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0. Introduction

In the mid 60’s, Michael Morley made a number of findings. E.g. he showed
that if the theory is w-stable, then a Cantor-Bendixon rank can be defined for types.
This work was continued by Saharon Shelah. During 70’s and 80’s he created single-
handedly a large piece of model theory known as classification theory. The idea
behind this work was to determine for which model classes of the form {A| A = T},
T a complete first-order theory, a structure theorem can be proved. In this paper we
try to give a compact introduction to this topic. We concentrate on cases in which
T is stable, so a large part of classification theory is left outside the scope of this
paper. We also concentrate on ideas and techniques in classification theory, not on
results. So our results are not always the best possible.

Unless otherwise stated, all results proved in this paper are from [Sh], but all
proofs are not. Some of the proofs are new and also proofs from [HS1], [HS2] and
[Hy1] are used. The first version [Hy3] of these notes was written in mid 90’s.

To read these notes one needs to know the basic concepts of model theory and
how to use them. Also some basic facts from cardinal arithmetics are needed (e.g.
(2F) = 27).

This paper is full of exercises. Usually they are simple but vital parts of the
theory, and so they are often used later in the proofs. If an exercise is not needed
later in this paper, then it is marked by *. If an exercise is more than just checking
definitions, a generous hint is given.

We give examples of the concepts we define. In the text, the underlying theory in
those examples is usually either T, or Ty: T, = Th((a*, Ep)n<w), where E,(n,£)
holdsif n [ (n+1) =& | (n+1). From the appendix one can find two 'real” examples
with more challenging exercises.

Under the name Fact, we give additional information without proofs but which
we sometimes use, in particular, in exercises.

0.1 Fact. 7% and T,, have elimination of quantifiers, see [Hy?2].

Throughout this paper we assume that 7' is a complete theory in a language
L and that T has an infinite model. In order to simplify the notation, we use 'the
monster model technique’, i.e. we work inside M, where M = T is a saturated
model of power k, and k is assumed to be larger than the cardinality of any object
that we come across. So by a model we mean an elementary submodel of M (of
power < k). We write A, B etc. for these. This means e.g. that if A C B then
A < B. Similarly by a set we mean a subset of M. We write A, B etc. for these.
By a, b etc. we mean a finite sequence of elements of M. By a € A we mean
ac Alength(a) )

If T is stable, then the existence of M is not a problem (in this paper from
Chapter 2 on). Otherwise we have to assume that the inaccessible cardinals form a
proper class or use just k-saturated strongly x-homogeneous monster model. But
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this assumption is not 'used’, it is not hard to see how to modify the definitions and
the proofs so that M is not needed.

Our notation is standard. So e.g. S™(A) is the set of all complete consistent
types over A in m variables (modulo a change of variables) and in fact, by a type
we always mean a consistent type. S(A) = Up<wS™(A) and by t(a, A) we mean
the complete type of a over A (in M). We write p(z) when we want to point out,
which are the free variables in the type p. = ¢ means M | ¢ and ¢(M,b) is the
set {a € M| | ¢(a,b)}. pF ¢ means that every tuple that satisfies p satisfies also

q.

1. Stability and ranks

1.1 Definition.

(i) We say that T is &-stable if for all A of power < &, |S(A)| <€.

(ii) We say that T is stable, if for some infinite £, T is £-stable.

(iii) If T is stable, then by A(T') we mean the least A such that T is A-stable.

1.2 Exercise.

(i)* For all A, |S'(A)] > |A|.

(ii)* Show that the theory of dense linear-orderings without end-points is un-
stable. (Hint: Choose k so that it is the least cardinal such that w" > £ and extend
the ordering of the tree Q<" to a linear-order.)

(iii)* Show that if for all A of power < &, |S1(A)| <&, then T is &-stable.

(iv)* Show that T,, and T are stable.

(v) If T is -stable and & is regular, then for all A of power < £, there exists
a saturated model A of power & such that A C A. (Hint: Choose an increasing
continuous sequence A;, i < &, of sets of power £ such that every type over A; is
realized in A;y1 and A C Ay. Then A = U,;¢A; is as wanted.)

Below, when we write ¢(x), we mean that the free variables of ¢ are contained
in . When we talk about a formula ¢ we assume that ¢ is of the form ¢(z,y)
and that we always know, which variables belong to the first sequence and which
belong to the second. When we talk about ¢-types, the variables in y are for
parameters, and x remains free. By A we always mean a finite set of formulas and
if ¢(x,y),v(2',y") € A then z = 2’. When we talk about pU{¢(x,a)} we of course
assume that z is the sequence of free variables of p.

We will not do, what we said above, in a precise form; We rely on the common
sense of the reader.

1.3 Definition. Let A be a finite set of formulas.

(i) Let A C B and p € S(B). We say that p A-splits over A if there are
a,b € B and ¢ € A such that t(a, A) = t(b, A) and ¢(x,a),~¢(z,b) € p. We write
¢-splits instead of {¢} -splits.

(ii) Let A C B and p € S(B). We say that p splits over A if it ¢-splits over
A for some ¢.



(iii) We say that A is stable, if there are no A;, i < w, and a such that for all
i<w, A; € A1 and t(a, Ajy1) A-splits over A;. We say that ¢ is stable instead
of {¢} is stable. (Notice that this definition differs from the one given in [Sh], but
as we shall see, they are equivalent.)

(iv) We say that p is an A-type if it is a set of formulas of the form ¢(z,a)
or ~¢(x,b), a,b € M and ¢ € A. By ta(a, A) we mean the complete A-type of a
over A. We write Sa(A) for the set of all complete A-types over A. As above, we
write ty(a, A), S4(A) and ¢-type instead of ti4y(a, A), S4s1(A) and {¢}-type.

1.4 Exercise.

(i) If ¢ is not stable, then for all k, there are A;, i < k, and a such that for
all i < j <k, A; CA; and t(a,Aiy1) ¢-splits over A;. (Hint: Use compactness.)

(ii) If every formula is stable, then every finite A is stable.

(iii)* Find an infinite splitting sequence from (2¥,E,)p<., E Ts.

1.5 Lemma. If ¢ is not stable, then for all infinite &, there is A of power
< & such that |Sy(A)| > £ and so T' is not stable.

Proof. Let k be the least cardinal such that 2% > £. Then k < £. By Exercise
1.4, we can find a, a; and b;, i < k, such that for all ¢ < k, t(a;,Uj<i(a; Ubj)) =
t(bi,Uj<i(a; Ubs)) and = é(a,a;) A —d(a,b;).

By induction on i < k we define automorphisms f,;; of M, n € 2%, as follows:

(i) foro = idm,

(1) fyr+1) = fore if m(@) = 0 and otherwise fy;41) is any automorphism of
M such that fypir1)(ai) = fpribi) (or fypv1)(bi) = fyriai)) and for all j <,
Forarny(ag) = fariag) s forarny () = faribs),

(iii) if ¢ is limit, then f,); is any automorphism of M such that for all j < 1,
fari(a;) = for+1)(a;) and fori(b;) = for1)(b5)-
Let A = ;.. U{fo1i(Uj<i(a; U bs)| n € 2%} and for all n € 2%, we let p, =
ty(fn(a),A). Then |A| = 2<% and by (ii) above, if n # 7', then p, and p,, are
contradictory. By the choice of k, A is as wanted. o

1.6 Exercise. If T is {-stable and 2" > &, then there are no A;, i < k, and
a such that for all i < j < k, A; C A; and t(a, A;11) splits over A;. (Hint: The
proof of Lemma 1.5 works also here.)

We say that a type p over A (A, ¢)-splits over B C A, if there are a,b € A
such that ta(a, B) =ta(b, B), ¢(z,a) € p and —¢(z,b) € p.

1.7 Lemma. If ¢ is stable, then for all infinite A, |S4(A)| < |A|.

Proof. Let ¢, ¢; and d;, i < w, be sequences of new constants and C; =
Uj<i(c;j Udj). Since ¢ is stable, there are finite A and n such that the following
set is not consistent

(6(c, i) A —=de, di)| i < n} U{w(ci,d) < (ds,d)| i <n, de Cy, e A,
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But then for all A and p € Sy(A), we can find a finite B C A such that p does not
(A, ¢)-split over B. Since B and A are finite, Sa(B) is finite and so also

{g € S4(A)| p | B Cgq, qdoes not (A, ¢)-split over B}
is finite. Because the number of finite subsets of A is < |A|, the claim follows. o

1.8 Definition. For every finite set A of formulas and cardinal £ (not nec-
essarily infinite), we define Ra(p,§), for all types p, in the following way:

(i) Ra(p,€&) > 0 if p is consistent.

(ii)) Ra(p,§) > a+ 1 if for all finite ¢ C p and v < & there are A-types q;,
1 <7, such that

(a) for all i < j <~ there are ¢(z,y) € A and a such that ¢(x,a) € ¢; and
—¢(x,a) € q; or vice versa (in this case we say that ¢; and q; are A-contradictory),

(b) for all i <=, Ra(qU¢;,§) > a.

(iii) If o is limit, then Ra(p,&) > « if Ra(p,&) > [ for all § < «.
We say that Ra(p,&) = « if « is the least ordinal such that Ra(p,§) 72 a+ 1. If
such « does not exist, then we write Ra(p,§) = co. We write Ra(p,§) = —1 if p
is not consistent and Ry for Rygy.

1.9 Exercise.

(i) If Ra(p,€&) = oo, then Ra(p,&) > «, for all ordinals .

(iii) If Ra(p,&) > a and B < «, then Ra(p,§) > 5.

(iv) If € > ¢ and A C A’ then Ra(p,§) < Ra/(p,&').

(v) Ra(p,&) = min{Ra(q,§)| ¢ C p finite}.

(vi) If p is algebraic, then Ra(p,w)=0.

(vii) If p = p(xg,...,zpn), x; =y € A for all i <n and Ra(p,w) =0, then p is
algebraic.

1.10 Lemma. Let £ > 1 be a cardinal and A a finite set of formulas.

(i) There is « such that for all finite p, Ra(p,€) > « implies Ra(p,§) = oo.

(ii) If Ra(p,&) = oo and p is finite then there are finite p; and ps such that
p C p1 Npg, for some d and ¢ € A, ¢(x,d) € p1, ~¢(x,d) € po and Ra(p1,§) =

Ra(p2,§) = oo.
(iii) If for all infinite A, |Sa(A)| < |A|, then for all p, Ra(p,&) < oc.

Proof. (i) follows immediately from the fact that the number of ¢(A4,0) for
finite A, and the number of finite p over a finite A are bounded.

(ii) Immediate by (i) and the definition of R .

(iii) By Exercise 1.9 (v), it is enough to prove this for finite p. But this follows
immediately from (ii). o

1.11 Exercise. Let A be a finite set of formulas.

(i) For all finite types p, a € M and ¢ € A, if Ra(p,2) < oo, then either
RA(p U {¢($, a)}v 2) < RA(pa 2) or RA(p U {—|¢(CE, a)}7 2) < RA(pa 2)'

(ii) Assume p C gNr, q,r € SA(A) and p is finite. If Ra(q,2) = Ra(r,2) =
RA(p,2) < oo, then g =r.



We write |T'| for the number of L-formulas modulo the equivalence T+ Vx(¢(x)
© ().

1.12 Theorem. The following are equivalent:

(i) T is stable.

(ii) Every formula is stable.

(iii) Every finite A is stable.

(iv) For every ¢ and infinite A, |S4(A)| < |A|.

(v) For every finite A and infinite A, |Sa(A)| < |A|.

(vi) For every finite A, cardinal £ > 1 and type p, Ra(p,&) < oo
(vii) T is &-stable for all & such that £71 = ¢.

Proof. (i)=-(ii): This is Lemma 1.5.

(ii) = (iii): This is Exercise 1.4 (ii).

(iii) = (iv): This follows from Lemma 1.7.

(iv)=(v): Every type p € Sa(A) is determined by the sequence (p [ ¢)sea,
from which the claim follows.

(v)=-(vi): This is Lemma 1.10 (iii).

(vi)=(v): Let p € Sa(A). By Exercise 1.9 (v), choose finite B C A such that

(*) RA(p rBaQ):RA(p72)

By Exercise 1.11 (ii), p is determined by p | B and (*). Since for finite B, Sa(DB)
is finite and the number of finite subsets of A is |A|, [Sa(A4)| < w x |A| = |A].
(v)=(vil): Assume |A| = ¢ and &7 = ¢, Every type p € S(A) is determined
by the sequence (p | ¢)per- So [S(A)] < [Tlye So(A)| = AT =¢.
(vii)=(i): Trivial. o

1.13 Exercise. If T is stable, then for every cardinal £ > 1, finite A and
type p, Ra(p,§) < w. (Hint: By Exercise 1.9 (iv), it is enough to prove the claim
for £ = 2. For a contradiction, assume that the claim does not hold for £ = 2 and
use compactness to show that the following set of formulas is consistent (¢, and d;
are sequences of new constants):

= N @lend) o dley,d)ln, o €29 nli=n"Ti, n@)#n)})

bEA, dCd;

1.14 Fact. ([Sh]) If T is not stable, then there is ¢(x,y) such that for all
linear-orderings n there are a; € M, i € 1, such that |= ¢(a;,a;) iff i < j. (Notice
that by the proof of Exercise 1.2 (ii), this ¢ is not stable.)

We say that p and ¢ are A-contradictory if there are ¢ € A and a such that
¢(z,a) € p and —¢(z,a) € ¢ or vice versa.
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1.15 Theorem. Assume T is stable. Then

RA(pU{Vicn@i}t,w) = mazicn Ra(pU{i},w).

Proof. By Exercise 1.9 (ii), it is enough to show that for all p, RA(pU{Vicn®:},
w) > « implies max; <, RA(pU{¢i},w) > a. We prove this by induction on «. The
cases a = 0 and « is limit, are trivial.

We prove the case a« = + 1: For a contradiction, assume that for all i < n,
there are a finite p; C p and n; < w, which satisfy the following: there are no
pairwise A-contradictory q;, j < n;, such that p; C q; and RA(q;- U{pi},w) > 8.
Let p* = Ui<npi and n* =n - (mazi<,n;). Then p* U{Vicndi} € pU{Vicnd;i} is
finite and there are no pairwise A-contradictory q;, ¢ < n* such that for all : < n*,
p* C ¢; and for all i < n*, there exists j < n, such that Ra(¢; U {¢;},w) > 8
(i.e. if ¢;, i < n*, are A-contradictory and p* C ¢;, then for some i < n*,
mazj<nRa(q U{¢;},w) < ). By the induction assumption there are no pairwise
A-contradictory g;, ¢ < n* such that p* C ¢; and Ra(q; U{Vj<n®;},w) > B. So
RA(pU{Vicnd;i},w) # a, a contradiction. o

1.16 Exercise. Assume T is stable. If p is over A and Ra(p,w) = «, then
there is ¢ € S(A) such that p C q and Ra(q,w) = «. (Hint: By Theorem 1.15,
show that

{=¢(z,a)l a € A, Ra(pU{o(z,0)},w) <a}
is consistent.)

1.17 Exercise*. Suppose M < M’ are k-saturated and strongly k-homo-
geneous (or saturated of power > k) and & < k. Let RX (p,¢) and R%/(p, &) be
RA(p,&) as defined in M and M’ respectively. Show that if A C M is of power
<k and p is over A, then RX(p,&) = RA/(p,ﬁ).



PART I: INDEPENDENCE

Forking was invented by S. Shelah in the mid 70’s. Since then, the use of this
concept has dominated research in model theory. In this part we prove the basic
properties of forking in a compact style. We follow the approach of [Sh], so we do not
try to find the simplest way to see the basic properties of forking. The reason for this
is that the author of this paper believes, that it is important to know the relations
between indiscernible sets and ranks, forking, and finite equivalence relations. In
details we do not necessarily follow [Sh], e.g. our definition of forking differs from
the one given in [Sh]. For other approaches to forking, see [Ba], [Bu], [La] and/or
[Pi].

2. Forking

From now on in these notes we assume that 7T is stable.

2.1 Definition.

(i) We say that a consistent formula ¢(x,m), m € M, forks over A if for all
p = p(x) € S(A) the following holds: If p U {¢(x,m)} is consistent, then there is a
finite A such that for all finite A’ 2 A, Ra(pU{¢(xz,m)},w) < Ra/(p,w). (Notice
that this definition differs from the one given in [Sh], but, as we shall see, they are
equivalent.)

(ii) We say that p forks over A if there is a finite ¢ C p such that Aq forks over
A.

(iii) We write a [ 4 B if t(a, AU B) does not fork over A.

Below we give examples of forking. We delay, until Exercise 5.12, the proof
that the claims in the example are actually true. (The reader may try to prove this
straight from the definition. It is of course possible, but needs a bit work.)

2.2 Example.

(i) Assume T =T,,. Let a be a singleton. Then t(a,B) forks over A C B iff
a € B— A or there are n < w and b € B such that = E,(a,b) but for all ¢ € A
= -Ey(a,c).

(ii) Assume T = Ty. Let a be a singleton. Then t(a, B) forks over A C B iff
aeB—-A.

2.3 Exercise.

(i) If p is a consistent type over A then p does not fork over A.

(ii) If p € S(B) forks over A C B, then there is ¢(x,b) € p such that ¢ forks
over A, especially if a {4 B then there is finite B C B such that a }, B’.

(iii) If t(a, A) is algebraic, then a | o B for all B. (Hint: Use Exercise 1.9 (vi).)

2.4 Lemma. Assume A C B, t(a, B) is algebraic but t(a, A) is not algebraic.
Then a }4 B.



Proof. Choose ¢(z,b) € t(a, B) such that ¢(z,b) is algebraic. Since t(a, A) is
not algebraic and ¢(M,b) is finite, there is ¥ (z,c) € t(a, A) such that for all o', if
= ¢(a’,b) Ap(d,c), then t(a’, A) is not algebraic. By Exercise 1.9 (vi) and (vii),
¢(x,b) ANp(z,c) forks over A. o

2.5 Lemma. If ¢;, i <n, fork over A and pt V,.n¢;, then p forks over A.

Proof. Clearly we may assume that p is finite. We show that Ap forks over
A. Let ¢ € S(A) be such that ¢ U p is consistent. Let I C m be such that
I'#0, qUpt Vierd; and for all i € I, qUpU {¢;} is consistent (as an exercise,
prove the existence of I). Then for all ¢ € I there is a finite A; such that for
all finite A" D A;, Ra(qU{¢;},w) < Ra(q,w). Let A = U;erA;. Then for all
i € I and finite A" O A, Ra(qUpU{¢;},w) < Ras(q,w). By Theorem 1.15,
Ra(qUpU{Vicrdi},w) < Ra(q,w). Since qUp F Vierdi(x,m;), Exercise 1.9 (ii)
implies that Ra/(qUp,w) < Ra/(q,w). o

Notice that from Lemma 2.5 it follows that if ¢ - p and p forks over A, then
q forks over A.

2.6 Lemma. If p is over B and does not fork over A C B, then there is
q € S(B) such that p C q and q does not fork over A.

Proof. By Exercise 2.3 (ii), it is enough to show that the type pUgq is consistent,
where ¢ = {=¢(z,b)| b € B, ¢(z,b) forks over A}. If pU g is not consistent then
there are —¢;(x,b;) € q, i < n, such that p - V., ¢i(x,b;). By Lemma 2.5, this
implies that p forks over A, a contradiction. o

2.7 Exercise*. Let A= (2¥ X k, Ey)n<w, where (f,a)E,(g,8) if f | (n+
=gl (n+1).

(i) Show that A is a saturated model of Ty (i.e. we can think A as the monster
model).

(ii) Let A = {(f,0)| f € 2¥} C A. Show that for all a = (g,a) € A, if
a # 0, then a [y A. Hint: Find some b = (h,) € A such that b |y A and use an

automorphism.

Before we can prove further properties of forking, we have to study indiscernible
sets and finite equivalence relations.

3. Indiscernible sets

Recall that we have assumed that 7' is stable.

The following fact may help understanding this section. (As an exercise, prove
this fact after reading this Part I.) Assume = ¢(a,b) and t(b, A) is not algebraic. If
we want to test whether ¢(x,b) forks over A or not, then we can do the following:
Choose I = {b;| i < w}, so that {b} U is indiscernible over A (see the definition
below) and for all ¢ <w, b la bUU,; ;0. If [{c € {b}UI| | ¢(a,0)} =w (ie.
¢(a,y) € Av(I,AUa)), then ¢(x,b) does not fork over A.
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3.1 Definition. Assume [ is a set of finite sequences. We say that I is
indiscernible over A if for all ag,by, € I, k <n, a € A and ¢(xg,...,Tn_1,y) the
following holds: If for all k < k' < n, ay # apr and by, # by, then

): (b(ao, ...,an_]_,a) — (b(b()v "'7bn—1’a)‘

We say that I is indiscernible if it is indiscernible over ().

3.2 Exercise.

(i) If I is infinite indiscernible over A then for all £ there is J such that |J| = ¢
and I U J is indiscernible over A.

(ii) Let I = (I,<) be a linearly ordered set. We say that {b;| i € I} is order
indiscernible over A if for all ix,jx € I, k <n, a € A and ¢(zg,...,Tn_1,y) the
following holds: If for all k < k' < n, i}, < iy and j, < ji, then

): (f)(bim ceny bin_l,a) < ¢(bj0, ...,bjn_l,a).

Show that if I is infinite and {b;| i € I} is order indiscernible over A, then it is
indiscernible over A. (Hint: Clearly we may assume that if i,j € I and i # j
then b,, # b, (otherwise {b;| i € I} is a singleton) and that A is finite. For a
contradiction assume that the claim does not hold. Show that we may assume that
I =(R,<) and find ¢, a € A, n and k < n such that for all iy < ... < i, from R,

E o(biy, ..., b;, ,a) but
IZ _‘d)(bioa ey bik717bik+1a bikv bik+27 s bin7a)'

Let B = AU{b;| i € Q} and for every irrational r, let p, = t4(b,, B). Finally show
that if r # 1’ then p, # p,.)

(iii) Assume that {b;| i < w} and A are such that for all j < i < w t(b;, AU
Uk br) = t(bj; AU U, bk) and t(bi; AU, ., bj) does not split over A. Then
{bi| © < w} is indiscernible over A.

3.3 Theorem. If T is {-stable, |A| <& and I has power > &, then there is
J C I of power > £ such that J is indiscernible over A.

Proof. We show first:

Claim. There are B, C and p € S(C) such that

(i) ACBCC and |C| <&,

(ii) for all C”" O C' of power &, there is b € I such that ¢(b,C’") D p, b ¢ C’ and
t(b,C") does not split over B,

(iii) for all ¢ there is ¢’ € C such that t(¢/, B) = t(c, B).

Proof. Assume not. Then by induction on 7 < £, we define B; of power < &
the following way: By = A and for limit 7, B; = Uj;B;. Assume B; is defined.
Let C; O B; be such that for all ¢ there is ¢’ € C; such that t(¢, B;) = t(c, B;) and
|C;] < €. Let p € S(C;). Since (ii) above does not hold for B;, C; and p, there is
Cp 2 C; of power £ such that

10



(*) for every be I,if b & Cp and t(b,C,) D p, then t(b,C,) splits over B.
Let Bi+1 = UpGS(Bi) Cp.

Choose b € I so that b ¢ C¢. Then by (*), ¢(b, Biy1) splits over B; for all
i < & (choose p = t(b,C;)). This contradicts Exercise 1.6. o Claim.

Let B, C and p be as in the claim. For i < £ we define J; as follows: Jy = 0
and for limit ¢, J; = U;<;J;. Assume J; is defined. Then by (ii) in the claim, we
can find b € I such that b ¢ C' U J; and t(b,C U J;) 2 p does not split over B. Let
Jit1 = J; U{b}. By (iii) in the claim and Exercise 3.2 (ii) and (iii), it is easy to see
that J = U;.¢+J; is as wanted (exercise). o

3.4 Exercise*. Prove so called A-lemma: If A;, i € I, are finite sets and
{A;| i € I} is uncountable then there are uncountable J C I and B such that for all
i,j€J,ifi# j then A;NA; = B. (Hint: the theory of an infinite set is w-stable.)

3.5 Exercise. For all ¢(z,y) there is n < w such that for all indiscernible I
and a either

{bell Eoba)}f <n

or

{be Il = —¢b,a)}| <n.

(Hint: If not, then by compactness find indiscernible I and a such that [{b € I| |
o(b,a)}| = {b € I| = —¢(b,a)}| = w, and show that this implies that for every
infinite £ there is B such that |B| = ¢ and |S,(B)| = 2¢.)

3.6 Definition. Let I be an infinite indiscernible set. We define Av(I,A),
the average type of I over A, to be the set

{¢(z,a) ac A, gL, {bell = o a)}]=w}

3.7 Exercise.

(i) If I is an infinite indiscernible set, then Av(I, A) is consistent for all A.

(ii) Assume I is an infinite indiscernible set over A and a ¢ I. Then I U {a}
is indiscernible over A iff t(a,l UA) = Av(I,IUA).

(iii) Assume I and J are infinite and I U J is indiscernible. Then for all A,
Av(I,A) = Av(J, A).

3.8 Definition. Let I be an infinite indiscernible set over A. We say that 1
is based on A, if for all B D A, Av(I, B) does not fork over A.

The fact in the beginning of this section, may clarify the idea behind Definition
3.8, see also the proof of Theorem 3.9.

3.9 Theorem. Assume A C B and p € S(B) is non-algebraic and does not
fork over A. Then there is an infinite indiscernible set I based on A such that for
allbe I, t(b,B) =p.
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Proof. Let ¢ > |B| + w such that &7l = ¢. Then by Theorem 1.12, T is
&-stable and T -stable. Let A D B be a saturated model of power £T. Let A;,
i < &1, be an increasing continuous sequence of sets of power £, such that B C Ay
and U;¢+A; = A. For all i < &, choose a; € A so that t(a;, B) = p and
t(ai, A; U, a;) does not fork over A. By Lemma 2.4, if ¢ # j, then a; # a;. So
by Theorem 3.3, we may assume that {a;| i < T} is indiscernible over A.

We show that I = {a;| i < w} is as wanted. By Lemma 2.4, [ is infinite. So it
is enough to show that it is based on A. For this let C' O A. Clearly we may assume
that C' — A is finite and so we may assume also that for some i* < ¢+, C C A;-.
By Theorem 3.3, choose i, > i*, n < w, such that {a;, | n < w} is indiscernible
over C. Let J ={a;,| n <w}. Then a;, 4 C and by Exercise 3.7,

t(a;,,C) = Av(J,C) = Av(I,C).

3.10 Definition. Assume A C B and p € S(B). We say that p strongly
splits over A, if there are b; € B, i < w, such that {b;| i < w} is an infinite
indiscernible set over A and for some ¢, ¢(x,by), "p(x,b1) € p.

3.11 Lemma. Assume A C B and p € S(B). If p strongly splits over A,
then p forks over A.

Proof. Let ¢ and b;, * < w, be as in the definition of strong splitting. Let n
be the number given by Exercise 3.5 for ¢ and let

w(xayOM"ayn) :ﬁb(%yo)/\ /\ _'gb(mayz)

0<i<n

Without loss of generality we may assume (z, by, ..., by,) € p.

We show that (x,bg,...,b,) forks over A. For this let ¢ € S(A) be such
that ¢ U {¢} is consistent. For a contradiction, assume that there is finite A such
that ¢ € A and Ra(qU {¢},w) = Ra(q,w) = a. By Exercise 1.16, for i < w,
there are types ¢; € S(AU {b;| i < w}) such that ¢ C ¢;, Ra(gi,w) = a and
Y(2, b (nt1)s -+ bic(nt1)4n) € ¢i- By the choice of n, there is infinite I C w such
that ¢; | ¢, i € I, are pairwise contradictory. But then Ra(q,w) > a+ 1, a
contradiction. o

3.12 Lemma. Assume A C B C C, ¢ = (|A| +2)TI and B is ¢+ -saturated.
IfalaC,blaC and t(a,B) =t(b,B), then t(a,C) = t(b,C).

Proof. Assume not. Choose ¢(z,c), ¢ € C, so that = ¢(a,c) A =¢p(b,c). By
Exercise 1.6, choose A" O A such that A’ C B, |A’| < ¢ and t(c,B) does not split
over A'. For all i <w, choose ¢; € B so that t(c;, A'UU;_; ¢;) = t(c, AAUU;; ¢5)-
By Exercise 3.2 (iii), {c} U{¢;| i < w} is indiscernible over A’ and so also over A.
But then either t(a,C) or t(b,C) splits strongly over A. By Lemma 3.11, either
t(a,C) or t(b,C) forks over A, a contradiction. o
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3.13 Exercise. For all A C B, the set {t(a,B)| a € M, a l4 B} has power
< (1Al +2)Th*.

4. Finite equivalence relations

We write Aut(A) for the set of all automorphisms of M, which fixes A point-
wise.

4.1 Definition.

(i) We say that a relation R(x) of M is over A if it is definable by some formula
¢(x,a), a € A.

(ii) We say that ¢(x,b) is almost over A if the set {¢(M, f(b))| f € Aut(A)}
is finite. We say that p is almost over A, if every formula ¢ € p is almost over A.

(iii) We say that an equivalence relation E(z,y) in M is finite, if the number
of equivalence classes is finite. We write FE(A) for the set of all finite equivalence
relation over A.

4.2 Exercise.

(i)*: R=¢(M,b) is over A iff {p(M, f(b))| f € Aut(A)} is a singleton. (Hint
for <: First show that |= ¢(a,b) iff for all ¢ such that t(c,A) =t(b, A), = ¢(a,c).
Then use compactness.)

(ii) If E € FE(A), then for all a, E(x,a) is almost over A.

(iii)* Suppose a € acl(A). Find E € FE(A) such that for all b, bEa implies
b=a.

4.3 Lemma. ¢(z,b) is almost over A iff there is E(x,y) € FE(A) such that
Va,y(E(z,y) — (¢(z,b) < é(y,b))).
(In this case we say that ¢(x,b) depends on E.)
Proof. «: Clearly if t(c,A) = t(b, A), then ¢(z,c) depends on E. So the

cardinality of {p(M, f(b))| f € Aut(A)} is at most 2", where n is the number of

equivalence classes of F.
=: Now there is n < w, such that the set

{0(yi, a)| 0(yi,a) € £(b, A), i <n}UL{=Va(o(z,yi) < o(z,y;)) i <j <n}
is contradictory. Let n be minimal. Then there is 0(y, a) € t(b, A) such that
{0(yi,a)l i <n} U{-Va(o(z, yi) < ¢(2,y;)) i <j<n}

is contradictory.
We define E(z,y) to be

Vz(0(z,a) = (¢(x,2) < ¢(y,2))).
Clearly FE is an equivalence relation, ¢(z,b) depends on E and FE is over A.
For all ¢ < n — 1, choose b; so that = 6(b;,a) and for all i < j < n —
1, E Va(o(z,b;) < o(x,b5)). Forall w € n—1,let By = (e, (M, ;) N
Nie(n-1)—w "@(M,b;). Then for all w Cn—1 and ¢,d € Ey, = E(c,d) (exercise).
So the number of equivalence classes of E is < 2"~ !. o
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4.4 Exercise.

(i) If ¢(x,b) is almost over A, then there are F € FE(A), n < w and a;,
i < n, such that = Vx(¢(x,b) < VienE(x,0a;)).

(ii) If ¢(x,b) is almost over A and A is a model, then ¢(x,b) is over A. (Hint:
Every equivalence class of a finite equivalence relation over A is represented in A.)

4.5 Lemma.

(i) Assume p € S(B) does not fork over A C B. If p’ is almost over A and
pUp’ is consistent, then pUp’ does not fork over A.

(ii) Assume q € S(A), p is almost over A and qU p is consistent. Then for all
finite AJ RA(q Up, w) = RA(qa w) :

Proof. (i): It is easy to see that if ¢;, i < n, are almost over A then so does
Ni<n®i. So we may assume that p’ = {¢(x,b)}. Let ¢(x,b) depend on E € FE(A)
and choose a so that it realizes p and = ¢(a,b). Clearly pU{E(z,a)} F pU{¢(x,b)},
and so by Lemma 2.5, it is enough to show that pU{FE(z,a)} does not fork over A.

Let a;, i < n, be a maximal sequence such that for all i < n, t(a;, B) = t(a, B),
and for i # j, =E(a;,a;). Then p - V,c,E(x,a;). By Lemma 2.6, there is p C
p* € S(BUlJ,.,, a:) such that it does not fork over A. Now E(z,a;) € p* for some
i < n. Since t(a;, B) = t(a, B), the claim follows (there is f € Aut(M/B) such that
flai) = a).

(ii): As above, we may assume that p = {¢(z,b)} and choose E € FE(A) and
a so that ¢(z,b) depends on E and a realizes ¢Up. Then qU {E(z,a)} F qUp
and so by Exercise 1.9 (ii), it is enough to show that

(*) Ra(qU{E(x,)},w) = Ra(g,v).

As above we can find a;, ¢ < n, such that for all i < n, t(a;, A) = t(a, A) and
qF VienE(x,a;). By Exercise 1.9 (ii) and Theorem 1.15, there is ¢ < n such that
Ra(qU{E(z,a;)},w) = Ra(q,w). Since t(a, A) = t(a;, A), (*) follows. o

4.6 Exercise. If p is consistent and almost over A then p does not fork over
A (Hint: Choose a so that it realizes p and apply Lemma 4.5 (i) to t(a, A)Up.)

4.7 Lemma. For all ¢(z,y) there is m < w such that for all infinite indis-
cernible sets I = {b;| i <w} based on A and n > m,

on(e, )=\ (Niewd(z,b))

wC2n—1, |w|=n
is almost over A.

Proof. Let m be the number given by Exercise 3.5 for ¢ and n > m. Let
I = {b;] i < w} be an infinite indiscernible set based on A. For a contradiction,
assume ¢, (z,I) is not almost over A. Let & = ((|A| + 2)IT)**. By compactness,
we can find I;, i < &, copies of I over A such that ¢,(x,I;) are pairwise non-
equivalent. So for all ¢ < j, we can choose a;; such that = ¢, (a;j;, ;) AN—dp(aij, 1;).
Let B= AU UKJ- ¢ @ij- Then for all i <j <¢, Av(1l;, A) = Av(l;, A) and by the
choice of m, Av(l;, B) # Av(l;, B). Since I is based on A, for all i < &, Av(l;, B)
does not fork over A. This contradicts Exercise 3.13. o
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4.8 Lemma. Assume A C B and B is (|A|+w)™ -saturated. If p,q € S™(B),
p # q and both p and q do not fork over A, then there is E € FE(A) such that

p(z)Uq(y) F —E(z,y).

Proof. Choose ¢(z,b), b € B, such that ¢(x,b) € p and —¢(z,b) € q.

Claim. There is ¢(z,d), d € B, such that it is almost over A and ¢ (z,d) €
and —(z,d) € q.

Proof. If t(b, A) is algebraic, then we can let ¥(x,d) = ¢(z,b). So we may
assume that ¢(b, A) is not algebraic. By Theorem 3.9, let I C B be an infinite
indiscernible set over A such that it is based on A and for all ¢ € I, t(c, A) = (b, A).
Clearly we may assume that b € I. By Lemma 4.7, for some n, ¢,(x,I) is almost
over A. By Lemma 3.11, ¢, (x,I) € p and —¢,(z,I) € q. o Claim.

By Lemma 4.3, choose E € FE(A) so that ¢(z,d) depends on E. Clearly FE
is as wanted. o

4.9 The finite equivalence relation theorem. If p,q € S™(B), p # ¢
and both p and q do not fork over A C B, then there is E € FE(A) such that

p(z)Uq(y) F ~E(z,y).

Proof. Assume not. Then there are a and b such that a realizes p, b realizes
q and for all F € FE(A), = E(a,b). Let C O B be (JA| + w)* -saturated model.
By Exercise 4.2 (ii), Lemma 4.5 (i) and Lemma 2.6, there are a’ and b’ such that
a’ realizes p, b realizes q, a’ {4 C, b |4 C and for all E € FE(A), = E(d’,a) A
E(b',b). Clearly this contradicts Lemma 4.8. o

4.10 Definition.
(i) We define stp(a, A), the strong type of a over A, to be the set

{E(z,a)| E € FE(A)}.

By stp(a, A) = stp(b, A) we mean, that for all E € FE(A), = E(a,b).
(ii)) We say that p € S(A) is stationary, if for all a,b and B D A the following
holds: if t(a,A) =t(b,A) =p, ala B and bl B, then t(a,B) =1t(b,B).

Notice that stp(a, A) is not over A (but it is almost over A).

4.11 Exercise.

(i) If A C B, stp(a, A) = stp(b,A), ala B and b |4 B, then t(a, B) = t(b, B)
(in fact stp(a, B) = stp(b, B), see Lemma 10.2 (iii)).

(ii) stp(a, A) F t(a,acl(A)).

(iii) If A is a model, then t(a, A) - stp(a,.A). (Hint: Exercise 4.4 (ii).)

(iv) If A is a model, then every p € S(A) is stationary.

(v) For all A C B and a, there is b such that stp(b, A) = stp(a, A) and b |4 B.
(Hint: Exercise 4.6 and Lemma 2.6.)

(vi) Suppose (a;)i<. Is indiscernible over A and E € FE(A). Show that
E(a;,a;) holds for all i,j < w and conclude that if ig < ... < i, <w and jy < ... <
Jn < w, then stp(Ur<nai, [A) = stp(Ux<na;, /A).
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5. Further properties of forking

In this section we collect the rewards of the hard work done in the two previous
sections.

5.1 Theorem. Forall A, a and b, a4 b implies b4 a.

Proof. Suppose not. By Lemma 2.6 and Theorem 3.3, we can find sequences
a; and b;, i < w, so that ag = a, bg = b, (a; Ub;);<, is indicernible over A and for
all i <w, b; ba U;-;(a; Ubs) and a; La biUU;_;(a; Ub;). By Exercise 4.11 (vi),
stp(a;/A) = stp(ag/A) for all i < w and thus by Exercise 4.11 (i), t(a1/AUby) =
t(ap/AUby) and so by L4 ai. Clearly by L4 ag. This contradicts the fact that
(a; Ub;)i<y is indiscernible over A. o

5.2 Exercise.

(i) If aUbls B, then als B.

(ii) For all A C B and C, there is an automorphism f € Aut(A) such that
for all a € C, stp(f(a),A) = stp(a, A) and f(a) |4 B. (Hint: For every singleton
a € C, choose a new constant c,. For a = (ag,...,ay), write ¢, = (Cagyy -y Ca,_, ) -
By (v), for a € C, choose b, so that stp(b,, A) = stp(a, A) and b, L4 B. Then, by
(i) above, show that the following set is consistent:

{E(ca,a)l a € C, E € FE(A)} U{d(ca,d)| ¢(x,d) € t(ba, B)}.)

Exercise 5.2 (i) allows us to write for all sets A, A |p C if for all finite sequences
a€ A, alp C since now, by the exercise, if A =rng(a), alp C iff Alp C.

5.3 Lemma. Assume A C B and a |a B. Then for all finite A and
1<¢<w,

RA(t(a’B)vg) > RA(Stp(a7A)7£)'

Proof. We prove only the case £ = 2, the other cases are similar. In order to
simplify the notation we assume that A = {¢}. By Exercise 1.13, Ry(stp(a, A),2) =
n < w. So by compactness, for all n € 2", there is a, such that

(i) Stp(&n, A) = stp(a, A)»

(ii) for all m < n and & € 2™, there is be such that if n,n’ € 2", n [ m =171
m = & and n(m) # n'(m), then k= ~(6(a, be) <+ d(ay,be)).

By Exercise 5,2 (ii), we may assume that for all n € 2", a, |4 B. But then by
Exercise 4.11 (i), for all n € 2™, t(a,, B) = t(a, B) and so (ii) above, implies that
Ra(t(a,B),2) >n. o

5.4 Theorem. Assume A C B. Then a |4 B iff for all finite A,
RA(t(av B)? (,U) = Ra (t(au A)7 w)'

Proof. From right to left the claim follows immediately from the definition of
forking and Exercise 1.9 (ii). We prove the other direction: By Exercise 1.9 (ii), it is
enough to show that for all finite A, Ra(t(a,B),w) > Ra(t(a,A),w). By Lemma
5.3, it is enough to show that for all finite A, Ra(stp(a,A),w) > Ra(t(a, A),w).
This follows from Lemma 4.5 (ii) (and Exercise 1.9 (ii)). o
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5.5 Exercise.
(i) Assume AC BC C. Then ala C iff ala B and alp C.
(ii)Show that aUb g C iff a lp C and blpy, C.

5.6 Exercise.

(i) For every B and a, there is A C B of power < |T|* such that a |4 B.
(Hint: By Exercise 1.9 (v), for every finite A there is finite Ax C B such that
RA(t(aa AA)a("')) = RA(t(aa B),CU) )

(ii) There are no increasing continues sequence A;, i < |T|*, and a such that
a fa, Aigr forall i.

We finish this section by giving two characterizations for non-forking.
We prove the following lemma for Exercise 5.8 (ii) below.

5.7 Lemma. Assume AC B and aUb s B. Then a A b iff a lpb.

Proof. From right to left this follows immediately from Exercise 5.5 (i). So we
prove the other direction. By aUb |4 B and Theorem 5.1, B |4 aUb. By Exercise
5.5 (i), B Laup a. By Theorem 5.1, a Laups B. By Exercise 5.5 (i) and a |4 b,
ala BUb. By Exercise 5.5 (i) again, a g b. O

5.8 Exercise.

(i) Assume that A is a model, for all i < j < w, t(a;, A) =t(a;, A) and for all
i <w, a; a4 Ujciaj. Show that {a;| i < w} is indiscernible over A. (Hint: It is
enough to show that {a;| ¢ < w} is order indiscernible over A.)

(ii) If for all i < j < w, stp(a;, A) = stp(aj, A) and for all i < w, a; La Uj<ia;,
then {a;| i < w} is indiscernible over A. (Hint: By Exercise 5.2 (ii), choose a model
A D A so that A 4 U;<wa; and apply Lemma 5.7 and (i) above.)

(iii)* Why cannot we prove (ii) as (i) was proved?

5.9 Definition. We say that A is strongly & -saturated, if for all a and A C A
of power < &, there is b € A such that stp(b, A) = stp(a, A).

5.10 Lemma. Assume { > |T|. If A is {-saturated, then A is strongly
& -saturated.

Proof. Let A C A be of power < ¢ and a arbitrary. Choose a model B C A
of power < ¢ such that A C B. Choose b € A so that t(b, B) = t(a, B). By Exercise
4.11 (iii), b is as wanted. o

5.11 Theorem. Assume A C B. Then a |4 B iff for all C O B there is b
such that t(b, B) = t(a, B) and t(b,C') does not split strongly over A.

Proof. From left to right this follows from Lemmas 2.6 and 3.11. We prove the
other direction: For a contradiction assume a 4§, B. Let { = |T|+ |A] and C O B
be a &1 -saturated model. Choose b so that ¢(b, B) = t(a, B) and t(b,C) does not
split strongly over A. Since a {4 B, we can choose c € B C C sothat b {4 c.

For all + < £, choose ¢; € C so that stp(c;, A) = stp(c, A) and ¢; |4 cUUjQ- cj .
Then by Exercise 5.8 (ii), {c} U {¢;| i < £1} is indiscernible over A. Since ¢(b,C)
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does not split strongly over A, b [, ¢; for all i < £T. Because ¢; Ja |J
b } AU e i (exercise). This contradicts Exercise 5.6 (ii). o
Jj<i

We write A\(T") for the least cardinal A\ such that T is A-stable.

j<i Cio

5.12 Exercise”.

(i) Assume A is A\(T)-saturated model and B O A. Then a | 4 B iff there is
A C A of power < A\(T) such that t(a, B) does not split over A. (Hint: Notice that
by Theorem 5.11 and Exercises 1.6 and 4.11 (iv), it is enough to show the following:
If A C A issuch that |A| < AX(T') and t(a,.A) does not split over A, then there is b
such that t(b, A) = t(a, A) and t(b, B) does not split over A. Furthermore, if c is
another such sequence, then t(c, B) = t(b, B). This not easy.)

(ii) Suppose I is an infinite indiscernible sequence and J is such that I U .J is
indiscernible. Show that for all a € J, a |; J —{a}.

(iii) Assume I is an infinite indiscernible set. Show that Av(I,1U A) does not
fork over I and that Av(I,I) is stationary. (Hint: Show that it is enough to prove
that if t(a,I) = Av(I,I) and t(a,I Ub) # Av(I,I Ub) then a J; b. For this,
for a contradiction, assume that this does not hold and choose a;, i < w, so that
tlai, TUaUl,;a5) = Av([,TUaUlJ,_; a;) and a; iIU‘lUUKi“j b. Then prove a

contradiction using Exercise 3.5 and basic properties of non-forking.)

(iv) Prove that the claims in Example 2.2 are true. (Hint for (i): Clearly we may
assume that a ¢ A. Let q' be the set of formulas E,(x,b) such that b € B and there
is ¢ € A, such that = E,,(b,c)\E,(a,c). Let ¢ =t(a, A)Uq' U{—E,(z,b)| Ey(z,b) &
¢dYyU{x # b b € B}. Show first that if p € S(B) and q £ p, then p forks over
A. Then show that there is exactly one p € S(B), such that q C p. Finally apply
Lemma 2.6. Notice that above we proved that every p € ST(A) is stationary.

Hint for (ii): As (i), except now the type t(a, A) need not be stationary. So
instead of one, define a set Q) of types q € S(B) such that if p € S(B) — @ then
p forks over A and if some q € Q) forks over A, then every q € ) forks over A.
Notice that if t(a, B) forks over A C B and f € Aut(A), then t(f(a), f(B)) forks
over A.)

5.13 Definition. Assume p € S(B). We say that ¢ (y) defines p | ¢(z,y),
if for all b € B, ¢(x,b) € p iff =1(b). If in addition, v is almost over A C B, we
say that p | ¢ is definable almost over A. If for all ¢, p | ¢ is definable almost over
A, then we say that p is definable almost over A.

5.14 Theorem.

(i) If p € S(B) does not fork over A C B, then p is definable almost over A.

(ii)) p € S(B) does not fork over A C B iff for all C DO B, there is ¢ € S(C)
such that p C q and q is definable almost over A.

Proof. (i): If p | A is algebraic, then the claim is easy (if a realizes p, then
¢(a,y) is almost over A). So we assume that p [ A is not algebraic. By Lemma
2.4, p is not algebraic. By Theorem 3.9, choose an infinite indiscernible I based on
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A so that for all a € I, t(a,B) =p. Let ¢ = ¢(z,y) be arbitrary. By Lemma 4.7,
there is n such that ¢, (I,y) is almost over A. Trivially ¢, (I,y) defines p | ¢.

(ii): From left to right this follows from Lemma 2.6 and (i). For the other
direction, let & = |T| + |A|]. Choose &' -saturated C O B and ¢ 2 p definable
almost over A. For a contradiction assume that ¢ forks over A. Choose ¢(zx,b) € ¢
so that it forks over A. For i < &7, choose b; € C so that stp(b;, A) = stp(b, A)
and b; L4 Uj<;b;. Since ¢ [ ¢ is definable almost over A and stp(b;, A) = stp(b, A),
¢(z,b;) € q for all 4 < £T. Let a realize ¢. Then for all 4 < T, a J4 b;. Because
bi La Ujcibj, a fﬁAuU( b, b;. This contradicts Exercise 5.6 (ii). o

Theorem 5.14 (ii) is often used as a definition of forking. Notice that if A is a
model and A C B, then a |4 B iff t(a, B) is definable over A.

5.15 Exercise*.

(i) If B is a model and p € S(B) is definable almost over A C B, then for all
C D B, there is ¢ € S(C) such that p C q and q is definable almost over A. (Hint:
Notice that if r € S(C) is definable over A’ C B and r | B = p, then r is definable
almost over A and with the same defining formulas as p.)

(ii) If B is a model, then p € S(B) does not fork over A C B iff p is definable
almost over A.

5.16 Definition. Suppose A C B. We say that t(a, B) Lascar splits over A
if there are b,c € B such that stp(b, A) = stp(c, A) but t(b,AUa) # t(c,AUa).

5.17 Exercise*. Suppose A C B. Show that a |4 B iff for all C O B, there
is b such that t(b, B) = t(a, B) and t(b,C) does not Lascar split over A.

6. An example of the use of forking

To give an example of the use of forking we prove a structure theorem for a class
of theories. Since our knowledge of classification theory is still somewhat limited,
the class must be very simple. Our class will be the class of theories which are
trivial, superstable and unidimensional. An example of such theory is the theory of
an equivalence relation which says that the number of equivalence classes is infinite
and each equivalence class has size n, n < w. Although our class of theories is as
simple as one can think of, in the proof of the structure theorem, many ideas from
the proofs of 'the proper structure theorems’ are present.

6.1 Definition.

(i) A theory is superstable if it is stable and there are no A;, i < w, and a such
that for all i <w, A; C Ajy1 and a 4, Aig1-

(ii) A stable theory is trivial if for all a,b,c and A, a f, bUc and b |4 ¢
imply that a f4 b ora [, c.

(iii) Assume p,q € S(A). We say that p is almost orthogonal to q if for all a
and b the following holds: If a realizes p and b realizes q then a | 4 b. We say that
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p is orthogonal to q if for all a,b and B O A the following holds: If a realizes p, b
realizes q, a lo B and bl B then a | b.

(iv) A stable theory is unidimensional if for all A and p,q € S(A), the following
holds: If p and q are not algebraic, then p is not orthogonal to q.

6.2 Exercise*.

(i) Show that T» is superstable but T,, is not.

(ii) Assume T = T,,. Show that non-algebraic types p,q € S(A) are orthogonal
iff there are n < w and a € A such that E,(x,a) € p but E,(x,a) & q or vice versa
(i.e. p # q). Conclude that T,, is not unidimensional.

(iii) Show that T,, is trivial. (Hint: Modify Example 2.2 so that it holds for all
finite sequences a.)

6.3 Fact. ([Hr]) Every unidimensional stable theory is superstable.

6.4 Lemma. Assume T is trivial. If p,q € S(A) are almost orthogonal, then
they are orthogonal.

Proof. Assume not. Choose a,b and B O A so that a realizes p, b realizes ¢,
a Jfpband

(*) ala B and b4 B.
Then a }, BUb and so triviality and (*) imply that a {4 b, a contradiction. o

6.5 Lemma. Assume T is superstable and C' C B. If C # B, then there is
a singleton b € B — C' and ¢(z,c), ¢ € C, such that |= ¢(b,c) and for all b’ € B
and ¢ € C, if t(c,0) =t(c,0), E o(,) and b’ f. C, then V' € C.

Proof. If not then we can easily find ¢;(x,¢;), i < w, such that for all i < w,
Nj<i®i(z,c;) is consistent and ¢;(z,c;) forks over Uj<;c;. Clearly this contradicts
the assumption that 7' is superstable. o

6.6 Definition. Assume k is a cardinal, not necessarily infinite. We write
A C, B, if for all C C A of power < k and b € B, there is a € A such that
t(a,C) =t(b,C).

6.7 Exercise™.

(i) For all B and regular (infinite) k, there is A such that A C, B and
1Al < &7

(ii) If B is a model and A C,, B, then A is a model.

6.8 Theorem. Assume T is trivial, superstable and unidimensional and B
is a model. Choose any A Cy B and a; € B— A, i < a, so that (a;)i<a IS a
maximal sequence satisfying the following: for all i < o, a; la Uj<iaj. Then

B=acl(AUulU,;., ai).

Proof. Let C' = acl(AU|J,_, ai). For a contradiction, assume C' # B. Choose
b and ¢(z,c) as in Lemma 6.5. Choose ¢’ € A so that t(¢/,0) = t(c,D). Since C is
algebraicly closed, t(b, C) is not algebraic. So we can find a ¢ C such that = ¢(a, )
and a |4 C. Then t(a,C) is not algebraic and since T is unidimensional, t(a,C)
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is not orthogonal to ¢(b,C'). By Lemma 6.4, we may assume that a f- b. Choose
Y(x,d,b), d € C, so that it forks over C' and | ¢(a,d,b). Since B is a model, we
can choose a’ € B so that = ¢(a’, ') A(a’,d,b). Then o' f- b and so o’ & C.
So by the choice of ¢(x,c), a’ | C. Since ¢ € A, a’ |4 C. This contradicts the
maximality of (a;)i<q. O

6.9 Exercise*. We write I(k,T) for the number of non-isomorphic models
in {AET||A| =«k}. Assume T is trivial, superstable and unidimensional theory.
Then for all 5, IRg,T) < |w + B\Q‘TI). (Hint: Use Theorem 6.8 and show first
that the isomorphism type of B is determined by the isomorphism type of A U
Ui<q @i- Show then that if A is a model then the isomorphism type of AU, a;
is determined by the isomorphism type of A and the cardinals k,, p € S(A), where
kp = |{i < a| a; realizes p}|. Finally count the number of possible choices of A and
(Kp)pes(a), in the case A is chosen to be as small as possible.)

Notice that usually |w + 6|(2|T‘) is very small compared to Nz, and so it is also
very small compared to 2%, which is the maximal number of models any theory
can have in power Ng.

6.10 Fact. Our structure theorem and the estimate of the rll}l‘mber of models
are very weak (in every cardinality the number of models is < 2(2") ). The idea in
this section was to demonstrate the use of forking.

6.11 Exercise*. Find p and ¢ such that p is almost orthogonal to q but
not orthogonal to q. (Hint: Look at types over the empty set in the theory of
the following model A: The domain of A consists of complex numbers C and
a copy C’ of complex numbers. On C we have the field structure of complex
numbers (see Appendix D) and on top of this the affine action of the additive group
of complex numbers on the copy C’ i.e. a funcion a such that for ¢ € C and x € C’,
a(c,z) =x+ ¢ € C', where ¢ is ¢ in the copy. Start by showing that if ¢ € C' and
x € C', then ¢ |y x by showing that for all ¢ € C', there is an automorphism f. of
A such that f. | C =idc and for all x € C', f.(x) =a(c,z).)
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PART II: PRIME MODELS

In many cases, as in section 6, by using the independence notion studied in
the previous part, we can find a ’base’ for every model of T'. To get a structure
theorem, we need to show that this ’base’ determines the structure of the model.
Prime (primary) models provide a method to do this. In section 6, we assumed
triviality in order to be able to use algebraic closure instead of prime models.

7. General isolation notion

We will construct the required prime models by using isolation as a tool. It
depends on the properties of T', which isolation notion F' is the right one. So in
order to avoid repeating same arguments several times, our approach is axiomatic.
When reading the axioms, one may keep in his mind the following two examples:
(p, A) € F¥ if (p, A) € Py (see below) and p [ AFp and (p, A) € F)Jf if (p, A) € P
and p does not fork over A. In the next section we give more examples.

Let A be an infinite cardinal and Py be the class of those pairs (p, A) such that
|A] < A and for some B O A, p € S(B). Let F\ C P, be such that Axioms I-IX
below are satisfied. We write (¢(C, B),A) € F) if for all ¢ € C, (t(c,B),A) € F}.

Ax I If rng(a) = rng(b), then (t(a, B),A) € Fy iff (t(b,B),A) € F\ and for
all automorphisms f, (p, A) € F\ iff (f(p), f[A]) € Fi.

AxIL: If a € AC B and |A| < A, then (t(a, B),A) € Fy.

AxIII: If AC B C C Cdom(p), |B] < A and (p,A) € Fy, then (p | C,B) €
F.

Ax IV: If (t(aUb, B),A) € F\, then (t(a,B),A) € F).

Ax V: If |C| < X and (t(aUC, B),A) € Fy, then (t(a, BUC),AUC) € F).

Ax VI: It A,BC C, (t(b,CUa),B) € Fy and (t(a,C),A) € Fy, then (t(a,CU
b), A) e F).

Ax VII: If A C B, (t(a,BUC),AUC) € F\ and (¢(C,B),A) € F)\, then
(t(aUC’,B),A) e F\.

Ax VIIL: If B;, i < §, is increasing sequence of sets, p € S(U;<sB;) and for all
i<d, (pl B;,A) € Fy, then (p,A) € Fy.

Ax IX: If (p,A) € F\ and dom(p) C B, then there are A’ C B and ¢ € S(B)
such that p C ¢ and (¢, A’) € F).

Notice that () satisfies all the axioms except Ax IT and {(¢(a, B), A) € P\la € A}
satisfies them all. So the axioms alone do not guarantee a good behaviour of an
isolation notion.

7.1 Definition.

(i) We say that (A, (a;, B;)i<a) is an Fy-construction over A if for all i < «,
(t(ai, Ai), B;) € Fx, where A; = AU, _; a;. In addition, unlike what is the usual
definition, we require that for all i < «, a;A; = (). This simplifies some proofs and
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by Ax IV it is without loss of generality. We say that C is F)-constructible over A
if there is an F)-construction (A, (a;, B;i)i<a) over A such that C' = AUJ,_, a;.

(ii)) We say that C' is (Fy,k)-saturated if for all B C C of power < k and
p € S(B) the following holds: if for some A, (p, A) € Fy, then p is realized in C'.
We say that C' is F-saturated if it is (F), |C|T)-saturated.

(iii) We write p(Fy) for the least cardinal p such that for all kK > p and C, if
C' is (F, p)-saturated then it is (Fy, k)-saturated. If such p does not exist, then
we write u(Fy) = oo.

(iv) We say that C is F)-primary ((Fy,k)-primary) over A if it is F)-con-
structible over A and F) -saturated ((F), k)-saturated).

(v) We say that C' is F)-primitive over A if for all F-saturated B D A there is
an elementary map f :C — B such that f [ A=1ids. We say that C is F)-prime
over A if it is F -primitive and F) -saturated.

7.2 Exercise.

(i) Show that for all A and k, there is an (F)\,k)-primary set over A and if
p(Fy) < oo then there is also an F -primary set over A. (Hint: Use Ax IX.)

(ii) Show that if C' is F-constructible over A, then it is F-primitive over A
and so F)-primary sets over A are F)-prime over A.

7.3 Fact. ([Sh]) In many cases, F)-prime models are F)-primary. E.g. If T
is superstable, then for all A\ and A, FY -prime models over A are FY -primary over
A. (For FY, see section 10.)

Notice that from Exercise 7.2 (ii) it follows that if (A, (a;, B;)i<a) is an Fy-
construction over A, for all i+ < j < a, a; # a; and C' O A is an infinite F)-
saturated set, then o < |C]*.

Notice also that in Exercise 7.2, only axioms AX I and Ax IX and the assumption
p(Fy) < oo were used. (In (ii) only Ax I is needed.) In most cases this exercise
together with Lemma 10.7 and Exercise 10.9 are all we need to know about primary
models to prove a structure theorem. However, if all the axioms are satisfied and A
is regular, then a lot more is known about F)-primary models. In the case of our
structure theorem in section 11, all the axioms are satisfied and A = w, which is a
regular cardinal and this is used in order to make the proof short. For an alternative
way of proving a structure theorem, see [HS2]. See also Exercise 11.9 (i).

Assumption. From now on in this section, we assume that \ is regular.

Let (A, (a;, B;)i<a) be an F)-construction. We say that X C « is closed if for
all i € X, B; C AUU,cx <1 a;-

7.4 Lemma. If (A, (a;, B;)i<a) Is an Fy-construction and X' C « is of power
< A, then there is closed X C « such that X' C X and |X| < A.

Proof. We construct a tree (forest) R such that it’s first level consists of ele-
ments of X’ and if ¢ € R then the set of the immediate successors of i is (a copy of)
of a minimal set that satisfies the requirement of X for ¢ in the definition of closed
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set. Clearly R does not have infinite branches and since A is regular, each level of
R is of power < A. But then |R| < A (if A = w use Konig’s lemma). Clearly R is
closed. o

7.5 Definition. We say that C is F-atomic over A if for all ¢ € C, there is
B C A such that (t(c,A), B) € F}.

7.6 Theorem. (A regular) If C' is F)-constructible over A then it is F) -
atomic over A. (We in fact prove more, see Claim below.)

Proof. Let (A, (a;, B;)i<a) be an F)-construction of C'.

Claim. If X C « is closed and |X| < A, then there is B C A such that
(t(UieXai, A), B) e Fy.

Proof. We prove this by induction on i = U{j + 1| j € X} < a. The case i is
limit is left as an exercise. (Hint: Use Ax III, the assumption that A is regular and
the fact that for all j <1, XNy is closed.) So assume that the claim holds for i. We
prove it for i+ 1. For this let X C « be closed, |X| < A and U{j+1|j € X} =i+1.
Let D = U{qj|j € X Ni}. By the induction assumption, there is B’ such that
(t(D,A),B’) € F\. Let B=B'U(B;NA). By Ax VII and Ax III, B is as wanted.
o Claim.

Now let ¢ € C'. Choose a € A and b € C — A such that ¢ = aUb. By Ax
IV, we may assume that there is finite X’ C « such that b = U;cx/a;. By Lemma
7.4, there is closed X C « such that X’ C X and |X| < A. By Claim, we can
choose B’ so that (t(b,A),B’) € Fy. Let B = B’ Ua. By Ax VII, Ax II and Ax
III, (t(e,A),B) € F)\. o

7.7 Lemma. Let (A, (a;, B;i)i<a) be an Fy-construction.

(i) For all B < a, (Ag, (ai, Bi)p<i<a) Is an Fx-construction (Ag = AU, 45 @i ).

(ii) If D € AU, a; is of power < X, then there are C;, i < a, such that
(AU D, (a},C;)icqa) is an F\-construction where a, = a; — D.

(iii) If D € AUlJ,_,, a; has power < A\, then AU D is F)-constructible over
A.

<«

Proof. (i) is immediate and (iii) is left as an exercise, so we prove (ii): By (i),
Theorem 7.6, Ax IIT and the assumption that A is regular, for all i < a we can find
C} such that (t(a; UD, A;),C)) € Fy. Let C; = C/UD. Then by Ax IV and Ax V,
(t(a;, A; U D), Cz) el,. o

7.8 Exercise. For | € {1,2}, let (A, (al, Bl);.o:) be an F)-construction of
an Fy-primary set C' over A'. Assume that f is an elementary function such that
A Cdom(f) C CY, A2 Crng(f) C C?%, |[dom(f)— At| < X and |rng(f) — A% < \.

(i) For all i < al, there is an elementary function g O f such that dom(g) =
dom(f)Ua} and rng(g) C C?. (Hint: Use Lemma 7.7 and Theorem 7.6.)

(ii) For all i < o', there is an elementary function g O f and strongly closed
X Ca' and Y C o such that i € X, dom(g) = A' UU,cx a; and rng(g) =
A?2U;ey @? . (Hint: Use (i) and Lemma 7.4.)
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7.9 Lemma. Let (A, (a;, B;i)i<a) be an F)\-construction and s :  — a be
one-one and onto. If for all i < B, By € AU, as(j), then (A, (as), Bs@))i<p)
is an F'\ -construction.

Proof. Let i < . For all j < «a, we write D; = AU By;) U Hasm| k <
i, s(k) < j}. By induction on j < «, we show that (f(ass), Dj), Bs@y) € Fx. This
is enough, since Do = AU J,; as)-

If j < s(i)+1, then D; € AU, ;) ar and so by Ax III, the claim follows.
If j is limit, then the claim follows from the induction assumption and Ax VIII. So
assume j = k+ 1 and k > s(i). We may also assume that D; = Dy U {a}, since
otherwise there is nothing to prove. Then there is m < ¢ such that s(m) = k. By
the assumption on s, By C Dy. Then by Ax III, (t(ax, Dx U ags)), Bx) € Fx. By
the induction assumption and Ax VI, the claim follows. o

7.10 Lemma. Forl € {1,2}, let (A, (al, B});<a) be an Fy-construction of an
F\-primary set C' over A. Assume that f is an elementary function and X' C o,
i € {1,2}, are closed sets such that dom(f) = AUU,cx1 ai, Tng(f) = AUU,;cx2 07
and f | A=1idy. Then for all i* < o', there are an elementary function g O f and
closed Y' C ol such that X' U{i*} CY', X2 CY?, dom(g) = AU;cy1 0} and
rng(g) = AUU, ey a?.

Proof. Clearly we may assume that i* ¢ X* For [ € {1,2}, let 3’ be the order
type of X! and +' be the order type of o' — X'. Let 6' = B/ 44! and s' : ' — o' be
such that for all 7 < 3%, s!(i) is the i:th member of X! and for all i < ~*, s'(8' +1)
is the 7:th member of a! — X!. Then s! and s? satisfy the assumptions of Lemma
7.9 and so by Lemma 7.9, 7.7 (i) and Exercise 7.8 (ii), we can find an elementary
function ¢ O f and closed Z! C §' — B! in the sense of the Fy-construction

(AU U asl(j)v(ail(i)7Bél(i)>Bl§i<6l)
j<pt

such that (s')~'(i*) € Z1, dom(g) = dom(f)UU;c 1 ail(i) and rng(g) = rng(f)U
Uicz2 a§2(i)' Let Y! = X' U s![Z!]. Clearly, if the sets Y are closed, g and Y!,
[ € {1,2}, are as wanted.

Solet i € Y! and a € B! be an element. We needs to show that a € AU
Ujevt,j<i aé. If
(YicX orac AU Ujesl[Zl],j<ia§'7
there is nothing to prove. So we assume that (*) is not true. By the definition
of F)\-construction there is 7 < ¢ such that a € aé. By the choice of Z! there is
k € Z' such that a € alsl(k). By the definition of F\-construction, j = s'(k), a
contradiction. o

7.11 Theorem. (\ regular) F)-primary sets over A are unique up to iso-
morphism over A.
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Proof. Let (A, (b;, Bi)i<g) be an Fy-construction of an F)-primary set B over
A and let (A, (¢i,Ci)icy) be an Fy-construction of an Fy-primary set C' over A.
By induction on ¢ < a = maz{f,v}, we choose elementary functions f; and closed
sets X; C 8 and Y; C v such that

(i) fo=1da, Xo=Yy =10,

(ii) forall i < j, fi C f;, X; CX; and Y; CYj,

(iii) dom(fi) = AUUex, bx and rng(fi) = AUU,ey, ks

(iv) if i < 8, then i € X; 41 and if i <, then i € Y 41.
If 4 is limit, we let f; = Uj<if;, Xi = U;j«;X; and Y; = U;;Y;. Clearly these are
as wanted. If ¢ = j 4+ 1, then the existence of f;, X; and Y; follows from Lemma
7.10. Clearly f, is an elementary function from B onto C and f, [ A=1ids. o

8. Examples of isolatation notions

We recall that we have assumed that 7' is stable.

8.1 Definition.

(i) As already mentioned, we define Fy to be the set of all pairs (p, A) € Py
such that p [ A+ p.

(ii) We define F to be the set of all pairs (p, A) € P\ which satisty the following:
there is ¢ C p | A such that |q| < A and ¢ p.

Notice that F!-isolation is the usual isolation notion.
8.2 Lemma. If A > |T|, then F} satisfies Ax IX.

Proof. Assume not. Let p, A and B exemplify this. Then for all n € 25*, we
can find p, and A, C B such that

(1) by =0Dn fA and A() = A,

(ii) for all n, p, € S(Ay), Ay~ = Ap~1) and |4, (o) — 4y| < w,

(iii) if » is an initial segment of &, then p, C pe,

(iv) if o = length(n) is limit, then p, = Ug<apPnig,

(v) for all 7, p, (o) is contradictory with p, ().
By Exercise 1.11 (ii), we can find n € 2* such that for all a < X there is a singleton
A for which RA(pyrat+1) [ A,2) < Ra(pyra [ A,2). Since A > |T|, there are
infinite X C A and a singleton A such that for all o € X, RA(pyia+1) | A,2) <
RA(pnia | A,2), a contradiction. o

8.3 Exercise.

(i) Show that FY satisfies the axioms Ax I-VIIL

(ii) Show that F} satisfies the axioms Ax I-VIII and if T is \-stable, then it
satisfies also Ax IX. (Hint for Ax IV: If q(x,y) F t(a Ub,B), then {3y Ar| r C
q finite} + t(a,B). Hint for Ax VIII: Notice that p | By F p. Hint for Ax IX:
Assume not. Essentially as in the proof of Lemma 8.2, construct a tree of height
where k is the least cardinal such that 2% > \. Use the tree to show that T is not
A-stable.)
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8.4 Lemma. pu(Fy) < A.

Proof. Assume C is (F§,\)-saturated. We show that C is (Fy,|C|")-satu-
rated. For this let (p, A) € FY be such that dom(p) C C. Then (p | A, A) € F¥
and so there is ¢ € C' which realizes p [ A. But then c realizes p. o

8.5 Exercise.

(i) u(FY) < A.

(ii) Show that every F) -saturated set is a model, if the following holds: For all
B and a formula ¢(x) over B, if |= Jx¢, then there are A C B and p € S(B) such
that ¢ € p and (p, A) € F).

(iii) C is an FY -saturated set iff it is a \-saturated model.

(iv) Assume T is w-stable. Then C' is an F! -saturated set iff it is a model.

(v)* Show that Ty has an F! -prime model over ().

9. Spectrum of stability

To continue our studies of prime models, we need more knowledge on stability.

9.1 Definition. Let x(T) be the least cardinal k such that there are no A;,
i <k, and a such that for all 1 < j, A; C Aj and a {4, Aj.

In Exercise 5.6 we showed:

9.2 Recall.

(i) &(T) < |T[*.

(ii) For all A and p € S(A), there is B C A of power < k(T') such that p does
not fork over B.

9.3 Lemma. If £<#(T) > ¢ then T is not &-stable.

Proof. Choose k < k(T) so that £<" = ¢ < 7. Then there are a;, i < k, and
a such that for all i < k, a iuj«aj a;. Let < be a well-ordering of £=* such that
if 7 is an initial segment of 7/, then n < n’. For all n € £5%, choose ay so that

(i) for all n € €%, the function that takes a; to a,; and a to a, is elementary,

(i) for all n € £, if a = length(n), then ay, Lu,_.a,,, Yan| 7' <n}.
Then the following holds: If n € £&" and o < k and A is the set of those a, such that
n' € €% and 71 | « is not an initial segment of 7', then a, Wpenay s A. (Exercise,
prove by induction on <.) So if n,n' € £&* and n # 7', then t(a,, B) # t(a,,B),
where B = Ur¢c¢<ra,. By the choice of x, T is not {-stable. o

9.4 Exercise.

(i) If T is &-stable, then cf(§) > k(T), especially kK(T) < cf(A(T)).

(ii) If T' is &-stable, then for all A of power < & there is a model B 2 A of
power < &. (Hint: For all i < w, choose A; of power < & so that Ay = A, every
p € A; isrealized in A;y1 and if i < j, then A; C A;. Then U;<,A; is as wanted.)
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(iii)* Show that for all A there is a model A such that A C A and |A| <
Al + A(T).
(iv) Assume p € S(A) and B O A. Then

{q € S(B)| p C q, q does not fork over A}| < \(T).

(Hint: By (ii) and Exercise 4.11 (iv), prove the claim first under the additional
assumption |A| < \(T).)

9.5 Theorem. T is ¢-stable iff € = \(T) 4+ £¢<#(T)

Proof. From left to right this follows from Lemma 9.3 and the definition of
AMT). By Recall 9.2 (ii) and 9.4 (iv), for all A, |S(A)| < MNT) x M(T) x |A[<=T)
from which the other direction follows. o

9.6 Lemma. IfT is &-stable, then there is a saturated model of power &.

Proof. Choose an increasing continuous sequence A;, i < &, of models of power
< & so that for all i < ¢ and a, there is b € A;y; such that t(b, A;) = t(a, A;). We
show that A = A, is as wanted. For this let B C A be of power < £ and b be
arbitrary. We show that t(b, B) is realized in A.

By Exercise 9.4 (i), there is o < £ such that b4, A.

Claim. There is 3 < such that > o and B |4, Agq1.

Proof. Assume not. Then by the pigeon hole principle, we can find d € B such
that

{y <éld fa, Ayt = cf ().
This is impossible by Exercise 9.4 (i). o Claim.

Choose ¢ € Agy1 so that t(c,Ag) = t(b, Ag). By Claim, ¢ |4, B and so by

stationarity, c realizes t(b, B). o

9.7 Exercise. Let x be the least regular cardinal > «(T). If B is F¥-
constructible over A, then |B| < A(T) + (JA| + \)<F.

10. a-prime models

10.1 Definition.

(i) We define FY to be the set of the pairs (p, A) € P such that for some
al=p, stp(a, A) Fp.

(ii) We say that f is a strong automorphism over A, f € Saut(A), if f €
Aut(A) and for all a and E € FE(A), a E f(a).

10.2 Lemma.

(i) Assume f € Aut(A) and for all c € C and E € FE(A), ¢ E f(c), then
there is g € Saut(A) such that f | C Cg.

(ii) Assume (p, A) € Py. Then (p, A) € Fy iff for all a |=p, stp(a, A) - p.

(iii) Assume A C B. If stp(a,A) = stp(b,A), a Ja B and b |4 B, then
stp(a, B) = stp(b, B).

(iv) If (t(a, B), A) € FY, then stp(a, A) - stp(a, B).

28



Proof. (i): By Exercise 5.2 (ii), choose a model B 2O A so that B 4 CU f(C).
Then t(C, B) = t(f(C),B) and so there is g € Aut(B) such that f [ C C g. Clearly
g is as wanted.

(ii): Assume not. Then there are a,b = p and ¢ such that stp(a, A) F p,
stp(b A)=stp(c,A) and ¢ [~ p. Choose f € Aut(dom(p)) such that f(b) = a. Let

(¢). Then stp(a’, A) = stp(a, A) but o’ }~ p, a contradiction.

(iii) Assume not. Choose a model C 2 B such that C | g aUb. Then by Exercise
4.11 (iii), t(a,C) # t(b,C). Since a } 4 C and b |4 C, we have a contradiction.

(iv) Immediate by (ii), (iii) and Exercise 4.11 (iv). o

10.3 Exercise. Show that stp(a U b, A) = stp(a’ Ub, A) does NOT imply
stp(a, AU D) = stp(a’, AUDb). (Hint: PM C M infinite, RM C PM x (M — PM),
for all a € PM, |R(a,M)| =2 and {R(a,M)| a € PM} is a partition of M — PM.)

10.4 Theorem. FY satisfies Ax I-VIII and if X\ > k(T'), then it satisfies also
Ax IX.

Proof. We show Ax VII, the rest is left as an exercise. Assume Ax VII does not
hold. By Lemmas 10.2 (i) and (ii), choose a’ and C’ so that there is f € Saut(A)
such that f(a’UC") = aUC but t(a’UC’, B) # t(aUC, B). Since (¢(C, B), A) € F{,
B laC and B |4 C'. Let B’ = f(B). By Lemma 10.2 (iii) and (i), there is g €
Saut(AUC) such that g(B’) = B. Let a” = g(a). Then t(a”, BUC) # t(a, BUC)
but stp(a”’, AUC) = stp(a, AUC), a contradiction. o

By k(1) we mean the least regular cardinal > (7).

10.5 Lemma.

(i) If A is (FY, k)-saturated for any (infinite) k, then it is a model.

(ii) If X\ > k(T), then p(Fy) < X+ |T|".

(iii) If for all B C A of power < A and a there is b € A such that stp(b, B) =
stp(a, B), then A is FY-saturated. And if A > k(T'), then the other direction is
true also.

(iv) If T' is A-stable and A is a A-saturated model, then A is F{ -saturated.

(v) If A is F{-primary over B, then |A| < A\(T) + (A + |B|)<r-(1).

Proof. (i): Trivial.

(ii): Let p = X+ |T|" and A be (F{,p)-saturated. Assume B C A and
(t(a,B),C) € Fy. We show that t(a, B) is realized in A. By Ax IX, we may assume
that B = A. Since the number of formulas over C' (modulo equivalence) is < p and
A is amodel, we can find D such that C C D C A, |D| < p and t(a, D) F stp(a,C).
Since (t(a, D),C) € FY, thereis b € A such that t(b, D) = t(a, D). Clearly b realizes
t(a, B).

(iii): The first claim is trivial, so we prove the second: Let a be arbitrary and
B C A be of power < A\. We show that stp(a, B) is realized in A. Since A > k(T),
we can choose C' and b such that B C C C A, |C| < A, stp(b, B) = stp(a, B) and
stp(b,C) = t(b, A). Then t(b, A) is realised in A. Clearly this implies the claim.

(iv): We prove the following claim. It is easy to see (exercise) that this suffices.
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Claim. If T is A-stable, p € S(A), |A] < XA and (a;)i<a is a sequence of
realizations of p such that for all i < j < «, stp(a;, A) # stp(a;, A), then |of < A.

Proof. By Exercises 9.4 (ii) and 5.2 (ii), choose a model B O A such that |B| =
A and B |4 Ujcqa;. By Exercise 4.11 (iii), for all i < j < «, t(a;, B) # t(a;,B).
Since T is A-stable, |a] < A. o Claim.

(v): Immediate by (iv) and Lemma 9.6. o

10.6 Exercise. Assume T is A-stable, A is \-saturated and A C A and B
are of power < A. Then there is f € Saut(A) such that f[B] C A. (Hint: Use
Lemma 10.5 and the fact that if stp(a, A) = stp(b, A), then t(a, AUD) F stp(a, A).)

10.7 Lemma. Assume z =a and A > k,.(T) or x =s and A > |T|. If A is
FY{ -saturated, AC BND, D |4 B and (B, (¢;,C;)i<q) is an FY -construction over
B, then (BU D, (c¢;,C;)i<q) is an FY -construction over BU D.

Proof. We prove the first case, the other is similar. Assume not. Then we
can find F{-saturated A, B, B, D, a and b such that A C BND, D |4 B,
(t(a,B),B’) € FY, stp(b,B") = stp(a,B’) and t(b, B U D) # t(a,BU D). Clearly
we may assume that d = D — A is finite, B’ [ anp' A and t(b, B'Ud) # t(a, B'Ud).
By Lemma 10.5 (iii), choose d’ € A such that stp(d’, AN B’') = stp(d, AN B’).
By Lemma 10.2 (iii) and (i), there is f € Saut(B’) such that f(d) = d’. Then
t(f(b),B) # t(a, B) or t(f(a), B) # t(a, B). Clearly this contradicts the assumption
that (t(a,B),B’) € Fy. o

10.8 Definition. We write A>p C (A dominates C over B) if for all d,
dlp A implies d |5 C'.

10.9 Exercise.

(i) Assume x =a and A > k.(T) or x =s and A > |T|. If A is F{ saturated
and C is FY -constructible over AU B, then B4 C. (Hint: Use Lemma 10.7.)

(ii) Assume B C A and aUblpg A. Then a>A b iff abpb.

(iii) Show that if b € acl(Aa), then a>a b.

11. Structure of a-saturated models

In this chapter, as an example of structure theorems, we prove a structure
theorem for a-saturated models assuming that 7' is superstable and does not have
dop.

Through out this section we assume that T is superstable (i.e. k(T)=w). We
write a-primary, a-saturated etc. for FS(T) -primary, FS(T) -saturated etc. If (P, <)

is a tree without branches of length > w and ¢ € P is not the root, then by ¢t~ we
mean the unique immediate predecessor of ¢.

11.1 Definition.
(i) We say that p € S(A) is (almost) orthogonal to B C A if p is (almost)
orthogonal to every q € S(A) which does not fork over B, see Definition 6.1.
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(ii) We say that {a;| i < a} is A-independent if for all i < a a; 4 U{a;| j <
a, j #i}.

(iii) We say that (P, f,g) is a decomposition of a-saturated A if the following
holds:

(a) P = (P,<) is a tree without branches of length > w, f: P —{r} — A,
where r is the root of P, and g: P — {A] A C A},

(b) g(r) is an a-primary model over (),

(c) forallt € P, {f(u)| u~ =t} is a maximal g(t) independent set of sequences
from A such that t(f(u), g(t)) is not algebraic and if t # r, then also (e) below holds,

(d) for all t,u € P, if u= =t, then g(u) is a-primary over g(t)U f(u),

(e) for all t, uw and v from P, if u= =t and t~ = v, then t(f(u),g(t)) is
orthogonal to g(v).

11.2 Exercise.

(i) If A is a-saturated, B C A and p € S(A), then p is orthogonal to B iff p
is almost orthogonal to B. (Hint: See the proof of Lemma 10.7.)

(ii) Show that {a;| i < a} is A-independent iff for all i < o a; 4 U{a;| j <i}.

(iii) Show that for all a-saturated A, there exists a decomposition of A.

(iv) Assume (P, f,qg) is a decomposition of A. If t € P is not the root, then
g(t) Lgt—y U{g(w)| v € P, t £ u}. (Hint: Clearly it is enough to show that for all
finite downwards closed P’ C P, the claim holds for (P',f | P',g | P'). Prove this
by induction on |P’'|.)

11.3 Definition.

(i) Assume A is a-saturated. We say that a non-algebraic type t(a,A) is a
c-type (c for compulsion) if the following holds: If B C A is a-saturated and t(a,.A)
is not orthogonal to B, then there is b ¢ A such that b |z A and a>4b.

(ii) We say that a stationary non-algebraic type p € S(A) is regular if the
following holds: if ¢ € S(B) is a non-forking extension of p and r € S(B) is a
forking extension of p, then ¢ is orthogonal to r.

Given A C A and p € S(A4), it would be nice if we could define a dimension
of p(A) by using forking as a dependence relation. However, this is not possible,
since not all the axioms of the general dependence relation are satisfied, transitivity
is lacking. Regularity is a property designed to give the transitivity, see Exercise
11.5 (ii).

We want to mention also, that if in the definition of c-type we replace domina-
tion by compulsion (whatever it is) we can give a marginally simpler proof for the
structure theorem. We do not do this because domination is a widely used concept
and compulsion is not. The notion of c-type is used only by the author.

11.4 Lemma. If A C B are a-saturated, A # B, then there is a € B such
that t(a, A) is a c-type.

Proof. Since T is superstable, we can find finite A C A and a € B such that
ag Aandforall A CAandd €B,if t(a’ UA,0) =t(aUA, D) and o’ € A, then
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a' L a A. We show that t(a,.A) is a c-type. For this let C C A be a-saturated and
assume that t(a,.A) is not orthogonal to C. By Exercise 11.2 (i), choose ¢ so that
cle Aand ¢ [, a. Without loss of generality we may assume that A |4nc CUc
and ¢ [, a. Notice that then AUa {4nc C.

By Exercise 11.2 (ii), choose (ANC)Uc-independent set I = {a; UA;| i < w} of
realizations of t(a U A,(ANC)Uc) such that ap = a and Ay = A (we could choose
these so that in addition I is indiscernible over (ANC)Uc). Then I is not ANC-
independent, since otherwise for all ¢ <w, ¢ f,_ 4,04, @i UA;. Let n <w be the
largest number such that every J C I of power n is A N C-independent. Without
loss of generality we may assume that ag U Ao 4, _,_, a,ua; @n U Ay Then

(*¥) a0 Aa, Yo<i<na; U A;.

By the choice of n, ag U Ag danc An U Ugejcn @i U Ai.
For all 0 <7 < n, choose b; € C and B; C C and B,, C C such that

stp(BpU | J b UB;, ANC) =stp(A, U | ) a;iUA;, ANC).

0<i<n 0<i<n

Then
tBnU |J biUBi,AUa)=t(A,U ] aiUA;,AUA).

0<i<n 0<i<n

Let D C B be a-primary over AU a. Then we can find b € D such that

tbUB,U | ) biuBi,AUua) =t(a, UA, U | a;UA;, AUaq).

0<i<n 0<i<n

By (*), b € A. By the choice of A and a, blp, A, especially b ¢ A. Since
b € D, by Exercise 10.8 (i) a>4 b. o

11.5 Exercise*.

(i) Let a and A be as in the proof of Lemma 11.4. Show that t(a,.A) is regular.
(Hint: Show first that t(a, A) is regular.)

(ii) Suppose p € S(A) is regular and let X be the set of all realizations of p.
For all Y C X, let cl(Y') be the set of all a € X such that a }, Y. Show that
(X, cl) is a pregeometry, for pregeometry see [Hy2)].

11.6 Fact. ([Sh]) Regular types over a-saturated models are c-types.

11.7 Definition. @ We say that T has dop (dimensional order property) if
there are a-saturated A;, i < 4, and non-algebraic p € S(As) such that

(i) Ao C A1 N Ay and Ay I 4, As,

(ii) As is a-primary over A; U Az,

(iii) p is orthogonal to A; and to As.
We say that T has ndop if it does not have dop.
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11.8 Fact. ([Sh]) Assume T is A-stable, has dop and A\ > pu > k,.(T). Then
T has 2* non-isomorphic F}; -saturated models of cardinality A.

11.9 Theorem. Assume T is superstable with ndop, A is a-saturated and
(P, f,qg) is a decomposition of A. If B C A is a-primary over Uscpg(t), then B = A.
In particular, A is a-primary over Usc pg(t) and thus unique upto isomorphism over
Usepg(t).

Proof. Assume not. Choose a € A such that a € B. By Theorem 7.6, we can
find finite downwards closed P* C P and C C B such that C is a-primary over
Utep+g(t) and a |¢ B. So choose a so that in addition |P*| is minimal. Let D C A
be a-primary over C Ua. By Lemma 11.4, pick b € D such that ¢(b,C) is a c-type.
Then b ¢ B and b ¢ B. There are three cases:

1. There is no t € P* such that P* = {u € P*| u <t}. Let ¢ be a leaf of P*
and P’ = P* — {t}. By Theorem 7.11 and Lemma 10.7, we can find C’ C C such
that it is a-primary over Uyecp/g(u) and C is a-primary over g(t) UC’. By ndop,
t(b,C) is not orthogonal to C’ or to g(t). We assume that #(b,C) is not orthogonal
to C’, the other case is similar. Since t(b,C) is a c-type, we can find ¢ ¢ C such
that ¢ l¢/ C and bre ¢’. By Exercise 10.9 (ii), we can find ¢ from A so that ¢ ¢ B
and ¢ ¢ B. This contradicts the choice of a and P*.

2. There is t € P* such that P* = {u € P*| u <t}, t is not the root of P and
t(b,C) is not orthogonal to g(t~). As in case 1 above, we get a contradiction with
the choice of a and P*.

3. There is t € P* such that P* = {u € P*| v < t} and t is the root of P
or t(b,C) is orthogonal to g(t~). Clearly this contradicts (c) in the definition of
decomposition. o

11.10 Exercise™.

(i) Show, without using Theorem 7.11, that if Theorem 11.9 holds, A and B
are a-saturated and (P, f,g) is a decomposion of both A and B, then A= B.

(ii) Assume (P, f,g) is a decomposition of A, (P’ f',¢") is a decomposition of
A", h:(P,<)— (P <) is an isomorphism and H : Uiepg(t) — Useprg(t) is such
that for all t € P, H | g(t) is an isomorphism onto g(h(t)). Then H is elementary.

(iii) Show that we can add (f) below to the definition of decomposition and still
prove Theorem 11.9:

(f) if t € P is not the root, then t(f(t),g(t™)) is regular.

12. A non-structure theorem for strictly stable theories

In this chapter we prove the following theorem:

12.1 Theorem. Assume T is a stable unsuperstable theory and k = cf(k) >
(2'TH*. Then there are models A;, i < 2", such that for all i < 2", |A;| = x and
forall v <j <2, A; 2 A;.
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Theorem 12.1 holds for all unsuperstable theories (even x = cf(k) > (2/71)*
replaced by x > |T'|). We assume stability since this makes it possible for us to
prove the theorem by using forking and primary models which are the topic of this
paper. The proof is from [HS1]. Notice that below we construct the models A; so
that they are F?-saturated (and more).

Through out this section, we assume that T is a stable unsuperstable theory.
Let A = (2/71)* We write s-primary, s-saturated etc. for F § -primary, FY -saturated
etc. We say that ¢(a, A) s-isolates t(a, B) if (t(a, B), A) € F¥.

Let J C k=% be such that it is closed under initial segments. If n,& € J then
by r'(n,&) we mean the longest element of J which is an initial segment of both 7
and &. If u,v € I = P,(J) (=the set of all finite subsets of J) then by r(u,v) we
mean the largest set R which satisfies

() RS Ar'(n, &) newu, {cv}

(ii)if n € R, £ € u, 7 € v and 7 is an initial segment of r'(£,7), then
n=r'"&7).

We order I by u < w if for every n € u there is £ € v such that 7 is an initial segment
of £ ie. r(u,v) =r(u,u) (={n € ul -3¢ € u(n is a proper initial segment of &)} ).

12.2 Definition. Assume J C k=% is closed under initial segments and
I =P,(J). Let ¥ = {A,| u € I} be an indexed family of sets. We say that ¥ is
strongly independent if

(i) for all u,v € I, uw <wv implies A, C A,,

(ii) if u,u; € I, i < n, and B C U;<,A,, has power < X\, then there is an
automorphism f = foor . (of M) such that f | (BN A,) = idpna, and

f(B N Auz) - Ar(u,ui)-

,,,,, Un

The model construction in Lemma 12.3 below is a generalized version of the
construction used in [Sh1] XII.4.

12.3 Lemma.  Assume that ¥ = {A,| v € I}, I = P,(J), is strongly
independent. Then there are sets A, , u € I, such that

(i) for all u,v € I, u < v implies A, C A,,

(ii) for all w € I, A, is s-primary over A, , (and so by (i), Uyer A, is a model),

(iii) if v < u, then A, is s-atomic over U,eA, and s-primary over A, U A,,,

(iv) if J' C J is closed under initial segments and u € P,,(J"), then U,cp, (j)Ay
is s-constructible over A, U Uvepw(J,) A,.

Proof. Let {u;| i < a*} be an enumeration of I such that v < v and v € u
implies 7 < j. It is easy to see that we can choose a, v; < o for ¢ < a*, a, and
B, for v < a, and s:a — I so that

(a) 70 = 0 and (7;);<q+ is increasing and continuous,

(b) if v; <y < 741, then s(y) = u,,

(c) for all v < a, |By| < A and if we write for v < a, A} = A, U{as| 0 <
s(0) <u}, then B, C AZ(V),
(d) for all v < a, if we write AY = U,er A}, then t(a, B,) s-isolates t(a, A7),
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(e) for all 4 < a*, there are no a and B C A}"" of power < X such that t(a, B)
s-isolates t(a, AVi+t),

(f) if as € B, then Bs C B, .
For all u € I, we define A, = AS. We show that these are as wanted.

(i) follows immediately from the definitions and for (ii) it is enough to prove the
following claim (Claim (III) implies (ii) easily).

Claim. For all i < a*,

(I) ¥; = {A)| u € I} is strongly independent, we write f(ifuo’m’un_l) instead

(IT) the functions fi’B ,) can be chosen so that if j <1, u,up € I, k <n,

(UyuQ ey Uy —

B C Uj<nAJi has power < A and a., € B implies B, C B and B’ = BN A%, then

f(lz’L,Buo,...,un,ﬂ [ B = f(jzlio,...,unfl) r B/’

(II) if j <, then A’™" is s-saturated,

Proof. Notice that if a, € A% N A?, then a, € Ai(um). Similarly we see that
the first half of (I) in the claim is always true (i.e. if w < v then for all § < a,
A% C A%.) We prove the rest by induction on i < a*. We notice first that it is
enough to prove the existence of f(ifuo,...,un,l) only in the case when B satisfies

(*) if a, € B, then B, C B.

For ¢ = 0, there is nothing to prove. If ¢ is limit, then the claim follows easily
from the induction assumption (use (II) in the claim). So we assume that the claim
holds for i and prove it for i 4+ 1. We prove first (I) and (II). For this let u,u; € I,
k<mn,and B C U<, AL be of power < X such that (*) above is satisfied. If for
all k < n, s(y;) £ ug, then (I) and (II) in the claim follow immediately from the

induction assumption. So we may assume that s(v;) < up. Let B = BN(Up<nAJ:).
i,B’'

By the induction assumption there is an automorphism f = f(u woronnstin 1) such that
fI(B'NAY) =idgnay and f(B'NAY) €AY, - If s(%) < u, then, by (*)

and (d) in the construction, we can find an automorphism g = fiﬂ’B such

UyUQ yeeey Uy —1
that g | B'=f | B’ and g | (B — B’) =idg_p/. Clearly this is a(s wanted. )

So we may assume that s(vy;) € w. Since s(v;) < ug, up £ r(u,up). By the
choice of the enumeration of I there is j < ¢ such that u; = r(u,up). Then by the
induction assumption (part (III)), Agt' = Ay = AT is s-saturated and by the
choice of f, f(B'NAj) C AJi. So by (d) in the construction and (*) above, there
i+1,B
(:,ujo,...,un_l) :

So we need to prove (II1): For this it is enough to show that A" is s-saturated.
Assume not. Then there are a and B such that B C A}*", |B| < X and t(a, B) is
not realized in A" . Since A > X\(T), there are b and C such that B C C C A",
|IC| < A, t(b,B) = t(a, B) and t(b,C) s-isolates t(b, A);™"). But since (I) in the
claim holds for i + 1, ¢(b,C) s-isolates t(b, A%i+1). This contradicts (e) in the
construction. o Claim

(iii) and (iv) follow immediately from the construction, Claim (III) and Lemma

are no difficulties in finding the required automorphism f
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7.9. o

Since T is unsuperstable, there are a and sets A;, i < w, such that

(i) if j < i <w, then A; C A;,

(ii) forall i <w, a 4, Ait1.
It is easy to see that we may choose the sets A; so that they are s-saturated models
and of power \. Let A, be s-primary over aU(J,_  A;. As in the proof of Lemma
9.3, for all n € k=¥, we can find A, such that

(a) for all n € k=¥, there is an automorphism f, such that f,(Aengin(y))

= A,

(b) if 7 is an initial segment of &, then fe [ Ajengtnn) = fn | Aiength(n) ;

(c)if n € k<%, a € k and X is the set of those £ € k=% such that n —~ (a) is
an initial segment of £, then

1<w

UgexAg \LAn Uge(nSW—X)A§~
For all n € k¥, we let a, = f,(a).

12.4 Exercise. Assume n € k<¥, a € k and X is the set of those £ € k<%
such that n —~ () is an initial segment of {. Let B C Ugc(,<w_x)Ae and C C
Ueex A¢ be of power < X. Then there is C' C A, such that t(C',B) = t(C,B).
(Hint: Use Exercise 10.6.)

12.5 Lemma. Assume J C k=% and I = P,(J). For all u € I, define
A, =UpcyAy. Then {A,| u € I} is strongly independent.

Proof. Follows immediately from Exercise 12.4. o
For each a < k of cofinality w, let n, € k“ be a strictly increasing sequence
such that U;«,na(7) = a. Let S C{a < k| ¢f(a) =w}. By Js we mean the set

K<Y U {na| a € S}.
Let Is = P,(Js) and Ag be the model given by Lemmas 12.3 and 12.5 for {A,| u €
Is}.

12.6 Exercise.
(i) Assume n € k<¥, u € Ig, a < K, {n} <w and {n ~ (@)} £ u. Let X be
the set of those £ € Jg such that n —~ («) is an initial segment of . Then

Ugex Ae ba, Users—xAe.

(ii) Assume o € K, u € Is and v € P, (Js Na=*) is maximal such that v < u.
Then

Au iAv UwePw(JsﬂaSW)Aw-
(Hint: Use Lemma 12.3 and Exercise 10.8.)
12.7 Lemma. Assume S, R C {a < k| ¢f(a) = w} are such that (S — R) U
(R — S) is stationary. Then Ag is not isomorphic to Ag.
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Proof. Assume not. Let f: As — Agr be an isomorphism. We write Ig for
the set of those u € Ig, which satisfy that for all £ € u, U;ciengin(e)§(i) < a.
I% is defined similarly. Then we can find o and «;, ¢ < w, such that (a;)i<. is
strictly increasing, for all i < w, f(UueIgiAu) = UuejgiAu and o = Ujc; €
(S— R)U (R —S). Without loss of generality we may assume that o € S — R, and
S0 7o € Jg. Let A = Uyerei Au and AL = UyeroiAu. Then it easy to see that
for all ¢+ < w there is j < w such that a,, ,&Acsvi .Agj . So there is u € I such that

for all ¢ < w there is j < w such that A4, / A A% . Since a ¢ R, this contradicts
Exercise 12.6 (ii). o

We can now prove Theorem 12.1: By [Sh1] Appendix 1 Theorem 1.3 (2) and (3),
there are stationary S; C {a < k| ¢f(a) = w}, i < K, such that for all i < j < &,
S;iNS;=0. Forall X Ck,let Ax = Ay,_ys,. Then by Lemma 12.7, if X # X',
then Ax is not isomorphic to Ax/. Since clearly |Ju, . s,| = &, |[Ax| = k. ©
Theorem 12.1.
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APPENDIX

A. M*®¢ and canonical bases

In this section, in order to simplify the notations, we assume that L is relational
and that every formula is equivalent either to some atomic formula or Jvy(vy = vp)
or =3Jvg(vy = vg). This assumption is w.o.l.g. (change the vocabulary if necessary -
this is know as Morleyization).

We start by noticing that if ¢(z,y) is a formula and in A = T it defines an
equivalence relation on A", then it defines an equivalence relation in every model of
T.

Let EQ™ be the set of all equivalence relations on M™ definable over ) and
EQ=U,., EQ". For every model A we define A°? as follows: We let L = L U
{Sg, Fg| E € EQ} where Sg is a new unary relation symbol, Fg is a new function
symbol of arity n if F € EQ™. The universe of A consists of A together with
the equivalence classes a/F where E € EQ™, E is not an identity, and a € A™ and
still assuming that F is not the identity, Sg is interpreted as the set {a/FE| a € A}
and Fg(a) = a/F if a € A and otherwise F(a) = a;, where a = (ai,...,a,).
Strictly speaking since we want the sets Sg to be disjoint we may have to use e.g.
pairs (E,a/F) in place of a/E. To simplify the notation, we use a/E and often
write just a/E in place of Fg(a). The interpretation of S— is A and F_(a) = a.
Finally, the interpretations of relation symbols R € L are the same as in A. We let
T¢1 = Th(M*9).

A.1 Exercise.

(i) Show that for all f € Aut(A) there is unique g € Aut(A°?) such that f C g.

(ii) If A < B, then there is a unique elementary embedding f : A4 — B
such that f | A =id. Also if A°? < B¢, then A < B. Conclude that for all A,
Al = T¢e1. (Hint: Use Ehrenfeuch-Fraissé games, see e.g. [Hy2].)

(iii) Show that M*®? is not saturated.

(iv) Show that there is saturated M’ such that M1 < M’ and for all E € EQ,
the interpretation of Sg in M’ is the same as in M*®?.

(v) Show that for all L-formulas ¢(x) there is L°?-formula ¢*(x) such that for
alla e M, M = ¢(a) iff M®? = ¢*(a).

(vi) Show that if T' is £-stable, then so is T°1.

(viii) Let p be an L-type over B C M such that it is realized in M and A C M .
Show that p does not fork over A in the sense of M iff p* does not fork over A in
the sense of M*®?, where p* = {¢*(z,a)| ¢(z,a) € p} and here ¢* is as in (v) above.

We use M€ as the monster model for 7°% and not M’ from Exercise A.1 (iv).

A.2 Exercise.
(i) Show that every LI -formula is equivalent to a boolean combination of for-
mulas of the form:

(a) HUO(UO = Uo),
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(b) z =y,

(c) Se(z),

(d) Ni<nSE; (i) = Yyo..Yyn(Ni<nFE, (yi) = zi = R(yo,...,yn)), where R € L.
(Hint: Standard proof of the elimination of quantifiers, see e.g. [Hy2].)

(ii) Show that for all L¢?-formulas ¢(x), z = (xg,....,xn), and E;, i < n,
there is an L-formula ¢*(yo,...,yn) such that for all a; € M, M = ¢*(ag, ..., ay) iff
Meq ): gb(ao/Eo, coey an/En) .

A.3 Definition.

(i) We say that A C M is a canonical base of p € S(M) if for all f € Aut(M),
f 1A =dd iff f(p) = p, where f(p) = {é(z, f(a))| ¢(z,a) € p} and if a =
(ag,...,an), then f(a) = (f(ag),..., f(an)).

(ii) Suppose p € S(B) is stationary. We say that A C M is a canonical base of
p if A is a canonical base of the unique non-forking extension q € S(M) of p.

(iii) For A C M, by definable closure dcl(A) of A we mean the set of all
elements a € M , which are definable using parameters from A.

Some authors require that canonical bases A are definably closed i.e. dcl(A) =

A.

A.4 Exercise.

(i) Show that if A is a canonical base of p € S(M), then p does not fork over
A and p | A is stationary. (Hint: First show that p does not split over A and then
e.g. see the hint for Exercise 5.12 (ii).)

(ii) Show that dcl(dcl(A)) = dcl(A) D A and that if a sequence a = (ag, ..., an)
is definable with parameters from A, then for all i <n, a; € dcl(A).

(iii) Show that if A is a canonical base of p € S(M), then so is dcl(A) and if
B is another canonical base of p, then dcl(A) = dcl(B).

(iv) Show that if p € S(M), p does not fork over B C M and A is a canonical
base of p, then A C acl(B).

A.5 Theorem. Every p € S(M*°?) has a canonical base.

Proof. In order to simplify the notations, we assume that p € S1(M®?). Let
M' D M*®? be a saturated model of power > |[M°?| and a € M’ such that it realizes
p. Let E be such that M’ = Sg(a). Again in order to simplify the notations, we
assume that £ € EQ! and so we can find b € M’ such that M’ = S_(b)AFgr(b) = a.
Clearly, it is enough to find for each ¢(z,y) and element ay € MY such that
for all f € Aut(M*?), f(p | ¢(z,y)) =p [ ¢(x,y) iff flag) = ay. We fix ¢(z,y).
Choose a model A C M€? so that t(ab, M“?) does not fork over A and for all
i <w, choose a; and b; from M®? such that t(a;b;, AU {a;,b;| j <i}) = t(ab, AU
{aj,b;] j < i}). Then (a;b;)i<w and (a;)i<. are indiscernible sequences based on A
(see Exercise 5.8 (i) and the proof of Theorem 3.9) and thus p = Av((a;)i<w, M?).
Then, as in the proof of Theorem 5.14, letting n be as in Exercise 3.5,

V(Y, a0, -, A2(n-1)) = \/ (Nicwd(ai,y))

wC2n—1, |w|=n
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defines p [ ¢(x,y) and thus so does ¥(y, Fr(bo), ..., FE(b2(n-1)))-

Let E’ be the equivalence relation on M¢? such that for all af,a € M, i <
2n—1, (ap, ...,a’Q(n_l))E’(a{)’, ...,a’z’(n_l)) if for all i <2n—1, a} = a or for all i <
2n—1, a},a € Sg and for all ¢ € M*?, (¢Y(c,af, ...,a’z(n_l)) (e, af, ...,a’Q’(n_l))).
By Exercise A.2 (ii), there is E* € EQ?"~! such that for all b,b7 € M, i <2n—1,
(B e V1)) B (B s By i

(FE(b0), -, Fu(byn 1)) E (FE(bG), s FE(by(n_1)))-

We let ap = (b(), ---7b2(n—1))/E* .
Let f € Aut(M<?). If f(p | ¢(z,y)) =p | ¢(z,y), then for all c € MY,
Me? = (¢, Fr(by), ..., FE(ba(n-1)))
iff ¢(z,c) € p iff ¢(x,c) € f(p)
it M7 = (e, Fi(f(50)), s Fo(f(bagn-1))))
and so f(ag) = ay.
On the other hand, if f(ag) = ay, then ¢(z,c) € p
iff Mt = (c, Fp(bo), ..., FE(ba(n—1)))
it M1 = (e, Fe(f(bo)); s FE(f(ba(n-1))))
it 6(z,c) € f(p). ©

A.6 Exercise. Let T=T,, ACM and a an element in M — A.

(i) Show that t(a/A) is stationary.

(ii) Find a canonical base for t(a, A) in M*®9.

(iii) Show that if C' is a canonical base for t(a, A) (in M), then C N M = ().

B. Morley’s theorem

Though out this section we assume that 7' is a countable complete theory and
A-categorical for some uncountable A (i.e. upto isomorphism 7T has exactly one
model of power \).

The following fact can be proved using Ehrenfeuch-Mostowski models, see e.g.
[Hy2| Exercise 12.11.

B.1 Fact. 7T is w-stable.

B.2. Lemma. FEvery uncountable model of T is w-saturated and thus T is
wy -categorical.

Proof. Let A C A and p € S(A) be such that A is a countable set and A is an
uncountable model. We need to show that p is realized in A. Let a; € A, i < wq,
be distinct elements. By Theorem 3.3 we may assume that (a;);<,, is indiscernible
over A. Let a;, w1 <1i < A, be such that (a;);< is indiscernible over A. Let B be
F! -primary model over AU(J,_, a;. Since T is A-stable, T has a saturated model
of power A and since T is A-categorical, B is saturated. And thus p is realized in B.
Let b € B be the realization. By Lemma 7.4, one finds a finite X = {ig,...,i,} C A
and B C B such that b € B and B is F} -constructible over AU J, ., a;, . Since
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(a;)i<x is indiscernible over A, we may assume that for all k¥ < n, i, = k. But then,
since F! -constructible sets are F -primitive and models are F!-saturated, there is
elementary f: B — A such that f [ A=1id. Then a = f(b) € A realizes p. o

Below we will use F% isolation notion because we can and for it we have proved
all that is needed. We could use also F* or even F! but we have not proved the
needed properties for them. Excluding Lemma B.3, we could also use F .

B.3 Lemma. Suppose A is a countable saturated model (and thus FZ-
saturated by Fact B.1)) and p,q € S(A) are not algebraic. Then p and q are not
orthogonal (and so T is unidimensional, see Section 6).

Proof. Suppose they are. By induction on ¢ < w; we find realizations a; of p
and models A; as follows:

(i) Ap = A (and ag is any realization of p),

(il) A;y1 is F%-primary over A; Ua; and a;41 44 Ait1,

(iii) if 4 is a limit, then A; = U;<;A; and a; Ja4 A;.
Let b be any realization of ¢q. Using Exercise 10.9, an easy induction on 7 < w; shows
that b {4 A, and so b ¢ A,,. Thus A,, does not realize ¢, which contradicts
Lemma B.2. o

B.4 Definition. We say that t(a, A) is minimal if it is not algebraic but for
all BDO A, ifa }4 B, then t(a,B) is algebraic.

B.5 Exercise. Let A be a countable saturated model. Show that there is
minimal p € S(A).

B.6 Lemma. Let A be an uncountable model, B C A be a countable
saturated model, p € S(B) be minimal and {a;| i < a} be a maximal independent
(ie. a; I Ujcq jzi @) set of realizations of p from A. Then A is Fj-primary

over BUJ,., ai-

Proof. Let C C A be F%-primary model over B U
show that C = A. Suppose not. Let be A —C.

Then we can find a finite X C a and F%-primary model B’ C C over BUUZ-GX a;
such that b s C. If C' C C is FS-primary over B'UlJ,_, a; it is F-primary over
BU,;<, @i (exercise, hint: Exercise 10.9 (i)) and thus we may assume that C’' = C
(since be A —C" and b lp C"). Let p’ € S(B’) be the non-forking extension of p.
Then

(*) {ai| i € « — X} is a maximal independent set of realizations of p’ from A
(exercise).

Let D C A be F%-primary over B’ Ub. By the proof of Exercise 11.2 (i) and
Lemma B.3, there is a realization a of p’ such that a {z b. Since p was minimal,
a € D. Since b dominates D over B', a lp {a;| i € X}, a contradiction with (*)
above. O

icq @i~ It is enough to

B.7 Morley’s theorem. If T is countable and \-categorical for some un-
countable X\, then T is k-categorical for all uncountable k.
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Proof. So suppose |A| = |B| = k. Let C C A and C" C B be countable
saturated models. By taking an isomorphic copy of B, we may assume that C = C’.
Let p € S(C) be minimal and {a;| i < a} and {b;] i < 8} be maximal independent
set of realizations of p in A and B, respectively. As in Exercise 9.7, |a| = |A] =
|B| = || and thus by taking an isomorphic copy of B, we may assume that o = 3
and that for all i« < a, a; = b;. But then the claim follows from Lemma B.6 and
Theorem 7.11. o

C. Morley rank

In this section we look at Morley rank and its connection to Cantor-Bendixon
rank.

C.1 Definition. For definable A C M™ we define M R(A) as follows:

(i) If A# 0, then MR(A) >0,

(ii) if there are definable A; C A, i < w, such that for i < j <w, A;NA; =10
and MR(A;) > «, then MR(A) > a+1,

(iii) for limit o, M R(A) > o if MR(A) > B for all § < a.
MR(A) is the least « such that MR(A) ? a + 1 if such « exists and other-
wise MR(A) = oo. For formulas ¢(z,a), MR(¢(z,a)) = MR(¢(M,a)), where
d(M,a)={be M"| = ¢(b,a)}, and for types p over M,

MR(p) = min{M R(A\q)| q C p finite}.

C.2 Exercises.

(i) Show that for o < B, MR(A) > f implies M R(A) > « and that for types
p, MR(p) =0 iff p is algebraic.

(ii) Show that there is « such that for all definable A, M R(A) > « implies
MR(A) = 0.

(iii) Show that if T' is w-stable, then M R(A) < oo for all definable A.

(iv) Show that if M R(A) < oo for all definable A, then T is w-stable.

(v) Show that for all varieties V' C F", see Appendix D, M R(V') = dimgeo(V').

C.3 Fact. If T is w-stable, then a |4 B for A C B iff MR(t(a,B)) =
MR(t(a, A)).

Let us then look at the connection of Morley rank to Cantor-Bendixon rank. For
this we let A be a countable set and assume that the vocabulary is also countable and
look S™(A) as a Polish space i.e. a completely metrizable s