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My research focuses on problems in functional analysis that come from mathematical physics. In
particular, I have worked on proving sharp entropy—energy inequalities on symplectic Riemannian
manifolds with applications to the coherent state transforms and coherent state methods in physical
problems.

For a probability density p on a symplectic Riemannian manifold M, that is, a non-negative
measurable function on M with [ a PAM =1, the entropy is defined as:

S(p)=—/Mplnp dM, (1)

where d M is the volume element on M. Thus defined, the entropy of a density p can be thought
of as a measure of its “concentration”. If some part of the mass of p is very nearly concentrated
in a multiple of a Dirac mass, then S(p) can be very negative. I am mainly interested in the case
in which M is the phase space of some classical system. In that case, one refers to p as a classical
density, and S(p) as its classical entropy.

The uncertainty principle limits the extent of possible concentration in phase space: for instance,
it prevents both the momentum variables p and the configuration variables ¢ from taking on well-
defined values at the same time. Indeed, a quantum mechanical density p® is a non-negative
operator on the Hilbert space H (defined to be the state space of the quantum system), having
unit trace. Then the quantum entropy (or von Neumann entropy) of p® is defined by:

S9p?) = —Tr p?Inp? . (2)
Since all of the eigenvalues of p? lie in the interval [0,1], it is clear that
S%(p?) = 0. (3)

As Wehrl [Weh] emphasized, when one considers a quantum system and its corresponding
classical analogue, not all of the classical probability densities on the phase space M can correspond
to physical densities for the quantum system and one might expect a lower bound on the classical
entropy of those probability densities that do correspond to actual quantum states.

There is a natural way to make the correspondence between quantum states and classical
probability densities on phase space, which goes back to Schrodinger. It is based on the coherent
state transform, which is an isometry £ from the quantum state space H into L?>(M), the Hilbert
space of square integrable functions on the classical phase space M. Since it is an isometry, if ¢ is
any unit vector in H,

py = | L

is a probability density on M. Wehrl proposed defining the classical entropy of a quantum state
in this way (note the the corresponding density matrix has rank one, and hence the von Neumann
entropy would be zero, for a “pure state”). The Wehrl entropy is defined in terms of the coherent



states for the quantum system and is bounded below by the quantum entropy. It has several
physically desirable features such as monotonicity, strong subadditivity, and of course, positivity.
Wehrl identified the class of probability densities arising through the coherent state transform as
the class of quantum mechanically significant probability densities on M, and conjectured that
corresponding to (3), there should be a lower bound on S(|£|?) as 9 ranges over the unit sphere
in ‘H.

Specifically, when H is L?(R, dz), so that the classical phase space is R? with its usual symplectic
and Riemannian structure, Wehrl conjectured and Lieb [Lie] proved that the lower bound on
S(|£]?) is attained when 1) is a minimal uncertainty state ¥min, also known as a Glauber coherent
state. That is:

inf S(|ILy[*) = S(LYI) - (4)
lloll7=1
Natural analogues of the Wehrl conjecture can be formulated for other state spaces and other
coherent state transforms. In fact, the Wehrl conjecture was first generalized to the SU(2) coherent
states by Lieb. The irreducible unitary representations of SU(2) are indexed by a half-integer 7,
which is the quantum number in this context. Lieb conjectured that the Wehrl entropy is minimized
by coherent states generated from the least weight vectors in the various unitary representations of
SU(2). Thus there is a conjectured lower bound for each value of the quantum number j. Although
a proof of the full conjecture (i.e. for all values of j) is still awaited, Schupp [Sch] proved it for
j =1and j = 3/2. Later Bodmann [Bod] deduced a lower bound for the Wehrl entropy of SU(2)
coherent states, for which the high spin asymptotics coincided with the conjectured estimate up to,
but not including, terms of the first and higher orders in the inverse of spin quantum number j.
Bodmann did this by proving a sharp LP bound on the range of the coherent state transform.
This led to a proof of an analogue of Lieb’s conjecture for certain Renyi entropies: for any p > 1
and any classical density p, define its Renyi entropy as

Su(6) = = (el (5)

where ||p||, is the LP norm of p. Then it is easy to see that

lim Sp(p) = S(p) -

Bodmann derived his bound on Renyi entropies from a Sobolev type inequality and a Fisher infor-
mation identity, which is another type of concentration bound on the range of the coherent state
transform. The Fisher information /(p) of a probability density p on M is defined by:

I(p)—/ V% d/\/l—4/ VA2 dM .
M M

For the Glauber coherent state transform, Carlen [Car] proved that all classical densities on R?
arising through the coherent state transform had the same finite value of the Fisher information.
He then used that together with the logarithmic Sobolev inequality (cf. [Gro]) to give a new proof
of Wehrl’s conjecture, and to show that the lower bound in (4) is attained only for Glauber coherent
states. Bodmann proved an analogue of Carlen’s result for Fisher information, and used it, together
with a sharp Sobolev inequality (instead of the sharp logarithmic Sobolev inequality) to obtain his
Renyi information bounds.

The problem of investigating an analogue of the Lieb-Wehrl conjecture for the group SU(1,1)
was suggested to me by my advisor Professor Eric Carlen. The representations of SU(1, 1) belonging



to a discrete series, are labeled by a half-integer k, the relevant quantum number in this context.
While the classical phase space for SU(2) is the sphere S2, for SU(1,1) the classical phase space is
the hyperbolic plane H?, or equivalently, the unit disk . It is natural to conjecture that, here too, the
coherent states generated by the least-weight vector of the representation provide a lower bound on
the entropy, as in Lieb’s conjecture for SU(2). In a paper titled “Optimal Concentration for SU(1, 1)
Coherent State Transforms and An Analogue of the Lieb-Wehrl Conjecture for SU(1,1)” (submitted
to Communications in Mathematical Physics), I proved that this is indeed asymptotically true, in
the semi-classical limit. To arrive at this result, I proved a number of theorems concerning analysis
in H?, that are of independent interest. Specifically, a new sharp Sobolev inequality as well as a
sharpened entropy—energy inequality in H? have been derived. The Sobolev inequality is

4 2%k — 1\ [kp—1\Y? (kq—1
q /224, > q

where p = g+ 1/k, ¢ > 2, kq > 2 and the measure dv is a constant times the standard measure
on H?, obtained from the Poincare metric; all of the cases of equality have been determined.
To prove the sharpness of the Sobolev inequality mentioned above, I needed to prove and use a
uniqueness result for radial solutions of a semi-linear Poisson equation on the hyperbolic plane.
The nature of this equation on H? is substantially different from that of similar equations which
have been investigated in the past. The methods developed in my paper may well be useful for
other uniqueness problems.
I then proved the following Fisher information identity:

1
[ 1¥1£widy = Sk [ icupan

where ¢ is a positive number such that k¢ > 2. As mentioned above, an identity like this was first
proved by Carlen [Car] for coherent state transforms associated with the Glauber coherent states.

The sharp Sobolev inequality and the Fisher information identity were used to derive an LP norm
estimate, which in turn led to a lower bound for the Wehrl entropy of coherent state transforms
via a convexity argument, the result being:

1
2y > .
SL0(OP) = 26 (14 50 ) ©)
The conjectured bound, on the other hand, is:
> .
SULHQP) 2 5 7)

It is seen that for high values (this gives us the semi-classical limit) of the quantum number £,
the lower bound (6) coincides with the analogue (7) of the Lieb-Wehrl conjecture, up to but not
including terms of first and higher orders in k1.

The methods used to bound the entropy also served to produce a new, sharpened entropy—energy
inequality for functions on H?. An entropy-energy inequality is an inequality of the form

—S(p) < @um(I(p)) , (8)

for some function ®. Since the Fisher information can be expressed in terms of an energy integral
as shown before, the entropy—energy terminology is natural. For a given Riemannian manifold



M, the entropy—energy problem is to determine the least function ® : Ry — R for which (8) is
true. There has been a lot of investigation of entropy—energy inequalities for various Riemannian
manifolds (see [Bec|, [Heb], [Rot] for example). Though there has been significant progress, many
questions are still open.
In the case of H? |, Beckner proved [Bec] that the entropy-energy inequality for H? holds with
the same ® as in R?. That is,
(1) < Dpa(t),

for all ¢ > 0. This result is asymptotically sharp in the sense that

(I)H2 (t)
1m =
t—0 (I)R2 (t)

However, the inequality is actually strict, and significantly so, for large ¢. I proved in my paper an
improved bound, ® 2 (t) < Pp2(t) and gave sharpened estimates on ® 2 (t).

It is interesting to observe how sharp bounds on the Fisher information of coherent state trans-
forms can lead to sharp Sobolev type inequalities in a larger function space, which can then be
used to derive entropy—energy inequalities on various symplectic Riemannian manifolds that are
classical phase spaces, e.g., the sphere and the hyperbolic plane. These manifolds are determined
by the groups for which we construct the coherent states. It seems natural to ask: for which other
groups having unitary irreducible representations in spaces of holomorphic functions, can one ob-
tain bounds on the Fisher information of the coherent state transforms and formulate analogues of
the Lieb-Wehrl conjecture? This is one of the issues my research currently focuses on.

Another area that interests me is that of applications of coherent state methods to physical
problems. The coherent state methods have proved quite useful in a number of physical problems
[Per]. In most such cases, the coherent state methods reduce the quantum problems to their
classical analogues. A few examples of such problems are: parametric excitation of a quantum
oscillator (this can be solved using the SU(1, 1) coherent state method), spin motion in a variable
magnetic field (SU(2) coherent state method is very useful here), Boson pair production in a variable
homogeneous external field etc. [Per]. One thus expects that the entropy and Fisher information
bounds mentioned before, would prove useful in a variety of physical problems and this issue forms
a significant part of my current research.
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