pω(J

′) , then ∪v∈Pω(J ′)Av

is s -constructible over Au ∪
∪

v∈Pω(J′)Av .

Proof. Let {ui| i < α∗} be an enumeration of I such that u ≤ v and v ̸≤ u
implies i < j . It is easy to see that we can choose α , γi < α for i < α∗ , aγ and
Bγ for γ < α , and s : α→ I so that

(a) γ0 = 0 and (γi)i<α∗ is increasing and continuous,
(b) if γi ≤ γ < γi+1 , then s(γ) = ui ,
(c) for all γ < α , |Bγ | < λ and if we write for γ ≤ α , Aγ

u = Au ∪ {aδ| δ <
γ, s(δ) ≤ u} , then Bγ ⊆ Aγ

s(γ) ,

(d) for all γ < α , if we write Aγ = ∪u∈IA
γ
u , then t(aγ , Bγ) s -isolates t(aγ , A

γ),
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(e) for all i < α∗ , there are no a and B ⊆ A
γi+1
ui of power < λ such that t(a,B)

s -isolates t(a,Aγi+1),

(f) if aδ ∈ Bγ , then Bδ ⊆ Bγ .

For all u ∈ I , we define Au = Aα
u . We show that these are as wanted.

(i) follows immediately from the definitions and for (ii) it is enough to prove the
following claim (Claim (III) implies (ii) easily).

Claim. For all i < α∗ ,

(I) Σi = {Aγi
u | u ∈ I} is strongly independent, we write f i,B(u,u0,...,un−1)

instead

of fΣi,B
(u,u0,...,un−1)

,

(II) the functions f i,B(u,u0,...,un−1)
can be chosen so that if j < i , u, uk ∈ I , k < n ,

B ⊆ ∪i<nA
γi
uk

has power < λ and aγ ∈ B implies Bγ ⊆ B and B′ = B ∩Aγj , then

f i,B(u,u0,...,un−1)
� B′ = f j,B

′

(u,u0,...,un−1)
� B′ ,

(III) if j < i , then A
γj+1
uj is s -saturated,

Proof. Notice that if aγ ∈ Aδ
u ∩ Aδ

v , then aγ ∈ Aδ
r(u,v) . Similarly we see that

the first half of (I) in the claim is always true (i.e. if u ≤ v then for all δ < α ,
Aδ

u ⊆ Aδ
v .) We prove the rest by induction on i < α∗ . We notice first that it is

enough to prove the existence of f i,B(u,u0,...,un−1)
only in the case when B satisfies

(*) if aγ ∈ B , then Bγ ⊆ B .

For i = 0, there is nothing to prove. If i is limit, then the claim follows easily
from the induction assumption (use (II) in the claim). So we assume that the claim
holds for i and prove it for i+ 1. We prove first (I) and (II). For this let u, uk ∈ I ,
k < n , and B ⊆ ∪k<nA

γi+1
uk be of power < λ such that (*) above is satisfied. If for

all k < n , s(γi) ̸≤ uk , then (I) and (II) in the claim follow immediately from the
induction assumption. So we may assume that s(γi) ≤ u0 . Let B

′ = B∩(∪k<nA
γi
uk
).

By the induction assumption there is an automorphism f = f i,B
′

(u,u0,...,un−1)
such that

f � (B′ ∩ Aγi
u ) = idB′∩A

γi
u

and f(B′ ∩ Aγi
uk
) ⊆ Aγi

r(u,uk)
. If s(γi) ≤ u , then, by (*)

and (d) in the construction, we can find an automorphism g = f i+1,B
(u,u0,...,un−1)

such

that g � B′ = f � B′ and g � (B −B′) = idB−B′ . Clearly this is as wanted.

So we may assume that s(γi) ̸≤ u . Since s(γi) ≤ u0 , u0 ̸≤ r(u, u0). By the
choice of the enumeration of I there is j < i such that uj = r(u, u0). Then by the
induction assumption (part (III)), A

γi+1
uj = Aγi

uj
= A

γj+1
uj is s -saturated and by the

choice of f , f(B′ ∩Aγi
u0
) ⊆ Aγi

uj
. So by (d) in the construction and (*) above, there

are no difficulties in finding the required automorphism f i+1,B
(u,u0,...,un−1)

.

So we need to prove (III): For this it is enough to show that A
γi+1
ui is s -saturated.

Assume not. Then there are a and B such that B ⊆ A
γi+1
ui , |B| < λ and t(a,B) is

not realized in A
γi+1
ui . Since λ ≥ λ(T ), there are b and C such that B ⊆ C ⊆ A

γi+1
ui ,

|C| < λ , t(b,B) = t(a,B) and t(b, C) s -isolates t(b, A
γi+1
ui ). But since (I) in the

claim holds for i + 1, t(b, C) s-isolates t(b, Aγi+1). This contradicts (e) in the
construction. Claim

(iii) and (iv) follow immediately from the construction, Claim (III) and Lemma
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7.9.
Since T is unsuperstable, there are a and sets Ai , i < ω , such that
(i) if j < i < ω , then Aj ⊆ Ai ,
(ii) for all i < ω , a ̸ ↓Ai

Ai+1 .
It is easy to see that we may choose the sets Ai so that they are s -saturated models
and of power λ . Let Aω be s-primary over a∪

∪
i<ω Ai . As in the proof of Lemma

9.3, for all η ∈ κ≤ω , we can find Aη such that
(a) for all η ∈ κ≤ω , there is an automorphism fη such that fη(Alength(η))

= Aη ,
(b) if η is an initial segment of ξ , then fξ � Alength(η) = fη � Alength(η) ,
(c) if η ∈ κ<ω , α ∈ κ and X is the set of those ξ ∈ κ≤ω such that η ⌢ (α) is

an initial segment of ξ , then

∪ξ∈XAξ ↓Aη ∪ξ∈(κ≤ω−X)Aξ.

For all η ∈ κω , we let aη = fη(a).

12.4 Exercise. Assume η ∈ κ<ω , α ∈ κ and X is the set of those ξ ∈ κ<ω

such that η ⌢ (α) is an initial segment of ξ . Let B ⊆ ∪ξ∈(κ≤ω−X)Aξ and C ⊆
∪ξ∈XAξ be of power < λ . Then there is C ′ ⊆ Aη such that t(C ′, B) = t(C,B) .
(Hint: Use Exercise 10.6.)

12.5 Lemma. Assume J ⊆ κ≤ω and I = Pω(J) . For all u ∈ I , define
Au = ∪η∈uAη . Then {Au| u ∈ I} is strongly independent.

Proof. Follows immediately from Exercise 12.4.
For each α < κ of cofinality ω , let ηα ∈ κω be a strictly increasing sequence

such that ∪i<ωηα(i) = α . Let S ⊆ {α < κ| cf(α) = ω} . By JS we mean the set

κ<ω ∪ {ηα| α ∈ S}.

Let IS = Pω(JS) and AS be the model given by Lemmas 12.3 and 12.5 for {Au| u ∈
IS} .

12.6 Exercise.
(i) Assume η ∈ κ<ω , u ∈ IS , α < κ , {η} ≤ u and {η ⌢ (α)} ̸≤ u . Let X be

the set of those ξ ∈ JS such that η ⌢ (α) is an initial segment of ξ . Then

∪ξ∈XAξ ↓Au ∪ξ∈JS−XAξ.

(ii) Assume α ∈ κ , u ∈ IS and v ∈ Pω(JS ∩ α≤ω) is maximal such that v ≤ u .
Then

Au ↓Av ∪w∈Pω(JS∩α≤ω)Aw.

(Hint: Use Lemma 12.3 and Exercise 10.8.)

12.7 Lemma. Assume S,R ⊆ {α < κ| cf(α) = ω} are such that (S − R) ∪
(R− S) is stationary. Then AS is not isomorphic to AR .
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Proof. Assume not. Let f : AS → AR be an isomorphism. We write IαS for
the set of those u ∈ IS , which satisfy that for all ξ ∈ u , ∪i<length(ξ)ξ(i) < α .
IαR is defined similarly. Then we can find α and αi , i < ω , such that (αi)i<ω is
strictly increasing, for all i < ω , f(∪u∈I

αi
S
Au) = ∪u∈I

αi
R
Au and α = ∪i<ωαi ∈

(S −R) ∪ (R− S). Without loss of generality we may assume that α ∈ S −R , and
so ηα ∈ JS . Let Aαi

S = ∪u∈I
αi
S
Au and Aαi

R = ∪u∈I
αi
R
Au . Then it easy to see that

for all i < ω there is j < ω such that aηα ̸ ↓Aαi
S

Aαj

S . So there is u ∈ IR such that

for all i < ω there is j < ω such that Au ̸ ↓Aαi
R

Aαj

R . Since α ̸∈ R , this contradicts

Exercise 12.6 (ii).
We can now prove Theorem 12.1: By [Sh1] Appendix 1 Theorem 1.3 (2) and (3),

there are stationary Si ⊆ {α < κ| cf(α) = ω} , i < κ , such that for all i < j < κ ,
Si ∩ Sj = ∅ . For all X ⊆ κ , let AX = A∪i∈XSi . Then by Lemma 12.7, if X ̸= X ′ ,
then AX is not isomorphic to AX′ . Since clearly |J∪i∈XSi | = κ , |AX | = κ .
Theorem 12.1.
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APPENDIX

A. Meq and canonical bases

In this section, in order to simplify the notations, we assume that L is relational
and that every formula is equivalent either to some atomic formula or ∃v0(v0 = v0)
or ¬∃v0(v0 = v0). This assumption is w.o.l.g. (change the vocabulary if necessary -
this is know as Morleyization).

We start by noticing that if ϕ(x, y) is a formula and in A |= T it defines an
equivalence relation on An , then it defines an equivalence relation in every model of
T .

Let EQn be the set of all equivalence relations on Mn definable over ∅ and
EQ =

∪
n<ω EQ

n . For every model A we define Aeq as follows: We let Leq = L ∪
{SE , FE | E ∈ EQ} where SE is a new unary relation symbol, FE is a new function
symbol of arity n if E ∈ EQn . The universe of Aeq consists of A together with
the equivalence classes a/E where E ∈ EQn , E is not an identity, and a ∈ An and
still assuming that E is not the identity, SE is interpreted as the set {a/E| a ∈ A}
and FE(a) = a/E if a ∈ A and otherwise F (a) = a1 , where a = (a1, ..., an).
Strictly speaking since we want the sets SE to be disjoint we may have to use e.g.
pairs (E, a/E) in place of a/E . To simplify the notation, we use a/E and often
write just a/E in place of FE(a). The interpretation of S= is A and F=(a) = a .
Finally, the interpretations of relation symbols R ∈ L are the same as in A . We let
T eq = Th(Meq).

A.1 Exercise.
(i) Show that for all f ∈ Aut(A) there is unique g ∈ Aut(Aeq) such that f ⊆ g .
(ii) If A ≼ B , then there is a unique elementary embedding f : Aeq → Beq

such that f � A = id . Also if Aeq ≼ Beq , then A ≼ B . Conclude that for all A ,
Aeq |= T eq . (Hint: Use Ehrenfeuch-Fräıssé games, see e.g. [Hy2].)

(iii) Show that Meq is not saturated.
(iv) Show that there is saturated M ′ such that Meq ≼M ′ and for all E ∈ EQ ,

the interpretation of SE in M ′ is the same as in Meq .
(v) Show that for all L-formulas ϕ(x) there is Leq -formula ϕ∗(x) such that for

all a ∈M , M |= ϕ(a) iff Meq |= ϕ∗(a) .
(vi) Show that if T is ξ -stable, then so is T eq .
(viii) Let p be an L -type over B ⊆M such that it is realized in M and A ⊆M .

Show that p does not fork over A in the sense of M iff p∗ does not fork over A in
the sense of Meq , where p∗ = {ϕ∗(x, a)| ϕ(x, a) ∈ p} and here ϕ∗ is as in (v) above.

We use Meq as the monster model for T eq and not M ′ from Exercise A.1 (iv).

A.2 Exercise.
(i) Show that every Leq -formula is equivalent to a boolean combination of for-

mulas of the form:
(a) ∃v0(v0 = v0) ,
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(b) x = y ,
(c) SE(x) ,
(d) ∧i≤nSEi

(xi) → ∀y0...∀yn(∧i≤nFEi
(yi) = xi → R(y0, ..., yn)) , where R ∈ L .

(Hint: Standard proof of the elimination of quantifiers, see e.g. [Hy2].)
(ii) Show that for all Leq -formulas ϕ(x) , x = (x0, ..., xn) , and Ei , i ≤ n ,

there is an L -formula ϕ∗(y0, ..., yn) such that for all ai ∈M , M |= ϕ∗(a0, ..., an) iff
Meq |= ϕ(a0/E0, ..., an/En) .

A.3 Definition.
(i) We say that A ⊆M is a canonical base of p ∈ S(M) if for all f ∈ Aut(M) ,

f � A = id iff f(p) = p , where f(p) = {ϕ(x, f(a))| ϕ(x, a) ∈ p} and if a =
(a0, ..., an) , then f(a) = (f(a0), ..., f(an)) .

(ii) Suppose p ∈ S(B) is stationary. We say that A ⊆M is a canonical base of
p if A is a canonical base of the unique non-forking extension q ∈ S(M) of p .

(iii) For A ⊆ M , by definable closure dcl(A) of A we mean the set of all
elements a ∈M , which are definable using parameters from A .

Some authors require that canonical bases A are definably closed i.e. dcl(A) =
A .

A.4 Exercise.
(i) Show that if A is a canonical base of p ∈ S(M) , then p does not fork over

A and p � A is stationary. (Hint: First show that p does not split over A and then
e.g. see the hint for Exercise 5.12 (ii).)

(ii) Show that dcl(dcl(A)) = dcl(A) ⊇ A and that if a sequence a = (a0, ..., an)
is definable with parameters from A , then for all i ≤ n , ai ∈ dcl(A) .

(iii) Show that if A is a canonical base of p ∈ S(M) , then so is dcl(A) and if
B is another canonical base of p , then dcl(A) = dcl(B) .

(iv) Show that if p ∈ S(M) , p does not fork over B ⊆M and A is a canonical
base of p , then A ⊆ acl(B) .

A.5 Theorem. Every p ∈ S(Meq) has a canonical base.

Proof. In order to simplify the notations, we assume that p ∈ S1(Meq). Let
M ′ ⊇Meq be a saturated model of power > |Meq| and a ∈M ′ such that it realizes
p . Let E be such that M ′ |= SE(a). Again in order to simplify the notations, we
assume that E ∈ EQ1 and so we can find b ∈M ′ such that M ′ |= S=(b)∧FE(b) = a .

Clearly, it is enough to find for each ϕ(x, y) and element aϕ ∈ Meq such that
for all f ∈ Aut(Meq), f(p � ϕ(x, y)) = p � ϕ(x, y) iff f(aϕ) = aϕ . We fix ϕ(x, y).

Choose a model A ⊆ Meq so that t(ab,Meq) does not fork over A and for all
i < ω , choose ai and bi from Meq such that t(aibi,A ∪ {aj , bj | j < i}) = t(ab,A ∪
{aj , bj | j < i}). Then (aibi)i<ω and (ai)i<ω are indiscernible sequences based on A
(see Exercise 5.8 (i) and the proof of Theorem 3.9) and thus p = Av((ai)i<ω,M

eq).
Then, as in the proof of Theorem 5.14, letting n be as in Exercise 3.5,

ψ(y, a0, ..., a2(n−1)) =
∨

w⊆2n−1, |w|=n

(∧i∈wϕ(ai, y))
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defines p � ϕ(x, y) and thus so does ψ(y, FE(b0), ..., FE(b2(n−1))).
Let E′ be the equivalence relation on Meq such that for all a′i, a

′′
i ∈ Meq , i <

2n− 1, (a′0, ..., a
′
2(n−1))E

′(a′′0 , ..., a
′′
2(n−1)) if for all i < 2n− 1, a′i = a′′i or for all i <

2n−1, a′i, a
′′
i ∈ SE and for all c ∈Meq , (ψ(c, a′1, ..., a

′
2(n−1)) ↔ ψ(c, a′′1 , ..., a

′′
2(n−1))).

By Exercise A.2 (ii), there is E∗ ∈ EQ2n−1 such that for all b′i, b
′′
i ∈M , i < 2n− 1,

(b′0, ..., b
′
2(n−1))E

∗(b′′0 , ..., b
′′
2(n−1)) iff

(FE(b
′
0), ..., FE(b

′
2(n−1)))E

′(FE(b
′′
0), ..., FE(b

′′
2(n−1))).

We let aϕ = (b0, ..., b2(n−1))/E
∗ .

Let f ∈ Aut(Meq). If f(p � ϕ(x, y)) = p � ϕ(x, y), then for all c ∈Meq ,
Meq |= ψ(c, FE(b0), ..., FE(b2(n−1)))
iff ϕ(x, c) ∈ p iff ϕ(x, c) ∈ f(p)
iff Meq |= ψ(c, FE(f(b0)), ..., FE(f(b2(n−1))))
and so f(aϕ) = aϕ .

On the other hand, if f(aϕ) = aϕ , then ϕ(x, c) ∈ p
iff Meq |= ψ(c, FE(b0), ..., FE(b2(n−1)))
iff Meq |= ψ(c, FE(f(b0)), ..., FE(f(b2(n−1))))
iff ϕ(x, c) ∈ f(p).

A.6 Exercise. Let T = Tω , A ⊆M and a an element in M −A .
(i) Show that t(a/A) is stationary.
(ii) Find a canonical base for t(a,A) in Meq .
(iii) Show that if C is a canonical base for t(a,A) (in Meq ), then C ∩M = ∅ .

B. Morley’s theorem

Though out this section we assume that T is a countable complete theory and
λ -categorical for some uncountable λ (i.e. upto isomorphism T has exactly one
model of power λ).

The following fact can be proved using Ehrenfeuch-Mostowski models, see e.g.
[Hy2] Exercise 12.11.

B.1 Fact. T is ω -stable.

B.2. Lemma. Every uncountable model of T is ω1 -saturated and thus T is
ω1 -categorical.

Proof. Let A ⊆ A and p ∈ S(A) be such that A is a countable set and A is an
uncountable model. We need to show that p is realized in A . Let ai ∈ A , i < ω1 ,
be distinct elements. By Theorem 3.3 we may assume that (ai)i<ω1 is indiscernible
over A . Let ai , ω1 ≤ i < λ , be such that (ai)i<λ is indiscernible over A . Let B be
F t
ω -primary model over A∪

∪
i<λ ai . Since T is λ -stable, T has a saturated model

of power λ and since T is λ -categorical, B is saturated. And thus p is realized in B .
Let b ∈ B be the realization. By Lemma 7.4, one finds a finite X = {i0, ..., in} ⊆ λ
and B ⊆ B such that b ∈ B and B is F t

ω -constructible over A ∪
∪

k≤n aik . Since

40



(ai)i<λ is indiscernible over A , we may assume that for all k ≤ n , ik = k . But then,
since F t

ω -constructible sets are F t
ω -primitive and models are F t

ω -saturated, there is
elementary f : B → A such that f � A = id . Then a = f(b) ∈ A realizes p .

Below we will use F a
ω isolation notion because we can and for it we have proved

all that is needed. We could use also F s
ω or even F t

ω but we have not proved the
needed properties for them. Excluding Lemma B.3, we could also use F s

ω1
.

B.3 Lemma. Suppose A is a countable saturated model (and thus F a
ω -

saturated by Fact B.1)) and p, q ∈ S(A) are not algebraic. Then p and q are not
orthogonal (and so T is unidimensional, see Section 6).

Proof. Suppose they are. By induction on i ≤ ω1 we find realizations ai of p
and models Ai as follows:

(i) A0 = A (and a0 is any realization of p),
(ii) Ai+1 is F a

ω -primary over Ai ∪ ai and ai+1 ↓A Ai+1 ,
(iii) if i is a limit, then Ai = ∪j<iAj and ai ↓A Ai .

Let b be any realization of q . Using Exercise 10.9, an easy induction on i ≤ ω1 shows
that b ↓A Aω1

and so b ̸∈ Aω1
. Thus Aω1

does not realize q , which contradicts
Lemma B.2.

B.4 Definition. We say that t(a,A) is minimal if it is not algebraic but for
all B ⊇ A , if a ̸ ↓A B , then t(a,B) is algebraic.

B.5 Exercise. Let A be a countable saturated model. Show that there is
minimal p ∈ S(A) .

B.6 Lemma. Let A be an uncountable model, B ⊆ A be a countable
saturated model, p ∈ S(B) be minimal and {ai| i < α} be a maximal independent
(i.e. ai ↓B

∪
j<α,j ̸=i aj ) set of realizations of p from A . Then A is F a

ω -primary
over B ∪

∪
i<α ai .

Proof. Let C ⊆ A be F a
ω -primary model over B ∪

∪
i<α ai . It is enough to

show that C = A . Suppose not. Let b ∈ A− C .
Then we can find a finite X ⊆ α and F a

ω -primary model B′ ⊆ C over B∪
∪

i∈X ai
such that b ↓B′ C . If C′ ⊆ C is F a

ω -primary over B′ ∪
∪

i<α ai it is F a
ω -primary over

B ∪
∪

i<α ai (exercise, hint: Exercise 10.9 (i)) and thus we may assume that C′ = C
(since b ∈ A − C′ and b ↓B′ C′ ). Let p′ ∈ S(B′) be the non-forking extension of p .
Then

(*) {ai| i ∈ α −X} is a maximal independent set of realizations of p′ from A
(exercise).

Let D ⊆ A be F a
ω -primary over B′ ∪ b . By the proof of Exercise 11.2 (i) and

Lemma B.3, there is a realization a of p′ such that a ̸ ↓B′ b . Since p was minimal,
a ∈ D . Since b dominates D over B′ , a ↓B′ {ai| i ∈ X} , a contradiction with (*)
above.

B.7 Morley’s theorem. If T is countable and λ -categorical for some un-
countable λ , then T is κ-categorical for all uncountable κ .
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Proof. So suppose |A| = |B| = κ . Let C ⊆ A and C′ ⊆ B be countable
saturated models. By taking an isomorphic copy of B , we may assume that C = C′ .
Let p ∈ S(C) be minimal and {ai| i < α} and {bi| i < β} be maximal independent
set of realizations of p in A and B , respectively. As in Exercise 9.7, |α| = |A| =
|B| = |β| and thus by taking an isomorphic copy of B , we may assume that α = β
and that for all i < α , ai = bi . But then the claim follows from Lemma B.6 and
Theorem 7.11.

C. Morley rank

In this section we look at Morley rank and its connection to Cantor-Bendixon
rank.

C.1 Definition. For definable A ⊆Mn we define MR(A) as follows:
(i) If A ̸= ∅ , then MR(A) ≥ 0 ,
(ii) if there are definable Ai ⊆ A , i < ω , such that for i < j < ω , Ai ∩ Aj = ∅

and MR(Ai) ≥ α , then MR(A) ≥ α+ 1 ,
(iii) for limit α , MR(A) ≥ α if MR(A) ≥ β for all β < α .

MR(A) is the least α such that MR(A) ̸≥ α + 1 if such α exists and other-
wise MR(A) = ∞ . For formulas ϕ(x, a) , MR(ϕ(x, a)) = MR(ϕ(M,a)) , where
ϕ(M,a) = {b ∈Mn| |= ϕ(b, a)} , and for types p over M ,

MR(p) = min{MR(∧q)| q ⊆ p finite}.

C.2 Exercises.
(i) Show that for α < β , MR(A) ≥ β implies MR(A) ≥ α and that for types

p , MR(p) = 0 iff p is algebraic.
(ii) Show that there is α such that for all definable A , MR(A) ≥ α implies

MR(A) = ∞ .
(iii) Show that if T is ω -stable, then MR(A) <∞ for all definable A .
(iv) Show that if MR(A) <∞ for all definable A , then T is ω -stable.
(v) Show that for all varieties V ⊆ Fn , see Appendix D, MR(V ) = dimgeo(V ) .

C.3 Fact. If T is ω -stable, then a ↓A B for A ⊆ B iff MR(t(a,B)) =
MR(t(a,A)) .

Let us then look at the connection of Morley rank to Cantor-Bendixon rank. For
this we let A be a countable set and assume that the vocabulary is also countable and
look Sn(A) as a Polish space i.e. a completely metrizable seperable space. Sn(A)
becomes a Polish space by letting sets Uϕ = {p ∈ Sn(A)| ϕ ∈ p} be the basic open
sets, where ϕ is a formula with parameters from A . This space is known as Stone
space. We can see that this space is indeed Polish by enumerating all formulas with
parameters from A as ϕi , i < ω , and defining distand by d(p, q) = 2−i , where i is
the least number such that ϕi ∈ (p − q) ∪ (q − p) (the distance is 0 if there is no
such i). Now compactness quarantees that Sn(A) is complete in this metric.
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Now polish spaces are either countable or of cardinality 2ω . Let us look how
this is proved in our Stone space case: For all i < ω1 , we define sets Si and Ri as
follows: S0 = Sn(A) and for limit i , Si = ∩j<iSj . If Si is defined, we let Ri be
the set of all isolated p ∈ Si in the relative topology i.e. all p ∈ Si such that for
some ϕ , Si ∩ Uϕ = {p} . Then Si+1 = Si − Ri . Since Sn(A) is separable, each Ri

is countable and for the same reason, there is i < ω1 such that Si+1 = Si . Call this
set Sd . Now if Sd is empty, then Sn(A) is countable and otherwise Sd ⊆ Sn(A) is
a non-empty metric space without isolated points and thus has cardinality 2ω .

This construction gives us Cantor-Bendixon rank: For ϕ , we let CB(ϕ) be the
least α such that Sα+1 ∩ Uϕ = ∅ (CB(ϕ) = ∞ if there is no such α) and for
p ∈ Sn(A), CB(p) is the least α such that p ̸∈ Sα+1 (again ∞ if there is no such
α).

C.4 Exercise.
(i) For limit α , show that if for all β < α , if Sβ ∩ Uϕ ̸= ∅ , then Sα ∩ Uϕ ̸= ∅ .
(ii) Show that CB(ϕ) ≥ α+ 1 iff Sα ∩ Uϕ is infinite.
(iii) Show that CB(ϕ) ≥ α implies MR(ϕ) ≥ α .
(iv) Suppose A is a countable ω -saturated model. Show that MR(ϕ) ≥ α

implies CB(ϕ) ≥ α .
(v) Suppose A is a countable ω -saturated model. Show that CB(p) =MR(p)

for all p ∈ Sn(A) .

D. On algebraically closed fields

Let T be the theory of algebraically closed fields of characteristic 0 in vo-
cabulary {+,×,−, 0, 1} , see [Hy2] Section 6, see also Section 11 from [Hy2]). Let
F be an uncountable model of T e.g. the field of complex numbers. Then F is
saturated. We say that V ⊆ Fn is a(n affine) variety if there are polynomials
P0, ..., Pm ∈ F [X1, ..., Xn] such that V is the zero set of the polynomials P0, ..., Pm .
Notice that V is a variety iff it is definable with a conjunction of atomic formulas
(with parameters).

D.1 Fact. T has elimination of quantifiers i.e. every definable relation is
a boolean combination of varieties (see [Hy2] and these relations are called con-
structible sets in field theory).

By declaring varieties V ⊆ Fn closed subsets of Fn , we get a topology to Fn ,
known as Zariski topology, since varieties are closed under intersections of arbitrary
size (F [X1, ..., Xn] is a Noetherian ring) and under finite unions (exercise). We say
that a closed set is irreducible if it is not a union of two proper closed subsets (often
by a variety people mean irreducible variety).

D.2 Fact. Every variety is a finite union of irreducible varieties.

For irreducible varieties V we define topological dimension dimtop(V ) as the
maximal m < ω for which there are irreducible varieties ∅ ̸= V0 ( V1 ( ... (
Vm = V . For arbitrary varieties V we let dimtop(V ) = max{dimtop(W )| W ⊆
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V irreducible} . It is easy to see that the two definitions give the same value for the
irreducible varieties (exercise).

Suppose A ⊆ F is finite. Then aclA(X) = acl(A ∪ X) is a pregeometry on
F and it gives a dimension for all subsets B of F , see [Hy2] Section 11. We write
Dim(B/A) for this dimension. This gives a geometric dimension for all definable sub-
sets D of Fn : For a = (a1, ..., an) ∈ Fn , we write dim(a/A) = Dim({a1, ..., an}/A)
and then if D ⊆ Fn is definable with parameters from A , we let dimgeo(D) =
max{dim(a/A)| a ∈ D} (dim(D) does not depend on the choice of A as long as
D is definable with parameters from A). We say that a ∈ D is generic over A if
dim(a/A) = dimgeo(D).

D.3 Fact. If V ⊆ Fn is an irreducible variety definable as a zero set of
polynomials with coefficients from A , a ∈ V is generic over A , P is a polynomial
with coefficients from A and P (a) = 0 , then for all b ∈ V , P (b) = 0 .

D.4 Exercise. If V ⊆ Fn is an irreducible variety, then dimgeo(V ) =
dimtop(V ) . Hint: For dimtop(V ) ≥ dimgeo(V ) simply construct the increasing
sequence of irreducible varieties. For the other direction, show that if V ⊆ W are
irreducible varieties and dimgeo(V ) = dimgeo(W ) , then V = W . For this apply
Fact D.3 to a generic element of V .

We define for varieties V

R(V, ω) = max{R∆(ϕ, ω)| ∆ is a finite set of atomic formulas},

where ϕ is the conjunction of polynomial equations that define V (the maximum
exists). We have restricted to atomic formulas in the definition of R(V, ω) in order
to simplify the proofs, keep in mind that our theory has elimination of quantifiers.

D.5 Fact. If a, b ̸∈ acl(A) are elements of F , then t(a,A) = t(b, A) .

D.6 Exercise. Show that if V ⊆ Fn is an irreducible variety, then R(V, ω) =
dimgeo(V ) . Hint: For R∆(V, ω) ≥ dimgeo(V ) just construct the witnesses. For the
other direction, prove by induction on k that if R∆(V, ω) ≥ k , then dimgeo(V ) ≥ k .
For this notice first that the case k = 0 is clear and then for k = p + 1 do the
following: Let ϕ be as in the definition of R(V, ω) for V and ∆ such that R∆(ϕ, ω) ≥
k . Now find a polynomial P such that R∆(ϕ∧ P = 0, ω), R∆(ϕ∧¬P = 0) ≥ p and
let W be the variety defined by ϕ ∧ P = 0 . Now apply Fact D.2 and the induction
assumption.

D.7 Exercise. Find a variety V ⊆ F and ∆ s.t. if ϕ defines V , then
R∆(ϕ, 2) > dimgeo(V ) .

D.8 Exercise.
(i) Suppose ai ∈ F , i < ω , are distinct elements. Show that {ai| i < ω} is

indiscernible over A iff for all i < ω , ai ̸∈ acl(A ∪ {aj | j < i} .
(ii) Find pairs ai = (ai0, a

i
1) ∈ F 2 such that all aij are distinct, {ai| i < ω} is

indiscernible over ∅ but dim(a1/A ∪ {a00, a01}) = 1 .

44



D.9 Exercise. Suppose A ⊆ B . Show that a ↓A B iff dim(a/B) =
dim(a/A) .

We finish this section by looking an example of a theory with dop. This example
is a simplification of the theory of differentially closed fields. Let A = (C ∪ (C ×
ω1),+,×,−, 0, 1, P, π), where P = C is the set of complex number, +,× and −
restricted to P together with 0 and 1 is the field of complex numbers, for all
(c, α) ∈ C × ω1 , π((c, α)) = c and if the arguments of the functions are not as
assumed above, then the value of the function is the first projection. Then our
theory is T ∗ = Th(A).

Denote κ = 2ω and for S ⊆ κ , let TS be the tree of all strictly increasing
functions η from κ≤ω such that if dom(η) = ω , then ∪n<ωη(n) ∈ S . We let AS

be the substructure of A defined as follows: Let (ci)i<κ be a basis of C in the
pregeometry (C, acl), see [Hy2], and f : TS → {ci| i < κ} a bijection. Then we
let the submodel AS be such that C ⊆ dom(AS) and (c, α) ∈ AS if α < ω or
c = f(η) + f(η � k) for some η ∈ κω ∩ TS and k < ω .

D.10 Exercise.
(i) Show that AS ≼ A and that if η and η′ are such that (f(η)+f(η′), α) ∈ AS

for some α ≥ ω , then dom(η) = ω and η′ ( η or vice versa.
(ii) Show that if ((S−S′)∪ (S′−S))∩Sκ

ω is stationary, then AS ̸∼= AS′ , where
Sκ
ω = {α < κ| cf(α) = ω} . Hint: Section 12.

E. On the theory of the additive group of integers

Let T = Th((Z,+,−, 0)), where Z is the set of integers, + is the addition of
integers and − is the unary function s.t. −x (= −(x)) is the additive inverse of
x . We look a bit the model theory of T . For more on the model theory of abelian
groups, see [EF].

T can be axiomatized as follows: G = (G,+,−, 0) |= T iff
(i) G is an abelian group,
(ii) G is torsion free,
(iii) for all primes p , G/pG contains exactly p many elements (i.e. has dimen-

sion 1 as a vector space over Fp ).
Suppose Gi , i < ω , are groups and for i < j < ω we have homomorphism fji

from Gj onto Gi such that for all i < j < k , fki = fji ◦ fkj . Then the inverse limit
G = limi<ωGi is the group of all g : ω → ∪i<ωGi such that for all i < ω , g(i) ∈ Gi

and for i < j < ω , g(i) = fji(g(j)). Addition to G is defined coordinatewise i.e.
(g + h)(i) = g(i) + h(i) and (−g)(i) = −g(i).

For i < ω , let Ni = Πi
k=0(pk)

i , where pk is the (k+1)th prime number (p0 = 2,
p1 = 3 etc.) and Gi = Z/NiZ . For i < j < ω , let fji be the homomorphism

n+NjZ 7→ n+NiZ and Ẑ = limi<ωGi . If G and H are groups then by G⊕H we
mean G×H with coordinatewise addition. If κ is a cardinal, then by H(κ) we mean
the group of all g : κ → H such that {i < κ| g(i) ̸= 0} is finite and the addition is
defined coordinatewise.
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E.1 Fact. If κ > ω , the G is a κ -saturated model of T iff for some λ ≥ κ , it
is isomorphic with Ẑ⊕Q(λ) , where Q is the additive group of the rational numbers.

E.2 Fact. Every formula is equivalent in all models of T to a formula that
is a boolean combination of atomic formulas and formulas of the form n|t , where n
is a non-zero natural number, t is a term and | means divides (i.e. there is y such
that ny = t , where 0y = 0 and (n+ 1)y = ny + y ). In particular, if G and H are
models of T , then G ≼ H iff G ⊆ H and for all elements x ∈ G and non-zero n , if
n divides x in H , then it divides x also in G .

We define π : Z → Z ⊕ Q(κ) by π(a) = (â, 0) where â : ω → ∪i<ωZ/NiZ is
such that â(i) = a+NiZ .

E.3 Exercise. Show that π is an elementary embedding (and well-defined).
Hint: If not then there is a prime p , n < ω and a ∈ Z such that pn divides π(a)
but not a . Pick i > n such that p < pj and look what happens in Z/NiZ .

We finish this section with some potentially usefull additional information. Let
p be a prime and Zp be the inverse limit of the groups Z/piZ , i < ω , under the
(obvious) homomorphisms x + pjZ 7→ x + piZ . Zp is called the group of p -adic
integers. If Gi , i < ω , are groups then by Πi<ωGi we mean the group of all
g : ω → ∪i<ωGi such that g(i) ∈ Gi for all i < ω , with the coordinatewise addition.
Let Z∗ = πi<ωZpi .

E.4 Exercise. Show that Z∗ is isomorphic to Ẑ . Hint: Chinese remainder
theorem.

Let p be a prime. We define a p-adic metric to Z by d(a, b) = p−n , where n
is the largest natural number that divides a− b .

E.5 Exercise. Show that Zp is the completion of Z under the p -adic metric.

E.6 Exercise.
(i) Show that T is not λ -stable for any λ < 2ω .
(ii) Show that T is λ -stable for all λ ≥ 2ω .

E.7 Exercise. By Fact E.1 we can choose M = Ẑ ⊕ Q(κ) for large enough
κ . We write Z also for {(â, 0)| a ∈ Z} (see Exercise E.3).

(i) Describe explicitely a collection of relations Ei ∈ FE(∅) , i ∈ I , such that

for all f, g ∈ Ẑ and a, b ∈ Q(κ) , if (f, a)Ei(g, b) for all i ∈ I , then t((f, a),Z) =
t((g, b),Z) . Hint: Choose Ei , i ∈ I , so that the assumption quarantees that the
natural isomorphism from < {(1̂, 0), (f, a)} > to < {(1̂, 0), (g, b)} > is a partial
elementary map M →M . Here < A > means the submodel generated by A which
by our choice of vocabulary is the same as the subgroup generated by A .

(ii) Show that stp((f, a), ∅) = stp((g, b), ∅) implies f = g .

E.8 Exercise.
(i) Show that (Z,+,−, 0) is not F t

ω -prime model over ∅ . Hint: Use omitting
types theorem, see [Hy2] .
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(ii) Show that there is no F t
ω -prime model over ∅ .

E.9 Exercise. Let M be as in Exercise E.7 and A = Ẑ × {0} ⊆ M . Show
that if p, q ∈ S1(A) are not algebraic, then they are not almost orthogonal.

E.10 Exercise.
(i) Show that Z⊕Q(ω) is F a

ω -primary model over ∅ .
(ii) Describe decompositions of F a

ω -saturated models of T . (Fact: T has ndop.)
(iii) Show that upto isomorphism, T has only one F a

ω -saturated model of car-
dinality κ > 2ω . What is the number of F a

ω -saturated models of cardinality 2ω ?

F. Properties of forking

We collect together the most important properties of the independence notion
↓ . Let A ⊆ B ⊆ C ⊆ D and a and b be arbitrary.

Monotonicity: If a ↓A D , then a ↓B C .

Finite character: If a ̸ ↓A B , then there is c ∈ B such that a ̸ ↓A c .

Locality 1: There is A′ ⊆ A of power < κ(T ) (≤ |T |+ ), such that a ↓A′ A .

Locality 2: If (Ai)i<κ(T ) is a ⊆ -increasing sequence of sets, then there is i <
κ(T ) such that a ↓Ai Ai+1 .

Symmetry: If a ↓A b , then b ↓A a .

Transitivity: a ↓A C iff a ↓A B and a ↓B C .

Existence: There is c such that stp(c, A) = stp(a,A) and c ↓A B .

Reflexivity 1: If t(a,B) is algebraic and t(a,A) is not, then a ̸ ↓A B .

Reflexivity 2: If t(a,A) is algebraic, then a ↓A B .

Stationarity 1: If stp(a,A) = stp(b, A), a ↓A B and b ↓A B , then stp(a,B) =
stp(b, B).

Stationarity 2: If A is a model, t(a,A) = t(b, A), a ↓A B and b ↓A B , then
stp(a,B) = stp(b,B).

F.1 Fact. (Suppose T is stable.) An independence notion ↓∗ has the prop-
erties listed above iff ↓∗=↓ (in fact, all of them are not needed for this).

47



References

[Ba] J. Baldwin, Fundamentals of Stability Theory, Springer-Verlag, Berlin, 1988.
[Bu] S. Buechler, Essential Stability Theory, Springer-Verlag, Berlin, 1996.
[EF] P. Eklof and E. Fischer, The elementary theory of abelian groups, Annals of

Mathematical Logic, vol. 4, 1972, 115-171.
[Hr] E. Hrushovski, Unidimensional theories are superstable, Annals of Pure and

Applied Logic, vol. 50, 1990, 117-138.
[HS1] T. Hyttinen and S. Shelah, On the number of elementary submodels of an

unsuperstable homogeneous structure, Mathematical Logic Quarterly, vol. 14,
1998, 354-358.

[HS2] T. Hyttinen and S. Shelah, Strong splitting in stable homogeneous models,
Annals of Pure and Applied Logic, vol. 103, 2000, 201-228.

[Hy1] T. Hyttinen, Stability and general logics, Mathematical Logic Quarterly, vol.
45, 1999, 219-240.

[Hy2] T. Hyttinen, Model Theory, Lecture notes, University of Helsinki, 2013.
[Hy3] T. Hyttinen, A short introduction to classification theory, Graduate Texts in

Mathematics, vol. 2, University of Helsinki, 1997.
[La] D. Lascar, Stability in Model Theory, Longman, Essex, 1987.
[Pi] A. Pillay, Geometric Stability Theory, Oxford University Press, New York, 1996.
[Sh] S. Shelah, Classification Theory, Stud. Logic Found. Math. 92, North-Holland,

Amsterdam, 2nd rev. ed., 1990.

Department of Mathematics and Statistics
P.O. Box 68
00014 University of Helsinki
Finland

48


