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Abstract. We define an abstract setting suitable for investigating pertur-
bations of metric structures generalizing the notion of a metric abstract el-
ementary class. We show how perturbation of Hilbert spaces with an au-
tomorphism and atomic Nakano spaces with bounded exponent fit into this
framework, where the perturbations are built into the definition of the class
being investigated. Further, assuming homogeneity and some other proper-
ties true in the example classes, we develop a notion of independence for this
setting and show that it satisfies the usual independence axioms. Finally we
define an isolation notion. Although it remains open whether this isolation
gives any reasonable form of primeness, we prove that dominance works.

1. Introduction

In metric model theory there are examples of classes which come down in

stability hierarchy if instead of the usual metric way of measuring stability one

measures stability up to perturbations. Some come down as far as from non-

superstability to omega-stability. So far, however, this phenomenon has mainly

been observed but not used. This paper develops techniques to use the improve-

ment in stability that perturbations offer, in particular it shows how ω-stability

up to perturbation can be used to prove better behaviour of independence and

constructible models than what one gets from usual metric stability or super-

stability.

The idea of perturbations was introduced by Ben Yaacov in [1] and [2]. We

take a slightly different perspective to perturbations. Instead of looking at later

modifications of the structures and the mappings arising from such, we take as

our starting point the mappings themselves and introduce classes of generalized

isomorhpisms. These are considered a form of isomorphisms and satisfy more or

less the same properties as Ben Yaacov’s perturbation mappings.

To allow for a natural treatment of generalized isomorphisms we use a syntax-

free approach, that of metric abstract elementary classes. It was developed in
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[11] and is a very natural generalization of Shelah’s abstract elementary classes;

basically the same definition was mentioned in [15]. The novelty of the approach

in this paper is the adding of classes Fε of so-called ε-isomorphisms, which allow

for the built-in treatment of perturbations. The abstract framework also gives a

natural approach to unbounded structures, avoiding the somewhat cumbersome

“emboundment” that Ben Yaacov introduces in [1] in order to be able to perturb

the norm of Banach spaces.

As it seems that compactness (in the sense of metric model theory) is of

limited value when everything is done only up to perturbations, we take ho-

mogeneity as our starting point and point out when stronger assumptions are

needed. So as in [11] our basic framework is that of a metric abstract elementary

class with countable Löwenheim-Skolem number (where size is measured by the

density character), arbitrarily large models, joint embedding, amalgamation and

homogeneity for Galois types (i.e. with respect to genuine isomorphisms). In

addition we assume a form of amalgamation with respect to the ε-isomorphisms

and a stronger perturbation property linking perturbation mappings to Galois

types. The topology we consider on the type space is given by a metrizable

uniformity d
p, which resembles the distance arising in Ben Yaacov’s work by

combining perturbation and the moving of realizations of types. In our setting

it, however, also includes the moving of parameters, so our notion of ω-stability

is weaker than “ω-stability up to perturbation” in [2].

A natural example of a metric abstract elementary class with perturbations

(although not presented here in further detail) is the class of all Banach spaces,

where the perturbation mappings are Banach-space isomorphisms (i.e. linear

homeomorphisms). Then the amalgamation property is given by Kislyakov’s

construction, described in [8] (and in [11] in the setting of a metric abstract

elementary class). It may be of interest to people in functional analysis, that the

monster model constructed using this form of amalgamation has the property,

that any Banach-space isomorphism between two small enough spaces and with

any given isomorphism constant, extends to a Banach-space automorphism of

the monster with the same isomorphism constant. Further the perturbation

property in this class arises from the fact that in the monster model finite tuples

have the same almost isometric type if and only if they have the same Galois

type.

Our main examples consist of on one hand Hilbert spaces with an automor-

phism and on the other atomic Nakano spaces with bounded exponent. Hilbert

spaces with automorphisms and perturbations of them have been studied by

Ben Yaacov, Berenstein, Usvyatsov and Zadka in [4] and [7], and they worked
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as a first testing ground for additional assumptions on the perturbation map-

pings, needed for finding limits in constructions. Nakano spaces with bounded

exponent have been studied by Poitevin and Ben Yaacov. The atomic case falls

outside the compact scope and thus offers a non-compact example still satisfying

the assumption of complete type spaces. This is a limit type assumption with a

strong flavour of compactness and it is used in most of the constructions.

Having established a framework for structures with perturbation we develop

an independence notion based on splitting and show that this independence

notion satisfies the usual independence axioms (to the extent natural for a met-

ric structure). Using this independence notion we also show that ω-dp-stable

structures with complete type-spaces are λ-dp-stable for all λ and further that

ω-dp-stability and complete type spaces or good models imply ordinary stability

in all λ = λℵ0 . We want to remind the reader that in stable classes there tends

to be only one independence notion i.e. any two are the same over the sets over

which both behave well. One example of this phenomenon will be proved.

Finally we introduce a notion of isolation. This enables us to define primary

sets, but the question whether these are prime in any reasonable sense remains

open. However, we do prove dominance for these primary sets.

In section 2 we introduce the framework and present our notational conven-

tions. Section 3 shows how Hilbert spaces with an automorphism fit into the

framework. Section 4 studies atomic Nakano spaces with bounded exponent.

In section 5 we investigate the d
p and present two ways of finding limit types.

Section 6 presents the concept of ω-dp-saturation, which corresponds to Ben Yaa-

cov’s p-approximate ℵ0-saturation. We see how to find ω-dp-saturated sets and

prove that under various conditions true in the Hilbert example ω-dp-saturated

models are almost isomorphic, a result obtained for continuous logic with pertur-

bations by Ben Yaacov [1, Proposition 2.7]. Section 7 defines splitting and the

independence notion based on it. Here we prove that the independence axioms

hold and see how our stability and independence notions relate to the standard

ones in homogeneous model theory. Finally section 8 deals with isolation.

The authors would like to thank Hans-Olav Tylli for many helpful discussions

on Hilbert spaces and their operators.

2. Generalizing metric abstract elementary classes

When reading the following definitions one may keep in mind the following

example: (in sections 3 and 4 we give the main examples): Let K be the class of

all Banach spaces and let 4 be the closed subspace relation. f : A → B is in Fε

if f is an onto linear isomorphism in the functional analysis sense (i.e. a linear

homeomorphism) with ‖f‖ and ‖f−1‖ at most eε, where e = limn→∞

(

1 + 1
n

)n
.
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The exponential is used in order for the epsilons to behave nicely when composing

functions, see Definition 2.2.

As in [11] we investigate a class of complete metric space structures of a fixed

countable vocabulary. The structures are many-sorted and of the form

M = 〈A0,A1, . . . ,R, d0, d1, . . . , c0, c1, . . . , R0, R1, . . . , F0, F1, . . . 〉,
where

(1) each Ai is a complete metric space with metric di (with values in R),

(2) R is an isomorphic copy of the ordered field of real numbers

(R,+, ·, 0, 1,≤, |·|),
(3) each ci is a constant and each Ri a relation,

(4) each Fi is a function Fi : B0×· · ·×Bm → Bm+1 where Bj ∈ {A0,A1, . . . ,R}.
We will use some shorthand notation. When we talk about elements of a

model M we mean an element of some sort of M. a ∈ M refers to a finite tuple

of elements of M. For a set A, A refers, depending on whether we are inside a

model or not, to either the sortwise metric closure of A or some completion of

A. Since size is measured with respect to density character, |A| = dens(A). For

M a many-sorted model, |M| is the sum of the density characters of its sorts.

The cardinality of a set A is denoted card(A).

Both models and their domains will be denoted by A, B etc., A, B etc. refers

to sets not necessary being models. After we construct a monster model M,

models will be submodels of M with size small enough compared to |M|. Also

by A ⊂ M we mean that A is a small enough subset. (The notion of small

enough will become apparent when we define M.)

We consider the distance of two finite tuples d(a, b), where a and b have the

same length, to be the maximum of their coordinatewise distances. When A

and B are finite sets of the same cardinality we consider them to be ordered and

hence by d(A,B) mean this maximum of coordinatewise distances for a fixed

ordering.

In [11] MAECs were defined as follows:

Definition 2.1. We call a class (K,4K) of τ -structures for some fixed vocabulary

τ a metric abstract elementary class, MAEC, if the following hold:

(1) Both K and the binary relation 4K are closed under isomorphism.

(2) If A 4K B then A is a substructure of B (i.e. each sort of A is a

substructure of the corresponding sort of B).

(3) 4K is a partial order on K.

(4) If (Ai)i<δ is a 4K-increasing chain then there is a model
⋃

i<δ Ai, unique

up to the choice of completion such that
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(a)
⋃

i<δ Ai ∈ K,

(b) for each j < δ, Aj 4K

⋃

i<δ Ai.

In addition if each Ai 4K B ∈ K and the completion is the metric closure

in B then
⋃

i<δ Ai 4K B.

(5) If A,B, C ∈ K, A 4K C, B 4K C and A ⊆ B then A 4K B.

(6) There exists a Löwenheim-Skolem number LSd(K) such that if A ∈ K

and A ⊂ A then there is B ⊇ A such that |B| = |A| + LSd(K) and

B 4K A.

We generalize this by loosening the requirements of being an isomorphism

and add a class F of homeomorphisms to play the role of isomorphisms.

Definition 2.2. (K,4,Fε)ε≥0 is a metric abstract elementary class with pertur-

bations if

(1) (K,4) is a MAEC.

(2) the Fε are collections of bijective mappings between members of K such

that:

(a) Fδ ⊆ Fε for δ < ε, F0 =
⋂

ε>0 Fε and F0 is the collection of genuine

isomorphisms between models in K,

(b) for all ε > 0, all members of Fε satisfy a common modulus of uniform

continuity, i.e., there is a function ∆ε : (0,∞) → (0,∞) such that

for any f : A → B with f ∈ Fε, any x, y ∈ A, and any δ > 0,

if d(x, y) < ∆ε(δ) then d(f(x), f(y)) ≤ δ,

(c) if f ∈ Fε then f−1 ∈ Fε,

(d) if f ∈ Fε, g ∈ Fδ and dom(g) = rng(f) then g ◦ f ∈ Fε+δ.

(e) if (fi)i<α is an increasing chain of ε-isomorphisms, i.e fi ∈ Fε, fi :

Ai → Bi, Ai 4 Ai+1, Bi 4 Bi+1 and fi ⊆ fi+1 for all i < α,

then there is an ε-isomorphism f :
⋃

i<αAi → ⋃

i<α Bi such that

f ↾ Ai = fi for all i < α.

Definition 2.3 (ε-isomorphisms and -embeddings). If ε ≥ 0, we refer to the

mappings f ∈ Fε as ε-isomorphisms. Correspondingly ε-automorphisms are ε-

isomorphisms f : A → A for some A. If A,B ∈ K and f : A → B is a mapping

such that f : A → f(A) is an ε-isomorphism and f(A) 4 B, then f is called an

ε-embedding. Here f(A) means the image of A with the structure induced by

the inclusion mapping f(A) →֒ B.

It is worth noting that if f : A → B is an ε-isomorphism and A′ 4 A then

f ↾ A′ need not be an ε-embedding.
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Definition 2.4 (Joint embedding property). K is said to have the joint embed-

ding property if for any A,B ∈ K there are C ∈ K and 0-embeddings f : A → C
and g : B → C.

Remark 2.5. Note that since a MAEC is closed under 0-isomorphisms, when

applying the joint embedding property we may assume that one of the embed-

dings is the identity mapping. However, with ε-embeddings we need to be more

careful, since they do not necessary preserve 4-submodels.

Definition 2.6 (Amalgamation property). K is said to have the amalgamation

property if whenever A,B, C ∈ K, A 4 B and f : A → C is an ε-embedding then

there are B′, C′ ∈ K with B′ < B, C′ < C and an ε-embedding g : B′ → C′ with

g ⊇ f .

Remark 2.7. Note that, since 0-embeddings preserve 4-submodels, this version

implies the ordinary amalgamation property: if A 4 B and A 4 C then there is

D ∈ K with D < C and a 0-embedding f : B → D with f ↾ A = id.

We also have the following:

Lemma 2.8. Assuming the amalgamation property, if A′,A ∈ K, A′ 4 A and

f : A′ → A is an ε-embedding, then there are B,D ∈ K with A 4 B 4 D and

an ε-embedding g : B → D with g ⊇ f .

Proof. By the amalgamation property there are B < A and C < A and an ε-

embedding g′ : B → C with g′ ⊇ f . Then we may use standard amalgamation

(with 0-embeddings) and amalgamate B and C over A. So we get D < B and a

0-embedding h : C → D with h ↾ A = id. Then g = h ◦ g′ is an ε-embedding of

B into D and g ↾ A′ = h ◦ g′ ↾ A′ = h ◦ f = f . �

Definition 2.9 (Galois-type in a model). For A,B ∈ K and {ai : i < α} ⊂ A,

{bi : i < α} ⊂ B we say that (ai)i<α and (bi)i<α have the same Galois-type in A
and B respectively,

tg((ai)i<α/∅;A) = tg((bi)i<α/∅;B),
if there are C ∈ K and 0-embeddings f : A → C and g : B → C such that

f(ai) = g(bi) for every i < α.

The amalgamation property ensures that having the same Galois-type is a

transitive relation. It it also true that elements have the same Galois-type in a

model and its 4-extensions and that 0-embeddings preserve Galois-types.

Definition 2.10 (0-homogeneity). We call K 0-homogeneous or Galois-homogeneous

if whenever A,B ∈ K, {ai : i < α} ⊂ A, {bi : i < α} ⊂ B and for all n < ω,
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i0, . . . , in−1 < α

tg((ai0 , . . . , ain−1)/∅;A) = tg((bi0 , . . . , bin−1)/∅;B)

then

tg((ai)i<α/∅;A) = tg((bi)i<α/∅;B).

With the properties defined so far we can construct a 0-homogeneous, ε-

model-homogeneous monster model.

Theorem 2.11. Let (K,4,Fε)ε≥0 be a metric abstract elementary class with

perturbations satisfying the joint embedding property, the amalgamation property

and 0-homogeneity. Let µ be a given infinite cardinal. Then there is M ∈ K

satisfying:

(1) (µ-universality): M is µ-universal, i.e. for all A ∈ K with |A| < µ there

is a 0-embedding f : A → M.

(2) (µ-0-homogeneity): If (ai)i<α and (bi)i<α are sequences of elements of M

such that α < µ and for all n < ω and i0, . . . , in−1 < α

tg((ai0 , . . . , ain−1)/∅;M) = tg((bi0 , . . . , bin−1)/∅;M)

then there is a 0-automorphism f of M such that f(ai) = bi for all i < α.

(3) (µ-ε-model-homogeneity): If A 4 M, |A| < µ and there is an ε-

embedding f : A → M then there is an ε-automorphism of M extending

f .

Proof. Let µ be given and choose a regular κ > µℵ0. We define models Aα

for α < κ inductively as follows: When α = 0, we use the joint embedding

property to construct a µ-universal model A0. When α = δ is a limit, we let

Aδ =
⋃

β<δ Aβ. When α = β + 1 we take care of properties (2) and (3) by an

inner induction. Let (fβ
i )i<κβ

list all partial mappings f : Aβ → Aβ satisfying

the property that for all finite b ∈ dom(f)

tg(b/∅;Aβ) = tg(f(b)/∅;Aβ).

Further let (gβi )i<κβ
list all mappings g such that g : A′ → Aβ is an ε-embedding

for some ε > 0 and A′ 4 Aβ. Then we define an increasing chain of models Bi,

i < κβ, such that

• B0 = Aβ,

• Bδ =
⋃

i<δ Bi, when δ < κβ is a limit,

• there is a 0-embedding F β
i : Aβ → Bi+1 extending fβ

i ,

• if gβi is an ε-embedding A′ → Aβ then there is some B′ with Bi 4 B′ 4

Bi+1 and an ε-embedding Gβ
i : B′ → Bi+1 extending gβi .
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When constructing Bi+1 first note that by 0-homogeneity and the fact that

Galois-types are preserved under 4-extensions there are B′
i+1 and 0-embeddings

f : Aβ → B′
i+1 and g : Bi → B′

i+1 such that for all b ∈ dom(fβ
i ), f(b) = g ◦ fβ

i

and as in 2.5 we may assume g is the identity. Hence f gives the required F β
i .

Next note that given gβi as above A′ 4 Aβ 4 Bi 4 B′
i+1, so by Lemma 2.8 there

are Bi+1 < B′ < B′
i+1 and an ε-embedding Gβ

i : B′ → Bi+1 extending gβi .

Hence we can define Bi for all i < κβ and then let Aα =
⋃

i<κβ
Bi.

Finally let M =
⋃

i<κAi and note that since cf(κ) > ω, M = M. Then

clearly M is µ-universal and to see that properties (2) and (3) hold note that

inverses of type-preserving mappings (0-embeddings) are type-preserving and

inverses of ε-embeddings are ε-embeddings. Hence any given embedding with

dom < µ can be extended by a back-and-forth argument to an automorphism of

M. Here we use property (2e) of Definition 2.2 to continue the back-and-forth

construction through limits. �

As usual, from now on we will work inside a monster model M as in 2.11 for

some large enough µ. Then when we write A ⊂ M or A 4 M this will include

the assumption that A or A has size (i.e. density character) less than µ.

Notation 2.12. We denote by Autε(M/A) the set of ε-automorphisms of M

fixing A pointwise.

Definition 2.13 (Galois-type). We say that (ai)i<α and (bi)i<α have the same

Galois-type over A, tg((ai)i<α/A) = tg((bi)i<α/A), if there is f ∈ Aut0(M/A)

such that f(ai) = bi for every i < α.

Note that for A = ∅ the above definition coincides with the notion of Galois-

type in M in Definition 2.9.

In [11] we introduced the perturbation property, to achieve what the Per-

turbation lemma gives in [10]. Here we will define an even stronger version of

perturbation tying our ε-isomorphisms and Galois-types together. The role of

this property will be discussed in section 5.

We define a nonnegative real-valued function d
p on the set of pairs of Galois-

types of finite tuples over the empty set.

Definition 2.14. For a, b ∈ M and ε > 0 we write

d
p(tg(a/∅), tg(b/∅)) ≤ ε

if there are ε-automorphisms f and g of M such that d(f(a), b) ≤ ε and

d(g(b), a) ≤ ε.

The perturbation property then tells us that this function vanishes on (p, q)

exactly when p = q:
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Definition 2.15 (Perturbation property). Assume K satisfies the joint embed-

ding property, the amalgamation property and 0-homogeneity so that M can

be constructed. Then K is said to have the perturbation property if whenever

a, b ∈ M are such that d
p(tg(a/∅), tg(b/∅)) = 0 (i.e. d

p(tg(a/∅), tg(b/∅)) ≤ ε for

all positive ε) then tg(a/∅) = tg(b/∅).

We are now ready to list the assumptions we will make on K.

Assumption 2.16. From now on we will assume that (K,4,Fε)ε≥0 is a metric

abstract elementary class with perturbations satisfying the following:

• LSd(K) = ω,

• K has arbitrarily large models,

• K has the joint embedding property 2.4,

• K has the amalgamation property 2.6,

• K is 0-homogeneous as defined in 2.10,

• K has the perturbation property 2.15

Hence we can construct a µ-universal, µ-0-homogeneous and µ-ε-model-homogeneous

monster model M for some µ larger than any cardinality we will encounter and

consider only 4-submodels of M.

Beside these assumptions we will mostly need to assume that the type space

is complete with respect to d
p (actually with respect to a metrizable uniformity

defined by d
p, see section 5), more specifically:

Definition 2.17. We say that K has complete type-spaces if d
p-Cauchy se-

quences of types over ∅ have a limit, i.e. if (ai)i<ω is a sequence with the property

that for all ε > 0 there is n0 < ω such that for all m,n ≥ n0

d
p(tg(am/∅), tg(an/∅)) < ε,

then there exists some a with the property that for all ε > 0 there is n0 < ω

such that for all n > n0

d
p(tg(a/∅), tg(an/∅)) < ε.

Remark 2.18. Assuming perturbation, the definition above implies that d
p-

Cauchy sequences of types with finite parameter sets have limits, i.e. if

(tg(anA/∅))n<ω is a d
p-Cauchy sequence then there is some a such that tg(aA/∅)

is a limit type of the sequence. To prove this, use the above property for the

sequence (tg(anA/∅))n<ω. This has a limit type realized by some a′A+. But

d
p(tg(A/∅), tg(A+/∅)) < ε for all ε > 0 so by perturbation they have the same

Galois-type and we may find f ∈ Aut0(M) with f(A+) = A. Then a = f(a′) is

the desired limit element.
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Completeness of type-spaces is our substitute for compactness. It, however,

is a weaker property, as it holds in non-compact classes: In section 4 we show

that atomic Nakano spaces with bounded exponent satisfy completeness of type-

spaces, although not even the unit balls of these spaces form a compact model

class.

In some constructions the assumption of completeness of type-spaces can be

replaced by the assumption of models being good (i.e. the pair (A,A) is good).

Definition 2.19. If a ∈ A and b ∈ B, we write

dε(t
g(a/∅;A), tg(b/∅;B)) < δ

if there are A′ < A and B′ < B and an ε-embedding f : A′ → B′ such that

d(f(a), b) < δ.

We then say that f : A → B, for A ⊂ A is a weak ε-embedding if for all

a ∈ A, dε(t
g(a/∅;A), tg(f(a)/∅;B)) < δ for all δ > 0.

Definition 2.20. Assume A ⊆ A. We say that the pair (A,A) is good if for all

ε > 0 there is some δ > 0 such that if f : A → B is a weak δ-embedding then

there are A′ < A, B′ < B and an ε-embedding g : A′ → B′ such that g ⊇ f .

(Note that g ↾ A need not be an ε-embedding.)

Definition 2.21. When A ⊆ M, we say that A is good in M if for all ε > 0

there is some δ > 0 such that for all weak δ-embeddings f : A → M there is

g ∈ Autε(M) such that g ⊇ f .

Lemma 2.22. Let µ be as in the construction of M. Assume A ⊂ M and

|A| < µ. Then A is good in M if and only if (A,A) is good for some A 4 M

with A ⊆ A and |A| < µ. Especially A 4 M, with |A| < µ, is good in M if and

only if (A,A) is good.

Proof. First note that if |A| < µ and a given mapping extends to an ε-embedding

A 4 A′ → B′, we may always assume |A′|, |B′| < µ, since we by the assumption

LSd = ω and a back-and-forth construction may find such small enough models

(assuming µ > ℵ0). Hence if A is good in M, (A,A) is good for any A ⊃ A in M.

On the other hand, if (A,A) is good for some small enough A, and f : A′ → B′

is and ε-embedding extending some given weak embedding of A, we may assume

A′,B′ are small enough and hence inside M (by universality). Then f has an

extension to an automorphism inside M. �

In this context the natural notion of stability will be with respect to d
p.

However, for this we first need to generalize the definition.
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Definition 2.23. For a, b ∈ M and A ⊂ M, we define

d
p(tg(a/A), tg(b/A)) = sup{dp(tg(ac/∅), tg(bc/∅)) : c ∈ A finite}.

Then stability is defined in the natural way.

Definition 2.24. We say that K is λ-dp-stable if for any set A with |A| ≤ λ, the

set of types over A has density λ with respect to d
p, i.e. looking at the situation

inside M, there is a set A∗ of cardinality λ such that for any a ∈ M and ε > 0

there is some a′ ∈ A∗ such that dp(tg(a/A), tg(a′/A)) < ε.

In section 5 we will see that d
p defines a metrizable uniformity on the type

space and that the above definition hence makes sense.

3. Hilbert spaces with an automorphism

We now turn to an example of a MAEC with perturbations investigated in

[7] and [4] in the continuous setting as an example of a theory of continuous

logic that is not ω-stable but ω-stable up to perturbation (see e.g. [1]). The idea

is, that you allow arbitrarily small perturbations of parts of the language of the

structure. In the setting of metric abstract elementary classes with perturba-

tions, these perturbations are built into the Fε’s.

Definition 3.1. Let KH be the class of complex Hilbert spaces equipped with

an automorphism τ , i.e. τ is a surjective unitary operator. We then define

(H ′, τ ′) 4 (H, τ) as the ordinary submodel relation i.e. the 4-submodels of

(H, τ) are closed subspaces closed under τ .

When ε ≥ 0 we let f : (H1, τ1) → (H2, τ2) belong to Fε if f is an isometric

isomorphism between the Hilbert spaces H1 and H2 that additionally satisfies

‖τ1 − f−1τ2f‖ ≤ ε

and

‖τ−1
1 − f−1τ−1

2 f‖ ≤ ε

where ‖·‖ is the operator norm defined by ‖T‖ = sup‖x‖=1‖T (x)‖.

Ben Yaacov, Berenstein, Usvyatsov and Zadka consider generic automor-

phisms. Since considering all automorphisms or just the generic ones produce

the same monster model, either choice constitutes an example class and we have

chosen to let τ be any automorphism. Our demands on the ε-isomorphisms

arise from the form of perturbation Ben Yaacov and Berenstein use in [4]: they

define an r-perturbation of (H0, τ0) to (H1, τ1) to be an isometric isomorphism

U : H0
∼= H1 satisfying in addition ‖Uτ0U

−1−τ1‖ ≤ r. This in turn is connected

to a criterion by Ben Yaacov, Usvyatsov and Zadka for an automorphism being



12 ÅSA HIRVONEN AND TAPANI HYTTINEN

generic and the Weyl-von Neumann-Berg theorem. To state these results we

need the definitions of some spectra of a bounded operator.

Definition 3.2. Consider a Hilbert space H and a bounded operator T on H .

Then we can define the spectrum, the point spectrum and the essential spectrum

of T by:

σ(T ) = {λ ∈ C : T − λI is not invertible},
σp(T ) = {λ ∈ C : ker(T − λI) 6= 0},
σe(T ) = {non-isolated points of σ(T )} ∪

{λ ∈ C : dim ker(T − λI) = ∞}.
Fact 3.3. (Ben Yaacov, Usvyatov, Zadka [7]) Let H be a Hilbert space and let

τ be a unitary operator on H. Then (H, τ) is existentially closed as a model of

the continuous first order theory of infinite dimensional Hilbert spaces with an

automorphism if and only if σ(τ) = S1 where S1 is the unit circle.

Definition 3.4. Let H be a Hilbert space and let T0, T1 be bounded operators on

H . Then T0 and T1 are approximately unitarily equivalent if there is a sequence

of unitary operators (Un)n<ω such that ‖T1 − UnT0U
∗
n‖ → 0.

Fact 3.5. (Weyl-von Neumann-Berg Theorem) Let H be a separable Hilbert

space and let T0, T1 be normal operators on H. Then T0 and T1 are approximately

unitarily equivalent if and only if

(1) σe(T0) = σe(T1),

(2) dimker(T0 − λI) = dimker(T1 − λI) for all λ ∈ C\σe(T0).

This characterization of approximately unitarily equivalent spaces is the key

point in the proof of ω-stability up to perturbation, see [4] and [7].

Fact 3.6. (Ben Yaacov, Berenstein, Usvyatsov, Zadka) The continuous first

order theory of infinite dimensional Hilbert spaces with a generic automorphism

is ω-stable up to perturbation of the automorphism.

Remark 3.7. The above theory is not ω-stable in the ordinary metric sense i.e.

with respect to the distance defined as the infimum of distances of realizations of

types. This is pointed out in [4, Remark 1.4], where the credit for the observation

is given to Henson and Iovino.

We next turn to the task of proving that the class defined in Definition 3.1

indeed satisfies the assumptions in 2.16.

Lemma 3.8. The class (KH ,4) is a metric abstract elementary class with

Löwenheim-Skolem number ℵ0, having arbitrarily large models and satisfying

joint embedding and 0-homogeneity.
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Proof. It is trivial to see that (KH ,4) forms a MAEC with LSd = ℵ0 and

arbitrarily large models satisfying 0-homogeneity since the class is axiomatizable

in continuous first order logic and joint embedding is taken care of by orthogonal

direct sums. �

Lemma 3.9. The collections Fε defined in 3.1 satisfy the properties of Definition

2.2.

Proof. This is easily seen remembering that in this example ε-isomorphisms are

isometries of the underlying Hilbert spaces. �

Lemma 3.10. The class defined in 3.1 has the amalgamation property.

Proof. Assume (H ′, τ ′) 4 (H, τ) and that f : (H ′, τ ′) → (H1, τ1) is an ε-

embedding. Then we may write (H, τ) = (H ′, τ ′) ⊕ (H ′′, τ ′′) and embed (H, τ)

into (H1, τ1)⊕ (H ′′, τ ′′) with f ⊕ id ⊇ f . �

Since the amalgamation property holds, we have a monster model for the

class and may consider our last property, perturbation.

Lemma 3.11. The class defined in 3.1 has the perturbation property.

Proof. Let a, b ∈ M be such that dp(tg(a/∅), tg(b/∅)) = 0, i.e. for all ε > 0 there

are ε-automorphisms of M mapping a ε-close to b and vice versa. Now consider

the spaces spanned by {τka : k ∈ Z} and {τkb : k ∈ Z} respectively. The

assumption implies that any finite part {τka : −m < k < m} can be mapped

arbitrarily close to the corresponding set {τkb : −m < k < m} by an isometric

isomorphism of the underlying Hilbert space. Hence the Hilbert spaces

Span{τka : k ∈ Z} and Span{τkb : k ∈ Z}

are isometrically isomorphic and since these spaces are closed under τ they are

4-submodels of M. Further, the function mapping each τka to τkb makes no

error in mapping τ , so the isomorphism is a 0-isomorphism of (KH ,4,Fε)ε≥0

and hence extends to a 0-automorphism of M. �

Collecting the results, we have:

Theorem 3.12. The class of Hilbert spaces with an automorphism, with 4 de-

fined as the ordinary submodel relation and the classes Fε defined as in 3.1, forms

a metric abstract elementary class satisfying the assumptions in 2.16.

We also have both completeness of type-spaces and goodness:

Theorem 3.13. KH has complete type-spaces.
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Proof. This follows from the fact that the class of Hilbert spaces with an auto-

morphism is axiomatizable in continuous first order logic and hence closed under

ultraproducts (see [5]). Now let (ai)i<ω be a sequence such that (tg(ai/∅))i<ω

is d
p-Cauchy. By switching to a subsequence if necessary, we may assume

that d
p(tg(aj/∅), tg(ai/∅)) ≤ 2−i for all i < j < ω. Then let fji be a 2−i-

automorphism witnessing this, i.e. satisfying d(fji(aj), ai) ≤ 2−i. Let {ai : i <
ω} ⊂ A 4 M such that A is closed under each fji. Then let D be an ultrafilter

on ω extending the Frechet filter and consider the ultrapower (A)D. Then the

diagonal embeddings of each ai still form a d
p-Cauchy sequence, witnessed by

the functions ((fji)n<ω)/D, which are 2−i-automorphisms of (A)D.

Now the sequence has a d
p-limit, namely a = ((ai)i<ω)/D, and this is seen

by considering the mappings

Fi = ((fji)j<ω)/D,

where we let fji = id if j ≤ i. Since the componentwise mappings of Fi are

isometric automorphisms of the underlying Hilbert space of A and the compo-

nentwise error in mapping τ is at most 2−i, Fi is a 2−i-automorphism of (A)D.

Also clearly the distance of Fi(a) to the diagonal embedding of ai is at most 2−i

for each i < ω.

�

Theorem 3.14. If A ∈ KH then (A,A) is good as defined in 2.20

Proof. Let A ∈ KH and ε > 0 be given. We choose δ = ε/(2 +
√
8) and show

that if f : A → B is a weak δ-embedding, then there are A′ < A and B′ < B
and an ε-embedding g : A′ → B′ extending f .

So let f : A → B be a weak δ-embedding, i.e. for all (finite tuples) a ∈ A
and δ′ > 0 there are A1 < A and B1 < B and a δ-embedding f1 : A1 → B1 such

that d(f1(a), f(a)) < δ′. Since δ-embeddings are isometric isomorphisms of the

underlying Hilbert space, we see that weak embeddings must also be isometric

isomorphisms of the Hilbert space. Further for any a ∈ A with ‖a‖ = 1 and any

δ′ > 0 there is a δ-embedding f1 for the tuple (a, τA(a), τ
−1
A (a)) as above and

hence (noting that τA = τA1 ↾ A and similarly for τB)

‖(fτA − τBf)(a)‖ ≤ ‖(fτA − f1τA)(a)‖+ ‖(f1τA − τB1f1)(a)‖
+‖(τB1f1 − τB1f)(a)‖

≤ δ′ + δ + δ′,

and similarly for τ−1. Hence weak embeddings are isometric isomorphisms of

the underlying Hilbert space satisfying the norm requirements for embeddings

but whose images are not necessarily submodels of the target model, i.e. closed
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under τ . Since f is an isometric isomorphism of the Hilbert space, we however

know, that f(A) must be a closed subspace of B, so writing B = (HB, τB) we

may write HB = H ⊕H ′ where H = rng(f).

We now define A′ = B′ = A⊕ B, (i.e. (HA, τA)⊕ (HB, τB)). Clearly A 4 A′

and B 4 B′ so we just need to find an ε-embedding f ′ : A′ → B′ extending

f . But here we just define f ′ ↾ A = f , f ′ ↾ H = f−1 and f ′ ↾ H ′ = id.

Then f ′ is an isometric isomorphism of the underlying Hilbert spaces and to

see that it satisfies ‖τA′ − f ′−1τB′f ′‖ ≤ ε (we prove only the first condition

since ‖τ−1
A′ − f ′−1τ−1

B′ f ′‖ ≤ ε can be proved similarly) we first consider the parts

separately:

Case 1: If a ∈ HA and ‖a‖ = 1 then since f ′ ↾ A = f we have

‖f ′τA′(a)− τB′f ′(a)‖ = ‖fτA(a)− τBf(a)‖ ≤ δ.

Case 2: If b ∈ H , and ‖b‖ = 1, then b = f(a) for some a ∈ A with ‖a‖ = 1 and

‖fτA(a)− τBf(a)‖ ≤ δ. Hence

‖f ′τA′(b)− τB′f ′(b)‖ = ‖f ′τB(b)− τAf
′(b)‖

= ‖f ′τBf(a)− f ′fτA(a)‖
= ‖τBf(a)− fτA(a)‖
≤ δ.

Case 3: If b ∈ H ′, and ‖b‖ = 1, then since τA′(b) = τB(b) ∈ B, there are x ∈ H

and y ∈ H ′ such that τA′(b) = x+ y. Then

‖f ′τA′(b)− τB′f ′(b)‖ = ‖f ′(x+ y)− (x+ y)‖ = ‖f ′(x) + x‖ ≤
√
2‖x‖.

Now τ−1
A′ (x + y) = b ∈ H ′, so PrH′(τ−1

A′ (x)) + PrH′(τ−1
A′ (y)) = b. Further

‖PrH′(τ−1
A′ (y))‖ ≤ ‖y‖ and since τ−1

A′ (x) is δ‖x‖-close to something in H ,

‖PrH′(τ−1
A′ (x))‖ ≤ δ‖x‖. Hence we have 1 = ‖b‖ ≤ δ‖x‖ + ‖y‖ but by def-

inition of x and y, 1 = ‖b‖2 = ‖x‖2 + ‖y‖2. Hence

1− ‖x‖2 = ‖y‖2 ≥ (1− δ‖x‖)2

and hence

‖x‖ ≤ 2δ

δ2 + 1
≤ 2δ.

Combining this with the result above, we have

‖f ′τA′(b)− τB′f ′(b)‖ ≤
√
2‖x‖ ≤

√
8δ.
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Finally, if a ∈ A′ is arbitrary, there are x ∈ A, y ∈ H and z ∈ H ′ such that

a = x+ y + z. Then

‖(f ′τA′ − τB′f ′)(a)‖ ≤ ‖(f ′τA′ − τB′f ′)(x)‖+ ‖(f ′τA′ − τB′f ′)(y)‖
+‖(f ′τA′ − τB′f ′)(z)‖

≤ δ‖x‖+ δ‖y‖+
√
8δ‖z‖

≤ (2 +
√
8)δ‖a‖ ≤ ε‖a‖.

�

Theorem 3.15. KH is ω-dp-stable. Actually, if A ⊂ M is separable, then there

is a countable set A∗ ⊂ M such that for any a ∈ M and ε > 0 there is some

a′ ∈ A∗ and an ε-automorphism f of M such that f ↾ A = id and d(f(a), a′) < ε.

Proof. This is proved by imitating Ben Yaacov’s and Berenstein’s proof of Fact

3.6. Let A ⊂ M be separable. Then we may consider a separable A 4 M

containing A and by universality of M another separable B 4 M such that τB

has full spectrum and A∩B = {0}. Now consider C = A⊕B. We claim that any

dense (countable) subset of C will do as our A∗. So let a ∈ M. If a ∈ A, there is

nothing to prove. Otherwise consider d = a−PA(a), where PA is the orthogonal

projection onto A. By universality of M, let D be a separable model containing

d with A ∩ D = {0} and such that τD has full spectrum. Fixing an isometric

isomorphism of the Hilbert spaces of B and D and using Fact 3.5 we may for

any ε > 0 find an ε-isomorphism f : D → B. Then idA ⊕ f : A⊕ D → A⊕ B
belongs to Fε and extends to an ε-automorphism of M and (idA⊕f)(PA(a)+d)

is the desired realization in C. �

Remark 3.16. By considerations like the ones in the proof above we see that

all (H, τ) where τ is generic (i.e. has full spectrum) are ω-dp-saturated, see

Definition 6.1.

4. Nakano spaces

In this section we study another example, this one consisting of real-valued

atomic Nakano spaces (variable exponent Lebesgue spaces) with bounded ex-

ponent. Nakano spaces with bounded exponent have been studied by Poitevin

[13] and Ben Yaacov [3] but the purely atomic case falls outside the scope of

continuous logic. When the exponent is unbounded, the simple functions do not

form a dense subset of the Nakano space and thus the spaces fail to form even

a MAEC. However, they can be studied in a somewhat more general framework

that will be presented in another paper by the authors of this one. The class is
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homogeneous giving rise to a nice model theory although ω-stability naturally

fails.

Let (X,Σ, µ) be a measure space and let L0(X,Σ, µ) be the space of all

measurable functions f : X → R up to equality almost everywhere. Further let

p : X → [1,∞) be a measurable function. Define the convex modular Θp(·) :

L0(X,Σ, µ) → [0,∞] by

Θp(·)(f) =

∫

X

|f(x)|p(x)dµ.

The corresponding Nakano space is defined as

Lp(·)(X,Σ, µ) = {f ∈ L0(X,Σ, µ) : Θp(·)(λf) < ∞ for some λ > 0}.
This is a Banach space equipped with the Luxemburg norm

‖f‖p(·) = inf{λ > 0 : Θp(·)(f/λ) ≤ 1}.
In the purely atomic case this boils down to the following: Let I be an index

set and p : I → [1,∞). The modular Θp(·) : {(ai)i∈I : ai ∈ R} → [1,∞] is defined

as follows:

Θp(·)((ai)i∈I) =
∑

i∈I

|ai|p(i).

Then the atomic Nakano space ℓp(·)(I) is defined as follows:

ℓp(·)(I) = {(ai)i∈I : Θp(·)((λai)i∈I < ∞ for some λ > 0}
and finally the Luxemburg norm is defined:

‖(ai)i∈I‖p(·) = inf{λ > 0 : Θp(·)((ai/λ)i∈I) ≤ 1}.
The modular and norm satisfy the following relations:

Fact 4.1 ([9] Corollary 1.1.14 and Lemma 2.4.2). In any Nakano space

(1) if ‖x‖ ≤ 1, then Θ(x) ≤ ‖x‖,
(2) if ‖x‖ > 1, then ‖x‖ ≤ Θ(x).

In addition, if the exponent is bounded

(3) ‖x‖ ≤ 1 if and only if Θ(x) ≤ 1,

(4) ‖x‖ < 1 if and only if Θ(x) < 1.

We will study Nakano spaces as Banach lattices with the vocabulary

LBl = {0,−,+, ·, ‖·‖,∧,∨}
and with the pointwise interpretation of the lattice operators. The class will be

determined by a real r ≥ 1, the bound of the exponent of the spaces.

In [3] Ben Yaacov classifies Banach lattice isometries of Nakano spaces and

proves that up to a measure density change they send characteristic functions to

characteristic functions and preserve both measures and the exponent functions.



18 ÅSA HIRVONEN AND TAPANI HYTTINEN

In the atomic case we can prove a slightly stronger result, as no measure changes

can occur.

Theorem 4.2. Let ℓp(·)(I) and ℓq(·)(J) be atomic Nakano spaces with bounded

exponent and |I| ≥ 2. Denote by (ei)i∈I and (ej)j∈J their standard bases. If U

is a Banach lattice isometry from ℓp(·)(I) to ℓq(·)(J) then U is of the form

U(
∑

i∈I

aiei) =
∑

i∈I

aieσ(i),

where σ is a bijection from I to J satisfying q(σ(i)) = p(i) for all i ∈ I.

Proof. Let ei be a basic vector of ℓp(·)(I) and let x = U(ei) =
∑

j∈J ajej . Now

ei = U−1(
∑

j∈J

ajej) =
∑

j∈J

ajU
−1(ej).

Since U−1 is a lattice isometry, it must preserve disjointness of supports so

1 = | supp(ei)| ≥ | supp(
∑

j∈J ′

ajej)|

from which we deduce that U(ei) = ajej for some j ∈ J . Taking into account

that ‖ei‖ = 1 = ‖ej‖ and ei ≥ 0 in the lattice order for any basic vector, we see

that aj = 1, i.e., U(ei) = ej .

To show that U preserves the exponents let i, k ∈ I and j, l ∈ J be such that

U(ei) = ej , U(ek) = el. For t ∈ [0, 1] define

ft = t
1
pi ei + (1− t)

1
pk ek,

gt = U(ft) = t
1
pi ej + (1− t)

1
pk el.

Now

Θp(·)(ft) = 1 ⇒ ‖ft‖ = 1 ⇒ ‖gt‖ = 1 ⇒ Θq(·)(gt) = 1

so

1 = Θq(·)(gt) = t
qj
pi + (1− t)

ql
pk

i.e.

(1− t)
ql
pk = 1− t

qj

pi

and since this has to hold for all t ∈ [0, 1], we must have ql
pk

=
qj
pi

= 1. �

We wish to study Nakano spaces with respect to generalized isomorphisms.

In [3] Ben Yaacov defines perturbation mappings as follows:

Definition 4.3 (Ben Yaacov). Let (X,Σ, µ) be a measure space and p, q : X →
[1, r] measurable. Define Ep,q : L0(X,Σ, µ) → L0(X,Σ, µ) by

(Ep,q)(f) = sgn(f(x))|f(x)|p(x)/q(x).

Fact 4.4 (Ben Yaacov). Let (N,Θ) = (Lp(·)(X,Σ, µ),Θp(·)) and (N ′,Θ′) =

(Lq(·)(X,Σ, µ),Θq(·)).
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(1) For each f ∈ L0(X,Σ, µ) we have Θ(f) = Θ′(Ep,qf).
(2) Ep,q is bijective and restricts to a bijection between N and N ′.

(3) Ep,q is uniformly continuous on the unit ball of N .

We define our ε-isomorphisms based on Ben Yaacov’s definition.

Definition 4.5. We define the classes Fε to consist of all bijective mappings

U : ℓp(·)(I) → ℓq(·)(J)

given by

U(
∑

i∈I

aiei) =
∑

i∈I

sgn(ai)|ai|p(i)/q(σ(i))eσ(i),

where σ is a bijection I → J satisfying e−ε ≤ q(σ(i))/p(i) ≤ eε.

This definition, however, gives functions that are uniformly continuous only

on bounded subsets of the space. In order to correct this we switch to a metric d

which is equivalent to the one induced by the norm, thus giving the same notion

of closure, but which moves the attention to the unit ball, thus rendering our

ε-isomorphisms uniformly continuous.

Definition 4.6. Let Fλ : ℓp(·)(I) → ℓp(·)(I) be a scaling operator defined by

Fλ((ai)i∈I) = (λ− 1
p(i)ai)i∈I .

Let F : ℓp(·)(I) → ℓp(·)(I) be defined by

F (a) =

{

a if Θ(a) ≤ 1
FΘ(a)(a) otherwise.

and G : ℓp(·)(I) → [1,∞) by

G(a) = max{1,Θ(a)}.
Then define

d(a, b) = ‖F (a)− F (b)‖+ |G(a)−G(b)|.

It is straightforward to check that d is a metric on ℓp(·)(I). We will show that

it is also (topologically) equivalent to the norm metric d‖·‖. For this we need the

following observation.

Lemma 4.7. For any λ > 0, Fλ is a bounded linear mapping satisfying:

• if λ ≥ 1 then λ−1‖a‖ ≤ ‖Fλ(a)‖ ≤ ‖a‖,
• if λ ≤ 1 ‖a‖ ≤ ‖Fλ(a)‖ ≤ λ−1‖a‖.

For η, λ > 0, Fλ ◦ Fη = Fλη.

Proof. Straightforward calculations. �

Proposition 4.8. d is topologically equivalent to d‖·‖.
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Proof. We need to prove that every d-ball contains a ‖·‖-ball and vice versa. So

let x ∈ ℓp(·)(I) and r > 0 be given.

First consider Bd(x, r), the d-ball of radius r around x. Since the exponent

is bounded, by [13, Lemma 2.1.5] Θ : (ℓp(·)(I), ‖·‖) → [0,∞) is uniformly con-

tinuous on bounded subsets. So there is a modulus of uniform continuity ∆ for

Θ on the ‖·‖-ball of radius ‖x‖+ 1 around the origin. Now let ε < min{ r
3
, r
3‖x‖

}
and let r′ > 0 be such that

r′ < min{r/3, 1,∆(ε)}
and additionally, if Θ(x) > 1 (in which case also ‖x‖ > 1), we require

(4.1) r′ < ‖x‖ − 1.

Now let y ∈ B‖·‖(x, r
′). Note that by the assumptions on r′ this implies that

|Θ(x)−Θ(y)| ≤ ε. We wish to show that d(x, y) < r. We have three cases:

Case 1. Θ(x),Θ(y) ≤ 1. Now

d(x, y) = ‖x− y‖+ |1− 1| < r′ < r.

Case 2. Θ(x),Θ(y) > 1. Now

d(x, y) = ‖FΘ(x)(x)− FΘ(y)(y)‖+ |Θ(x)−Θ(y)|
= ‖FΘ(y)(FΘ(x)

Θ(y)

(x)− y)‖+ |Θ(x)−Θ(y)|
≤ ‖FΘ(x)

Θ(y)

(x)− y‖+ |Θ(x)−Θ(y)|
≤ ‖FΘ(x)

Θ(y)
(x)− x‖+ ‖x− y‖+ |Θ(x)−Θ(y)|

≤ sup
i∈I

|
(

Θ(x)

Θ(y)

)− 1
p(i)

− 1|‖x‖+ ‖x− y‖+ |Θ(x)−Θ(y)|

≤ |Θ(y)

Θ(x)
− 1|‖x‖+ ‖x− y‖+ |Θ(x)−Θ(y)|

=
|Θ(y)−Θ(x)|

Θ(x)
‖x‖ + ‖x− y‖+ |Θ(x)−Θ(y)|

≤ ε‖x‖+ ‖x− y‖+ ε

<
r

3
+

r

3
+

r

3
= r.

Case 3. Θ(x) ≤ 1, Θ(y) > 1. Now

d(x, y) = ‖x− FΘ(y)(y)‖+ |1−Θ(y)|
≤ ‖x− FΘ(y)(x)‖+ ‖FΘ(y)(x)− FΘ(y)(y)‖+ |Θ(x)−Θ(y)|
≤ sup

i∈I
|1−Θ(y)−

1
p(i) |‖x‖+ ‖FΘ(y)(x− y)‖+ |Θ(x)−Θ(y)|

≤ |1− 1

Θ(y)
|‖x‖+ r′ + ε

≤ ε‖x‖+ r′ + ε < r.
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Note that the case Θ(x) > 1,Θ(y) ≤ 1 does not occur, since if Θ(x) > 1 then

by (4.1), we have ‖y‖ > ‖x‖ − r′ > 1 in which case also Θ(y) > 1. We have

proved that B‖·‖(x, r
′) ⊆ Bd(x, r).

For the other direction consider B‖·‖(x, r) and let

r′′ < min{r/2, 1, r/(‖x‖+Θ(x) + 1)}

and again, if Θ(x) > 1 we also require

(4.2) r′′ < Θ(x)− 1.

We wish to show that Bd(x, r
′′) ⊆ B‖·‖(x, r), so let y ∈ Bd(x, r

′′). Now again,

by (4.2), the case Θ(x) > 1, Θ(y) ≤ 1 does not occur, so we have three cases:

Case 1. Θ(x),Θ(y) ≤ 1. Now

‖x− y‖ = d(x, y) < r′′ < r.

Case 2. Θ(x),Θ(y) > 1. Now

d(x, y) = ‖FΘ(x)(x)− FΘ(y)(y)‖+ |Θ(x)−Θ(y)|
≥ ‖FΘ(x)(x)− FΘ(y)(y)‖
= ‖FΘ(y)(FΘ(x)

Θ(y)

(x)− y)‖

≥ Θ(y)−1‖FΘ(x)
Θ(y)

(x)− y‖

and thus

‖x− y‖ ≤ ‖x− FΘ(x)
Θ(y)

(x)‖ + ‖FΘ(x)
Θ(y)

(x)− y‖
≤ ‖x− FΘ(x)

Θ(y)
(x)‖ + ‖F 1

Θ(y)
(FΘ(x)(x)− FΘ(y)(y))‖

≤ ‖x− FΘ(x)
Θ(y)

(x)‖ +Θ(y)d(x, y)

≤ sup
i∈I

|1−
(

Θ(x)

Θ(y)

)− 1
p(i)

|‖x‖+ (Θ(x) + r′′)d(x, y)

≤ |1− Θ(y)

Θ(x)
|‖x‖+ (Θ(x) + r′′)r′′

≤ r′′‖x‖+ (Θ(x) + r′′)r′′ ≤ r′′(‖x‖ +Θ(x) + 1) < r.

Case 3. Θ(x) ≤ 1, Θ(y) > 1. Now

d(x, y) = ‖x− FΘ(y)(y)‖+ |1−Θ(y)| ≥ ‖x− FΘ(y)(y)‖,
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so

‖x− y‖ ≤ ‖x− FΘ(y)(y)‖+ ‖FΘ(y)(y)− y‖
≤ d(x, y) + ‖FΘ(y)(y)− y‖
≤ d(x, y) + sup

i∈I
|Θ(y)−

1
p(i) − 1|‖y‖

≤ r′′ + | 1

Θ(y)
− 1|Θ(y)

≤ r′′ + |1−Θ(y)| ≤ r′′ + r′′ < r.

This finishes the proof that Bd(x, r
′′) ⊆ B‖·‖(x, r). �

Proposition 4.9. The metric d is definable in the sense that it is preserved by

all automorphisms of ℓp(·)(I). Thus, the introduction of it does not affect the

automorphisms.

Proof. Ben Yaacov [3, Theorem 3.1] has shown that the modular Θ is definable

in Nakano spaces with bounded exponent and dimension at least two using the

vocabulary for Banach lattices.

Further Fλ is the unique linear operator that preserves supports and satisfies

Θ(Fλ(x)) =
1

λ
Θ(x)

for all x ∈ ℓp(·)(I).

To see that ’preserving supports’ is definable note that for λ ≥ 1, Fλ(ei) ∧
ei = Fλ(ei), thus supp(Fλ(ei)) ⊆ supp(ei) and as Fλ(ei) 6= 0 we must have

supp(Fλ(ei)) = supp(ei). Then the rest follows from Fλ ◦ Fλ−1 = id.

Thus F and G are definable making the metric d definable. �

In order to be able to treat our generalized isomorphisms, we expand the

vocabulary to

Ld
Bl = {0,−,+, ·, ‖·‖,∧,∨, d}

and use d as the distinguished metric on our structures. As it is definable

and (topologically) equivalent to the metric induced by the norm, we preserve

isometries and closures. By Theorem 4.2, when given an atomic Nakano space

ℓp(·)(I) with bounded exponent we can identify its standard basis B(ℓp(·)(I)) =

(ei)i∈I as well as the partition thereof induced by p. Thus we can define:

Definition 4.10. Let (Kr,4) be the class of all structures Banach lattice iso-

metrically isomorphic to some ℓp(·)(I), with p(i) ≤ r (i.e. p(i) ∈ [1, r]) for all

i ∈ I and with |I| ≥ 2.. (Strictly speaking our structures are two-sorted with a

copy of the reals as second sort.)

We then define A 4 B if
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• B(A) = B(B)∩A in which case we may write A = ℓp(·)(I) and B = ℓq(·)(J)

with I ⊆ J ,

• with the notation above p(·) = q(·) ↾ I.

Note that as closures and strong submodels are the same whether we regard

d or the norm as our metric, this definition gives the same model class as would

be obtained without introducing d.

Proposition 4.11. For a given r ∈ [1,∞), (Kr,4) is a MAEC with Löwenheim-

Skolem number ℵ0.

Proof. The first three items of the definition are trivial. For the fourth note that

if 〈Ai: i < δ〉 is an 4-increasing chain then we may write it as 〈ℓpi(·)(Ii) : i < δ〉
where (Ii)i<δ is increasing and pi = pj ↾ Ii for all i < j < δ. As simple functions

are dense in Nakano spaces with bounded exponent (see e.g. [9] Corollary 2.4.10)

the closure of the union is

ℓp(·)(
⋃

i<δ

Ii)

where p =
⋃

i<δ pi.

Also the fifth item of the definition is easy and for the Löwenheim-Skolem

number note that functions over I with finite support and rational values are

dense in ℓp(·)(I). �

Proposition 4.12. (Kr 4,Fε)ε≥0 is a MAEC with perturbations.

Proof. We have already noted that (Kr,4) is a MAEC, so what remains to

be shown is that the ε-isomorphisms of Definition 4.5 satisfy the demands of

Definition 2.2.

By Fact 4.4 ε-isomorphisms are bijections and they are uniformly continuous

on the unit ball. As they map basic vectors to basic vectors, it is straightforward

to see that a mapping in
⋂

ε>0 Fε must preserve both basic vectors and their

corresponding exponents, i.e. be genuine isomorphisms.

For uniform continuity we can use as modulus of uniform continuity ∆ε(·/2)
where ∆ε is the modulus arising from Ben Yaacov’s result. If f is an ε-

isomorphism, for any a, Θ(f(a)) = Θ(a) and Fλ(f(a)) = f(Fλ(a)), so

F (f(a)) =

{

f(a) = f(F (a)) if Θ(f(a)) = Θ(a) ≤ 1
FΘ(f(a))(f(a)) = f(FΘ(a)(a)) = f(F (a)) otherwise.

i.e. F and f commute. Thus if d(x, y) < ∆ε(δ), we have both

‖F (x)− F (y)‖ ≤ d(x, y) < ∆ε(δ)

and

|G(x)−G(y)| ≤ d(x, y) < ∆ε(δ) ≤ δ.
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and also ‖F (x)‖, ‖F (y)‖ ≤ 1, so

‖f(F (x))− f(F (y))‖ ≤ δ

and thus

d(f(x), f(y)) = ‖F (f(x))− F (f(y))‖+ |G(f(x))−G(f(y))|
= ‖f(F (x))− f(F (y))‖+ |G(x)−G(y)|
≤ 2δ.

The rest of the demands on the ε-isomorphisms are straightforward to check.

�

Proposition 4.13. (Kr,4) has the joint embedding property and is 0-homogeneous.

Proof. If A ∼= ℓp1(·)(I) and B ∼= ℓp2(·)(J) (with I and J disjoint) then clearly they

can be embedded into ℓp3(·)(I ∪ J) where p3 ↾ I = p1 and p3 ↾ J = p2.

For homogeneity, assume that (ai)i<α ∈ ℓp(·)(I) and (bi)i<α ∈ ℓq(·)(J) and

(4.3) tg((aik)k<n/∅) = tg((bik)k<n/∅) for each n < ω.

Since Nakano spaces with (essentially) bounded exponent are axiomatizable in

continuous logic and we are working in a subclass of this class with essentially the

same vocabulary, the sameness of Galois-types is determined by the sameness of

types in continuous logic. But (4.3) guarantees that (ai)i<α and (bi)i<α have the

same syntactic type in continuous logic and hence they have the same Galois-

type. �

Proposition 4.14. (Kr 4,Fε)ε≥0 satisfies the amalgamation property (with re-

spect to ε-isomorphisms).

Proof. Let ℓp(·)(I ′) 4 ℓp(·)(I) and F : ℓp(·)(I ′) → ℓq(·)(J) be an ε-embedding.

Then I can be written as a disjoint union I = I ′ ∪ I ′′. Since F maps basic

vectors to basic vectors, we may write J as a disjoint union J = I ′∪J ′ and note

that for i ∈ I ′ e−ε ≤ q(i)/p(i) ≤ eε. Now consider C = ℓq(·)(J) + ℓp(·)(I ′′) (i.e.

ℓq
∗(·)(I ′ ∪ J ′ ∪ I ′′) where q∗ ↾ I ′ ∪ J ′ = q and q∗ ↾ I ′′ = p, assuming the union is

disjoint). Then F + idℓp(·)(I′′) is an ε-mapping ℓp(·)(I) → C. �

Proposition 4.15. (Kr 4,Fε)ε≥0 satisfies the perturbation property.

Proof. Assume a, b ∈ M satisfy d
p(tg(a/∅), tg(b/∅)) = 0. We wish to show that

tg(a/∅) = tg(b/∅).
By the assumption there are, for each n < ω, a 1

n
-automorphisms of M

satisfying d(fn(a), b) ≤ 1
n
. Now let A be a separable model containing a and let

B be a separable model containing b and fn(A) for each n < ω. Let D be an

ultrafilter on ω extending the Frechet filter and define C =
∏

D B (meaning the
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Banach space ultraproduct). C is not atomic, so it is not in our class, but it is

still a Nakano space (by Poitevin and Ben Yaacov). Now for each c ∈ A, let

F (c) =
∏

fn(c)/D.

F is a Banach lattice isometry (considered in the class of all Nakano spaces with

exponents bounded by r), but since these do not mix up atomic and atomless

parts, we see that F is a 0-embedding of A into the atomic part of C. On the

other hand the natural (diagonal) embedding G : B → C is a 0-embedding into

the atomic part of C and F (a) = G(b) since

{n < ω : d(fn(a), b) <
1

m
} ∈ D

for each m < ω.

So the atomic part of C together with the embeddings of A and B into it

prove that tg(a/∅;A) = tg(b/∅;B) which implies tg(a/∅) = tg(b/∅). �

Remark 4.16. The example of this section treats classes consisting of all atomic

Nakano spaces with a given bound r for the exponent. Thus the range of the

exponent of the monster model will always be the full interval [1, r] and also

each p ∈ [1, r] will occur infinitely often. All work done so far could as such be

generalized to the case where the exponent lies in a given bounded set. Then

the next proposition would need the additional assumption that this range is

closed.

Proposition 4.17. For a given r ∈ [1,∞), (Kr,4,Fε)ε≥0 has complete type

spaces.

Proof. Assume ān ∈ M is such that tg(ān/∅) forms a Cauchy sequence with

respect to d
p.

To make notation a bit easier we prove the claim for the case where lg(ān) = 1.

The genralization to the general case is straightforward.

The idea is to cut the elements up into their coordinates and find the limit el-

ement using real sequences formed by the coordinatewise coefficients. In making

the real sequences we have to take into account that ε-isomorphisms permute

the basis.

So we look at a sequence (an)n<ω of elements of M = ℓp(·)(I). First choose

monotone sequences of positive reals sn < 1 and tn > 1 such that
∏

n<ω sn > 1
2

and
∏

n<ω tn < 2, i.e. (sn) is increasing, (tn) decreasing and both sequences tend

to 1. Next choose a decreasing sequence of positive reals εn such that

min{re−εn
, re

εn} − εn > snr

for all r ≥ 2−n,

max{re−εn
, re

εn}+ εn < tnr
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for all r ≤ 2n and
∑

i<ω

εi ≤ 1.

Now since (tg(an/∅))n<ω is d
p-Cauchy, for each ε > 0 there is some nε such

that dp(tg(an/∅), tg(am/∅)) < ε whenever n,m ≥ nε. Switching to a subsequence

and renumbering we may assume ak = anεk
for all k < ω. We may also pick, for

each n < ω and εn-automorphisms fn satisfying d(fn(an), an+1) ≤ εn.

Now each an is of the form an = (an(i))i∈I . For each i ∈ I we define a

sequence (ain)n<ω as follows:

ai0 = a0(i)

ai1 = a1(j) where f0(ei) = ej

and in general when ain = an(i
′) has been defined and fn(ei′) = ej

ain+1 = an+1(j).

Note that only countably many sequences have any nonzero elements. Also, as

any an can be ε0-closely reached by an ε0-automorphism from a0, the sequence

(‖an‖)n<ω is bounded and thus there is a universal bound M for the absolute

value of all elements ain, i ∈ I, n < ω.

Next we show that these sequences converge. So let i ∈ I. If (ain)n<ω con-

verges to zero, we are done, so we may assume it does not. Then there is some

ε > 0 such that |ain| > ε cofinally often. Let n be large enough s.t. 2−n < ε and

M < 2n. Then let m ≥ n be such that |aim| > ε.

Now

sm|aim| < |aim+1| < tm|aim|
and we see that the elements of (ain)n<ω cannot switch signs after m. By induc-

tion we get for any m′ ≥ m and any k < ω
∏

j≥m′

sj |aim′ | < |aim′+k| <
∏

j≥m′

tj |aim′ |.

Now both
∏

j≥m′ sj and
∏

j≥m′ tj tend to 1 as n → ∞, from which it is easy to

deduce that (ain)n<ω is a Cauchy sequence and thus converges. Denote the limit

by ai.

Now we know what the coefficients of our limit element should be. Next we

see in which coordinates to put the coefficients. So for each i ∈ I consider the

sequence of exponents pin defined as for the ais:

pi0 = p(i)

and in general when pin = p(i′) has been defined and fn(ei′) = ej

pin+1 = p(j).
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Now for any i ∈ I and n < ω

e−εn ≤ pin+1/p
i
n ≤ eεn

and by induction for any k < ω

e−
∑

j≥n εj ≤ pin+k/p
i
n ≤ e

∑
j≥n εj

and as
∑

j≥n εj tends to 0, we see that (pin)n<ω converges, say to pi.

Now let I ′ = {i ∈ I : ai 6= 0} and define a ∈ M to be any element
∑

i∈I′ a
ieσ(i)

where σ is an injective mapping I ′ → I s.t. p(σ(i)) = pi.

Finally, to show that the original sequence converges (in the sense of dp) to

tg(a/∅), we need the following claim:

Claim. For m < ω and q > 0 let Jm
<q = {i ∈ J : |am(i)| < q}. Then for every

δ > 0 there are n < ω and q > 0 such that for all m ≥ n, ‖∑i∈Jm
<q

am(i)ei‖ < δ.

Proof. Assume this is not the case and δ > 0 witnesses the fact. Let

δ′ < ∆δ(δ/2)/3

where ∆δ denotes the modulus of uniform continuity for Fδ. Let n be large

enough s.t. d
p(tg(an/∅), tg(am/∅)) ≤ δ′ for all m ≥ n. As simple functions are

dense in Nakano spaces with bounded exponents, we can find arbitrarily close

finite support approximations of an and each such approximation can be chosen

to consist of the coordinates where |an(i)| ≥ q for some q > 0. So we find a

q > 0 and finite J ′ ⊂ I such that

‖
∑

i∈I

an(i)ei −
∑

i∈J ′

an(i)ei‖ = ‖
∑

i∈Jn
<q

an(i)ei‖ < δ′.

Let k = |J ′|.
Next let

q′ < δ/(2k).

If our claim does not hold, there is some m ≥ n such that ‖∑i∈Jm
<q′

am(i)ei‖ ≥
δ. However, by our choice of n there is a δ′-automorphism f satisfying

d(f(am), an) ≤ δ′. Since f maps basic vectors to basic vectors and is injec-

tive, it can only map k many coordinates from Jm
<q′ into J ′. The norm of this

part is at most kq′ as

k
∑

j=1

|am(ij)
kq′

|p ≤ k · | q
′

kq′
|1 = 1.

Thus the norm of the part over Jm
<q′ that must be mapped elsewhere (i.e. into

Jn
<q) is by the reverse triangle inequality at least

|‖
∑

i∈Jm
<q′

am(i)ei‖ − kq′| ≥ δ − kq′ > δ/2.
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and when mapped with a δ′-isomorphism (as noted later in fact 5.3) it gets

mapped to an element of norm at least

∆δ′(δ/2) ≥ ∆δ(δ/2) > 3δ′.

By our choice of m we now have

δ′ ≥ ‖f(am)− an‖
= ‖

∑

i∈I

(f(am)(i)− an(i))ei‖

≥ ‖
∑

i∈Jn
<q

(f(am)(i)− an(i))ei‖

≥ |‖
∑

i∈Jn
<q

f(am)(i)ei‖ − ‖
∑

i∈Jn
<q

an(i)ei‖|

≥ 3δ′ − δ′ = 2δ′,

a contradiction. Thus the claim must be true. �

To show that tg(an/∅) → tg(a/∅) in the d
p-metric, let ε > 0 be given and

choose

δ < ∆ε(ε/3)(≤ ε/3).

Then by the above claim find n1 < ω and q1 > 0 s.t. for n ≥ n1

‖
∑

Jn
<q1

an(i)ei‖ < δ.

Then by density of simple functions find a finite subset J of the support of a s.t.

‖
∑

j∈J

a(j)ej − a‖ < δ.

As before we assume J consists of all coordinates where |a(j)| ≥ q2 for some

q2 > 0. Then let q = min{q1, q2}.
Now only finitely many coordinates of a can have absolute value above q/3,

so as ain → ai for all i ∈ I, there is some n2 ≥ n1 s.t. from n2 onwards all but

finitely many of the sequences (ain)n<ω stay within the interval (−q/2, q/2). As

finitely many converging sequences have only finitely many accumulation points,

this leaves gaps in the ranges. Thus there are q′, q′′ s.t. q/2 < q′ < q′′ ≤ q and

({|ain| : n ≥ n2} ∪ {|ai|}) ∩ (q′, q′′) = ∅. Now for some n3 ≥ n2 none of the

sequences occurring (after n2) above q/2 can cross this gap so from n3 onwards

we have a division of the sequences into a finite number, say k, occurring above

q′′ and the rest below. Denote the sets of the indices corresponding to these

coefficients by Jn
≥q′′ and J≥q′′.

As the corresponding pi-sequences do also converge, we can finally find some

n4 ≥ n3 s.t. for n ≥ n4 there is a δ-automorphism gn mapping the coordinates
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corresponding to ain to the ones corresponding to ai for all sequences above q′′

and making at most a δ/k-error in these coordinates. Regardless what gn does

outside these coordinates we have for n ≥ n4

d(gn(an), a) ≤ ‖gn(an)−
∑

i∈J≥q′′

gn(an)(i)ei‖

+‖
∑

i∈J≥q′′

gn(an)(i)ei −
∑

i∈J≥q′′

a(i)ei‖

+‖
∑

i∈J≥q′′

a(i)ei − a‖

≤ ‖gn(an)− gn(
∑

i∈Jn
≥q′′

an(i)ei)‖

+‖
∑

i∈J≥q′′

δ

k
ei‖

+‖
∑

i∈J<q′′

a(i)ei‖

≤ ε/3 + δ + δ < ε,

where we have used that gn is a δ-automorphism, hence an ε-isomorphism, and

‖an −
∑

i∈Jn
≥q′′

an(i)ei‖ = ‖
∑

i∈Jn<q′′

an(i)ei‖ ≤ ‖
∑

i∈Jn<q1

an(i)ei‖ < δ.

�

Fact 4.18. As noted by Ben Yaacov in [3], the class is ω-dp-stable.

5. Types and d
p

Recall the definition of dp (the version below is what we get by the pertur-

bation property):

Definition 5.1. For a, b ∈ M and ε ≥ 0, dp(tg(a/∅), tg(b/∅)) ≤ ε if there are

ε-automorphisms f and g of M such that d(f(a), b) ≤ ε and d(g(b), a) ≤ ε.

For a, b ∈ M and A ⊂ M,

d
p(tg(a/A), tg(b/A)) = sup{dp(tg(ac/∅), tg(bc/∅)) : c ∈ A finite}.

It is easy to see that the definition only depends on the Galois-types of a and

b. Also, the perturbation property (together with 0-homogeneity) ensures that

if dp(tg(a/A), tg(b/A)) = 0 then a and b do have the same Galois-type over A

(proved below). However, it is worth noting, that when d
p(tg(a/A), tg(b/A)) is

strictly positive, we do not have a function fixing A pointwise that moves a near

b.
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Lemma 5.2. If a, b ∈ M, A ⊂ M and d
p(tg(a/A), tg(b/A)) = 0 then tg(a/A) =

tg(b/A).

Proof. By 0-homogeneity it is enough to show that for any finite c ∈ A,

tg(ac/∅) = tg(bc/∅) which is equal to the demand tg(a/c) = tg(b/c). But

since our assumption asserts that dp(tg(a/A), tg(b/A)) = 0, i.e.

sup{dp(tg(ac/∅), tg(bc/∅)) : c ∈ A finite} = 0,

this is exactly what the perturbation property gives us. �

Thus for any A, dp is a semimetric on S(A). To investigate the behavior of

d
p let us first have a look at the moduli of uniform continuity ∆ε from 2b of

Definition 2.2. From the demands on the classes Fε we can easily deduce:

Fact 5.3. (1) If δ < ε then ∆δ(x) ≥ ∆ε(x) for all x ∈ (0,∞).

(2) ∆ε(x) ≤ x for all x ∈ (0,∞).

(3) If f ∈ Fε and d(x, y) > d then d(f(x), f(y)) ≥ ∆ε(d).

Using the above we can easily see that if dp(tg(a/A), tg(b/A)) < ∆ε(ε/2) and

d
p(tg(b/A), tg(c/A)) < ∆ε(ε/2), then d

p(tg(a/A), tg(c/A)) < ε.

Now for any set A the sets

Dp
ε = {(p, q) ∈ S(A) : dp(p, q) ≤ ε}

form a base for a metrizable (diagonal) uniformity (see Chapter 9 of [16]). Thus,

although d
p is not itself a metric, it makes sense to talk about Cauchy-sequences,

limits and completeness with respect to d
p.

To find limit types we use either goodness or completeness of type-spaces.

Lemma 5.4. Assume A is good in M. Then if ε > 0 and δ > 0 are as in the

definition of goodness (Definition 2.21), and if Fn ∈ Autδ(M) for n < ω and for

each a ∈ A the sequence (Fn(a)) converges then there is F ∈ Autε(M) such that

for each a ∈ A F (a) = limn→∞ Fn(a).

Proof. By the assumption weak δ-embeddings f : A → M extend to ε-

automorphisms of M. Hence it is enough to show that the function defined

by F (a) = limn→∞ Fn(a) for all a ∈ A is a weak δ-embedding. But this is

exactly what the functions Fn witness. �

When using completeness of type-spaces (taking into account Remark 2.18)

we can actually find limit types over directed systems. Note that as soon as

we have types actually extending each other and not just being d
p-close, 0-

homogeneity gives these sorts of limit types:
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Fact 5.5. Assume (B,⊆) is a directed system and {bB : B ∈ B} are such that

tg(bB′/B) = tg(bB/B) when B ⊂ B′, B,B′ ∈ B. Then there is some b such that

tg(b/B) = tg(bB/B) for all B ∈ B.

Lemma 5.6. Assume K has complete type-spaces, (B,⊆) is a directed system

of finite sets and {tg(bnB/B) : n < ω,B ∈ B} is d
p-coherent in the follow-

ing sense: for every B ∈ B and ε > 0 there are n0 < ω and B0 ∈ B with

B0 ⊇ B such that for all n ≥ m ≥ n0 and B1, B2 ∈ B with B2 ⊇ B1 ⊇ B0

d
p(tg(bnB2

/B1), t
g(bmB1

/B1)) ≤ ε. Then there exists a limit type, i.e. there is some

b such that for every B ∈ B and ε > 0 there is n0 < ω and B0 ∈ B with B0 ⊇ B

such that for all n ≥ n0 and B1 ∈ B with B1 ⊇ B0 d
p(tg(b/B1), t

g(bnB1
/B1)) ≤ ε.

Proof. For each B ∈ B we find a d
p-limit bB as follows: For every m < ω there

are some nm < ω and Bm ⊇ B such that for all n ≥ nm and B′ ⊇ Bm

(5.1) d
p(tg(bnB′/Bm), tg(bnm

Bm/Bm)) ≤ 1

m

and we may choose nm+1 ≥ nm and Bm+1 ⊇ Bm for all m. Then (tg(bnm

Bm/B))m<ω

is d
p-Cauchy and by completeness of type-spaces has a d

p-limit bB.

Now if B ⊂ C ∈ B then tg(bC/B) = tg(bB/B): For ε > 0 choose m large

enough (and > 1/ε) such that

d
p(tg(bB/B), tg(bnm

Bm/B)) ≤ ε

and similarly for bC . Let D ⊃ Bm ∪ Cm. Then by (5.1) for all large enough n

d
p(tg(bnD/B

m), tg(bnm

Bm/Bm)) ≤ 1

m
< ε

and similarly for bC . Since this can be done for any ε > 0, equality of the types

tg(bC/B) and tg(bB/B) follows by perturbation. But then the claim follows by

0-homogeneity (Fact 5.5). �

6. Saturation

Definition 6.1. We say that A is ω-dp-saturated, if for all finite A′ ⊂ A, all

a ∈ M and all ε > 0 there is a′ ∈ A such that

d
p(tg(a/A′), tg(a′/A′)) ≤ ε

(this is the same as demanding d
p(tg(aA′/∅), tg(a′A′/∅)) ≤ ε).

Lemma 6.2. Assume K is ω-dp-stable. If A is ω-dp-saturated and B ⊂ A then

there is an ω-dp-saturated B 4 A with B ⊆ B and |B| = |B|+ ℵ0.

Proof. We build B as a chain of models Bn, where for each n < ω

• card(Bn) ≤ |B|+ ℵ0,

• Bn+1 realizes a d
p-dense set of S(A) for each finite A ⊂ Bn,
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• Bn 4 A.

We start by letting B′
0 be a dense subset of B of cardinality |B| and then get

B0 by the assumption LSd = ℵ0. When Bn has been defined we use ω-dp-stability

and the LSd assumption to get Bn+1. Finally we let B =
⋃

n<ω Bn. Then clearly

B 4 A and |B| = |B|+ ℵ0. It is also easy to see that B is ω-dp-saturated, since

parameters are allowed to move and we only need to realize types δ-closely. �

Remark 6.3. It is easy to see how to adapt the proof to show that any ω-dp-

saturated set A with a given subset A′ ⊂ A contains an ω-dp-saturated set B

with A′ ⊆ B and |B| = |A′|+ℵ0. Moreover, if B is any ω-dp-saturated set, then

B is also ω-dp-saturated.

Definition 6.4. We say that two models A and B are almost isomorphic if for

each ε > 0 there is an ε-isomorphism f : A → B.

We will prove that ω-dp-saturated separable models are unique up to almost

isomorphism. In the continuous logic setting with perturbations this was proved

by Ben Yaacov in [1, Proposition 2.7]. For our proof we need either goodness or

the following continuity assumption for ε-isomorphisms:

Definition 6.5. We say that K is weakly F-homogeneous if for every δ ≥ 0

if f : A → B is a weak δ-embedding (see Definition 2.19) which is onto then

f ∈ Fδ.

Remark 6.6. Note that KH from section 3 is weakly F-homogeneous.

Theorem 6.7. Assume A and B are separable and ω-dp-saturated. Then if

either A and B are good or K is weakly F-homogeneous, A and B are almost

isomorphic.

Proof. First assume A and B are good. Fix ε > 0. We will construct an ε-

isomorphism between A and B. So let δ > 0 be such that weak δ-embeddings of

both A and B extend to ε-embeddings, and choose for each n < ω, δn > 0 such

that δn+1 ≤ δn for all n and
∑

n<ω δn < δ. Denote εn =
∑

i<n δi. Let A ⊂ A
and B ⊂ B be countable and dense and enumerate them A = {an : n < ω},
B = {bn : n < ω}. We will define finite sets An ⊂ A, Bn ⊂ B and mappings fn,

gn for n < ω such that

• fn ∈ Autε2n(M) and maps An ∆2δ(δ2n−1)-close to B, i.e. there is B′
n ⊂ B

with |B′
n| = |An| such that d(fn(An), B

′
n) ≤ ∆2δ(δ2n−1),

• gn ∈ Autε2n+1(M) and maps Bn ∆2δ(δ2n)-close to some A′
n ⊂ A,

• An+1 = An ∪ {ai : i ≤ n} ∪A′
n,

• Bn+1 = Bn ∪ {bi : i ≤ n} ∪ B′
n+1.



METRIC ABSTRACT ELEMENTARY CLASSES WITH PERTURBATIONS 33

We begin the construction by defining A0 = B0 = ∅ and f0 = id. When

An, Bn and fn have been defined, consider the type tg(f−1
n (Bn)/An). Since A is

ω-dp-saturated, there is some A′
n ⊂ A such that

d
p(tg(f−1

n (Bn)/An), t
g(A′

n/An)) ≤ ∆2δ(δ2n).

Hence there is g′ ∈ Autδ2n(M) such that d(g′(f−1
n (Bn)An), A

′
nAn) ≤ ∆2δ(δ2n).

Define gn = g′ ◦ f−1
n . Then gn ∈ Autε2n+1(M) and gn maps Bn ∆2δ(δ2n)-close to

A′
n ⊂ A.

Similarly define fn+1 and B′
n+1 by considering tg(g−1

n (An+1)/Bn).

Now gn ◦ fn = g′ (as defined above) so d(gn ◦ fn(An), An) ≤ ∆2δ(δ2n) and

similarly we see that d(fn+1 ◦ gn(Bn), Bn) ≤ ∆2δ(δ2n+1). Hence

d(fn+1(An), fn(An)) ≤ d(fn+1(An), fn+1 ◦ gn ◦ fn(An))

+d(fn+1 ◦ gn ◦ fn(An), fn+1 ◦ gn(B′
n))

+d(fn+1 ◦ gn(B′
n), B

′
n)

+d(B′
n, fn(An))

≤ 4δ2n−1.

Hence we see that (fn) converges (pointwise) on A, and since the mappings

are uniformly continuous with the same modulus of uniform continuity and A is

dense in A, the sequence converges on A. Since each fn is a δ-automorphism,

by Lemma 5.4 there is F ∈ Autε(M) such that F (a) = limn→∞ fn(a) for each

a ∈ A. Similarly we obtain G ∈ Autε(M) satisfying G(b) = limn→∞ gn(b) for

each b ∈ B.

To see that F maps A into B, note that for each a ∈ A, F (a) is the limit of a

sequence of elements getting closer and closer to B. Since B is metricly closed,

we must have F (a) ∈ B. Similarly we see that G(b) ∈ A for each b ∈ B. To

see that F and G are onto, it is enough to show that for all a ∈ A and b ∈ B,

d(G ◦ F (a), a) ≤ δ and d(F ◦G(b), b) ≤ δ for any positive δ. We prove the first

claim since the latter is quite similar. So let a ∈ A and δ > 0 be given and

choose δ′ < ∆2ε(δ/7). Then we can find a′ ∈ ⋃

n<ω An, b
′ ∈ ⋃

n<ω Bn and n < ω

such that

• d(a, a′) ≤ δ′,

• d(F (a′), fn(a
′)) ≤ δ′,

• d(fn(a
′), b′) ≤ δ′,

• d(G(b′), gn(b
′)) ≤ δ′,

• d(gn ◦ fn(a′), a′) ≤ δ′.



34 ÅSA HIRVONEN AND TAPANI HYTTINEN

Then

d(G ◦ F (a), a) ≤ d(G ◦ F (a), G ◦ F (a′))

+d(G ◦ F (a′), G ◦ fn(a′))
+d(G ◦ fn(a′), G(b′))

+d(G(b′), gn(b
′))

+d(gn(b
′), gn ◦ fn(a′))

+d(gn ◦ fn(a′), a′)
+d(a′, a)

≤ δ.

Now if instead of goodness we assume weak F-homogeneity then just choose

the δn such that
∑

n<ω δn < ε and do the construction as above. Then F and G

are defined as the limit mappings on A and B respectively, giving the required

approximability by ε-functions. The onto-part is done in a similar fashion as

above and then weak F-homogeneity will ensure that F and G are in Fε. �

Remark 6.8. Note that if A is almost isomorphic to an ω-dp-saturated set then

A is ω-dp-saturated.

7. Splitting and independence

Definition 7.1. Assume A ⊂ B ⊂ M, A is finite and a ∈ M. We say

that tg(a/B) ε-splits over A if for all δ > 0 there are b, c ∈ B such that

d
p(tg(b/A), tg(c/A)) ≤ δ but d

p(tg(ab/A), tg(ac/A)) > ε.

Splitting works nicely for ω-dp-stable classes K, if we assume either goodness

or completeness of type-spaces.

Theorem 7.2. If K is ω-dp-stable then for all a ∈ M, all separable good A ⊂ M

and ε > 0 there is some finite A′ ⊂ A such that tg(a/A) does not ε-split over A′.

Proof. Let A, a and ε > 0 be given. If there is no finite A′ ⊂ A such that tg(a/A)

does not ε-split over A′ then for all finite An ⊂ A and all δn > 0 there are bn, cn ∈
A such that d

p(tg(bn/An), t
g(cn/An)) ≤ δn but d

p(tg(abn/An), t
g(acn/An)) > ε.

Let ε′ < ε/5. Since A is good, there is some δ > 0 such that weak δ-embeddings

of A extend to ε′-automorphisms of M and we may assume δ ≤ ∆ε(ε′). Now

there are An, bn, cn, fn for n < ω such that

• A0 = ∅, An ⊂ An+1 ⊂ A, |An| < ℵ0 and
⋃

n<ω An ⊃ A,

• δn > 0 is such that
∑

n<ω δn < δ,

• d
p(tg(bn/An), t

g(cn/An)) ≤ ∆δ(δn) and d
p(tg(abn/An), t

g(acn/An)) > ε,

• fn ∈ Autδn(M) and d(fn(bnAn), cnAn) ≤ ∆δ(δn),
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• bn, cn ∈ An+1.

Now we can define δ-automorphisms (of M) Fη↾n for all η ∈ ω2 and n < ω as

follows:

• F∅ = id,

• Fη↾n+1 =

{

Fη↾n, if η(n) = 0,
Fη↾n ◦ fn, if η(n) = 1.

Now Fη↾n ∈ Autδ(M) for each η ∈ ω2 and n < ω. Further

d(Fη↾n+1(An), Fη↾n(An)) ≤ d(Fη↾n ◦ fn(An), Fη↾n(An))

≤ δn.

Hence for each η ∈ ω2, (Fη↾n)n<ω converges (pointwise) on
⋃

n<ω An and since

the functions Fη↾n have a common modulus of uniform continuity, on A. Thus

by Lemma 5.4 there is Fη ∈ Autε′(M) such that Fη(c) = limn→∞ Fη↾n(c) for each

c ∈ A.

Now let

D =
⋃

{Fη↾n(An) : η ∈ ω2, n < ω}.
Then D is countable. We wish to show that

d
p(tg(Fη(a)/D), tg(Fν(a)/D)) > ∆ε(ε′)

for all η 6= ν ∈ ω2, hence arriving at a contradiction. For this we need the

following:

Claim. dp(tg(fn(abnAn)/∅), tg(acnAn/∅)) > ε− δn.

Proof. Otherwise there would be some f ∈ Autε−δn(M) with

d(f ◦ fn(abnAn), acnAn) ≤ ε− δn,

but then f ◦ fn ∈ Autε(M) and d
p(tg(abn/An), t

g(acn/An)) ≤ ε, a contradiction.

�

Now let η, ν ∈ ω2, η 6= ν and n = min{n : η(n) 6= ν(n)}. We may assume

η(n) = 0 and then use the following:

• for any ζ ∈ ω2, d(Fζ(An+1), Fζ↾n+1(An+1)) ≤ δ ≤ ∆ε(ε′),

• d(Fν↾n+1(bnAn), Fη↾n+1(cnAn)) = d(Fν↾n ◦ fn(bnAn), Fν↾n(cnAn)) ≤ δn.

Then we must have

d
p(tg(Fν(a)/Fη↾n+1(An+1)), t

g(Fη(a)/Fη↾n+1(An+1))) > ∆ε(ε′)

since otherwise we can find g ∈ Autε′ with

d(g(Fν(a)Fη↾n+1(An+1)), Fη(a)Fη↾n+1(An+1)) ≤ ∆ε(ε′)

and then

F−1
η ◦ g ◦ Fν ◦ f−1

n ∈ Aut4ε′
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and

d(F−1
η ◦ g ◦ Fν ◦ f−1

n (fn(abnAn)), acnAn)

= d(F−1
η ◦ g ◦ Fν(abnAn), acnAn)

≤ d(F−1
η ◦ g ◦ Fν(abnAn), F

−1
η ◦ g(Fν(a)Fν↾n+1(bnAn)))

+d(F−1
η ◦ g(Fν(a)Fν↾n+1(bnAn)), F

−1
η ◦ g(Fν(a)Fη↾n+1(cnAn)))

+d(F−1
η ◦ g(Fν(a)Fη↾n+1(cnAn)), F

−1
η (Fη(a)Fη↾n+1(cnAn)))

+d(F−1
η (Fη(a)Fη↾n+1(cnAn)), acnAn)

≤ 4ε′,

showing that dp(tg(fn(abnAn)/∅), tg(acnAn/∅)) ≤ 4ε′ < ε−δn, contradicting the

claim (the other direction needed by the symmetry of dp is proved similarly). �

Theorem 7.3. If K is ω-dp-stable and all models are good (i.e. (A,A) is good

for all A ∈ K) then for all a ∈ M, A 4 M and ε > 0 there is some finite A′ ⊂ A
such that tg(a/A) does not ε-split over A′.

Proof. Assume towards a contradiction that B, a and ε > 0 are such that tg(a/B)
ε-splits over every finite subset of B. Then we may construct a separable A ∈ B
as the closure of a countable union of at most countable sets as follows:

First let A0 ⊂ B be any finite set. When An has been defined and is at most

countable, by assumption for any finite A′ ⊂ An and any rational r > 0 there are

b′r, c
′
r ∈ B such that dp(tg(b′r/A

′), tg(c′r/A
′)) ≤ r but dp(tg(ab′r/A

′), tg(ac′r/A
′)) >

ε. Then let An+1 be a countable set containing An ∪ {b′r, c′r : r ∈ Q, r > 0, A′ ⊂
An finite} and such that An+1 4 B. In the end let

A =
⋃

n<ω

An =
⋃

n<ω

An 4 B

Then A is separable but tg(a/A) ε′-splits over all finite A ⊂ A when ε′ ≤ ε/2,

contradicting Theorem 7.2. Namely let A ⊂ A be finite and δ > 0 and we may

assume δ ≤ ε′. Now choose some rational r ≤ δ/2 and a finite A′ ⊂ ⋃

n<ω An

with d(A,A′) ≤ ∆ε′(δ/4). Then A′ ∈ An for some n < ω and there are b′r, c
′
r ∈ A

such that

(7.1) d
p(tg(b′r/A

′), tg(c′r/A
′)) ≤ r

but

(7.2) d
p(tg(ab′r/A

′), tg(ac′r/A
′)) > ε.

Now if f is an r-function witnessing (7.1), we have

d(f(A), A) ≤ d(f(A), f(A′)) + d(f(A′), A′) + d(A′, A) ≤ δ.
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Hence d
p(tg(b′r/A), t

g(c′r/A)) ≤ δ. But dp(tg(ab′r/A), t
g(ac′r/A)) must be at least

ε′ since if there were an ε′-function g witnessing the contrary, we would have

d(g(ab′r), ac
′
r) ≤ ε′ and d(g(A′), A′) ≤ δ/4 + ε′ + δ/4 < 2ε′ ≤ ε, contradicting

(7.2) �

Theorem 7.4. If K is ω-dp-stable and has complete type-spaces then for all

a ∈ M, A ⊂ M and ε > 0 there is some finite A′ ⊂ A such that tg(a/A) does

not ε-split over A′.

Proof. This is proved by a tree construction just as in Theorem 7.2, but here

we may directly choose δ < ∆ε(ε/7) (and forget about ε′) and we just need

An to form an increasing sequence of finite subsets of A, without any demands

on the union. Then the automorphisms Fη↾n are defined as before. Now for

each η ∈ ω2, {tg(Fη↾n(a)/Fη↾n(An)) : n < ω} forms a coherent system in the

sense that for each ε > 0 there is some n0 < ω such that for n > m > n0

d
p(tg(Fη↾n(a)/Fη↾m(Am)), t

g(Fη↾m(a)/Fη↾m(Am))) < ε. Hence by Lemma 5.6

there exists a limit type of the sequence

(tg(Fη↾n(a)/Fη↾n(An)))n<ω,

realized by some aη.

Now let η 6= ν with n = min{n : η(n) 6= ν(n)} and again we may assume

η(n) = 0. By choosing N large enough we can find gη, gν ∈ Autδ such that

d(gν(Fν↾N(aAn+1)), aνFν↾N(An+1)) < δ

and

d(gη(aηFη↾N (An+1), Fη↾N(aAn+1))) < δ.

Then we can easily calculate that

• for any ζ ∈ ω2 and N > n, d(Fζ↾N(An+1), Fζ↾n+1(An+1)) < δ,

• d(Fν↾n+1(bnAn), Fη↾n+1(cnAn)) < δn.

As in Theorem 7.2 we can prove that

(7.3) d
p(tg(fn(abnAn)/∅), tg(acnAn/∅)) > ε− δn.

So, similarly as in Theorem 7.2, we must have

(7.4) d
p(tg(aν/Fη↾n+1(An+1), t

g(aη/Fη↾n+1(An+1))) > δ,

since otherwise we can find g ∈ Autδ with d(g(aνFη↾n+1(An+1)), aηFη↾n+1(An+1)) <

δ and then

F−1
η↾N ◦ gη ◦ g ◦ gν ◦ Fν↾N ◦ f−1

n ∈ Aut6δ
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and

d(F−1
η↾N ◦ gη ◦ g ◦ gν ◦ Fν↾N ◦ f−1

n (fn(abnAn)), acnAn)

= d(F−1
η↾N ◦ gη ◦ g ◦ gν ◦ Fν↾N(abnAn), acnAn)

≤ d(F−1
η↾N ◦ gη ◦ g ◦ gν(Fν↾N(abnAn)), F

−1
η↾N ◦ gη ◦ g(aνFν↾N(bnAn)))

+d(F−1
η↾N ◦ gη ◦ g(aνFν↾N(bnAn)), F

−1
η↾N ◦ gη ◦ g(aνFν↾n+1(bnAn)))

+d(F−1
η↾N ◦ gη ◦ g(aνFν↾n+1(bnAn)), F

−1
η↾N ◦ gη ◦ g(aνFη↾n+1(cnAn)))

+d(F−1
η↾N ◦ gη ◦ g(aνFη↾n+1(cnAn)), F

−1
η↾N ◦ gη(aηFη↾n+1(cnAn)))

+d(F−1
η↾N ◦ gη(aηFη↾n+1(cnAn)), F

−1
η↾N ◦ gη(aηFη↾N(cnAn)))

+d(F−1
η↾N ◦ gη(aηFη↾N(cnAn)), acnAn)

≤ 6ε/7 < ε− δn,

contradicting (7.3). Now define D =
⋃{Fη↾n(An) : η ∈ ω2, n < ω}. Then

D is countable and (7.4) gives a contradiction with the assumption of ω-dp-

stability. �

Based on ε-splitting we can define a notion of independence.

Definition 7.5. We write a ↓εA B if there is some finite A′ ⊆ A such that

tg(a/A ∪ B) does not ε-split over A′. We then define a ↓sA B if for all ε > 0,

a ↓εA B.

We now set out to prove that this notion of independence satisfies the usual

axioms for an independence notion. The axiom of finite character is replaced by

countable character, as is to be expected in a metric setting.

Theorem 7.6. If K is ω-dp-stable and has complete type spaces then indepen-

dence satisfies the following axioms:

(1) Isomorphism invariance If a ↓sA B and f is a 0-automorphism of M

then f(a) ↓sf(A) f(B).

(2) Monotonicity If A ⊆ B ⊆ C ⊆ D and a ↓sA D then a ↓sB C.

(3) Countable character of non-freeness If A is ω-dp-saturated and

a 6 ↓sA B then there is a countable A′ ⊆ A and a finite B′ ⊆ B such

that if tg(b/A′B′) = tg(a/A′B′) then b 6 ↓sA B′.

(4) Local character a ↓sA A for all a and A, i.e. for every a, A and ε > 0

there is some finite E ⊆ A such that a ↓εE A.

(5) Extension If a ↓sA B, B is ω-dp-saturated and A ⊆ B ⊆ C then there is

b with tg(b/B) = tg(a/B) satisfying b ↓sA C.

(6) Stationarity If A is ω-dp-saturated, A ⊆ B, tg(a/A) = tg(b/A), a ↓sA B

and b ↓sA B, then tg(a/B) = tg(b/B).
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(7) Transitivity If A ⊆ B ⊆ C, B is ω-dp-saturated, a ↓sA B and a ↓sB C

then a ↓sA C.

(8) Symmetry If A is ω-dp-saturated then a ↓sA b if and only if b ↓sA a.

(9) Reflexivity If A is ω-dp-saturated and a /∈ A then a 6 ↓sA a.

Remark 7.7. We will see that the assumption of complete type-spaces is used

only in the proofs of local character and extension and then the extension prop-

erty is used to prove transitivity and symmetry. Hence, we may exchange the

assumption of complete type-spaces for the assumptions that models are good

and extension holds. Then all the axioms hold with the minor change that local

character is true only when A is a model.

Proof. (of Theorem 7.6) By the definition it is clear that independence is pre-

served under 0-automorphisms and is monotone. Local character is Theorem

7.4.

Countable character of non-freeness: Let A′ ⊂ A be countable such that

A′ is ω-dp-saturated and a ↓sA′ A. Let a′ be such that tg(a′/A) = tg(a/A) and

a′ ↓sA B. Then let B′ ⊆ B be such that tg(a/B′) 6= tg(a′/B′). The claim follows

by stationarity which is proved below.

Extension: Let, for each n < ω, An ⊂ A be finite and such that tg(a/B) does

not 1
n+1

-split over An. Then for each finite c ∈ C, by ω-dp-saturation of B,

let ccn ∈ B be such that d
p(tg(ccn/An), t

g(c/An)) ≤ 1
n+1

and let f c
n be a 1

n+1
-

automorphism of M witnessing this. Then define acn = f c
n(a). We claim that

{tg(acn/Anc) : n < ω, c ∈ C finite} forms a d
p-coherent system in the sense of

Lemma 5.6. Namely, if c ∈ C and ε > 0 are given, then choose n1 large enough

such that 1
n1

< ∆ε(ε/3). Now tg(a/B) does not 1
n1

-split over An1 and there is

some δ > 0 witnessing this. Choose n0 ≥ n1 such that 2
n0

≤ ∆ε(δ) and let

B0 = An1 ∪ c. Then if n ≥ m ≥ n0, for any finite d, e ∈ C, we need to show that

d
p(tg(acden /An1cd), t

g(acdm/An1cd)) ≤ ε. But now

d
p(tg(acden cd/An1), t

g(a, (cd)cden /An1)) ≤
1

n1

and

d
p(tg(acdmcd/An1), t

g(a, (cd)cdm/An1)) ≤
1

n1
.

Further

d
p(tg((cd)cden /An1), t

g((cd)cdm/An1)) ≤ δ

and (cd)cden , (cd)cdm ∈ B, so the claim follows by non- 1
n1

-splitting. Hence by

Lemma 5.6 there is some b realizing the limit type of all acn’s, i.e. for all fi-

nite c ∈ C and ε > 0 there is n0 < ω and c0 ∈ C such that for all n > n0 and

d ∈ C with c0 ⊆ d, dp(tg(b/And), t
g(adn/And)) ≤ ε.
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Next we claim tg(b/B) = tg(a/B). For this it suffices to prove that

d
p(tg(bc/∅), tg(ac/∅)) ≤ ε for any ε > 0 and finite c ∈ B. So let ε > 0

and c ∈ B be given and let n be large enough so that tg(a/B) does not ε/3-split

over An. Then let δ > 0 witness this and be at most ∆ε(ε/3). Then choosing m

large enough, we can ensure

• d
p(tg(bc/An), t

g(acmc/An)) ≤ δ and

• d
p(tg(acmc/An), t

g(accm/An)) ≤ δ.

Then by non-splitting we get dp(tg(accm/An), t
g(ac/An)) ≤ ε/3. Combining these

we get dp(tg(bc/An), t
g(ac/An)) ≤ ε.

Finally we need to show that b ↓sA C. We actually claim that b ↓
1

n+1

An
C.

But this is easy to see, since if for every δ > 0 there were c, d ∈ C witnessing
1

n+1
-splitting, then for some m large enough d

p(tg(ccm/An), t
g(ddm/An)) would be

small enough to contradict the assumption a ↓
1

n+1

An
B, since

d
p(tg(bc/An), t

g(acmc/An))

can be made arbitrarily small with a large enough m and

d
p(tg(acmc/An), t

g(accm/An)) ≤
1

m

for m ≥ n (and similarly for d).

Stationarity: To show that tg(a/B) = tg(b/B), we need to show that for all

finite c ∈ B tg(ac/∅) = tg(bc/∅). By perturbation, it is enough to show that for

all finite c ∈ B and all ε > 0, dp(tg(ac/∅), tg(bc/∅)) ≤ ε. So fix some finite c ∈ B

and ε > 0. By the assumption there is some finite A′ ⊂ A such that tg(a/B) and

tg(b/B) do not ∆ε(ε/2)-split over A′ and there is some δ > 0 witnessing this.

Since A is ω-dp-saturated, there is c′ ∈ A such that d
p(tg(c′/A′), tg(c/A′)) ≤ δ.

Then

• d
p(tg(ac/∅), tg(ac′/∅)) ≤ ∆ε(ε/2),

• d
p(tg(ac′/∅), tg(bc′/∅)) = 0 and

• d
p(tg(bc′/∅), tg(bc/∅)) ≤ ∆ε(ε/2).

Combining we get

d
p(tg(ac/∅), tg(bc/∅)) ≤ ε.

Transitivity: By the extension property let b be such that tg(b/B) = tg(a/B)

and b ↓sA C. Then a ↓sB C and b ↓sB C so by stationarity tg(a/C) = tg(b/C),

hence a ↓sA C.

Symmetry: The proof is postponed until Lemma 7.13.

Reflexivity: Let d be the distance of a to A, i.e. d = inf{d(a, a′) : a′ ∈ A}.
Since a /∈ A, d > 0. Now tg(a/Aa) ∆d(d)/3-splits over any finite A′ ⊂ A.

Namely let A′ ⊂ A be finite and δ > 0. By ω-dp-saturation, let a′ ∈ A
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be such that d
p(tg(a′/A′), tg(a/A′)) ≤ δ. Then if f ∈ Autε for some ε ≤ d,

d(f(aa′A′), aaA′) ≥ ∆ε(d)/2 ≥ ∆d(d)/2 and thus d
p(tg(aa′/A′), tg(aa/A′)) >

∆d(d)/3.

�

Although we have a weaker stability notion than in [11], the ω-stability notion

at hand implies discrete λ-stability for all λ with λ = λℵ0 .

Lemma 7.8. If K is ω-dp-stable and either has complete type-spaces or good

models (i.e. (A,A) is good for all A ∈ K) then for all λ = λℵ0 K is λ-stable in

the discrete sense i.e. the number of types over a set of density character λ is λ

(which then also is the cardinality of the set).

Proof. Let |B| ≤ λ and let a, b ∈ M. By Lemma 6.2 we may assume B is an

ω-dp-saturated model. By Theorem 7.4 or 7.3 there exists a separable A ⊂ B

such that a ↓sA B and b ↓sA B, and again by Lemma 6.2 and monotonicity

we may assume A is ω-dp-saturated and closed in B. Then by stationarity

(Theorem 7.6) tg(a/B) = tg(b/B) if and only if tg(a/A) = tg(b/A). Hence to

count the types over B it suffices to count the number of types over separable

closed subsets of B. Since λℵ0 = λ, there are only λ such subsets of B. Further

types over separable sets are determined by their restrictions to some dense

(countable) subset and there are only 2ℵ0 types over countable sets (recall that

the vocabulary is countable) so there are just λ types over B. �

Since our stability notion in a sense considers weak types, our perturbation

assumption gives a property that resembles the metric homogeneity assumption

from [11]. As might be expected we get similar stability results as in [11] and

below we prove that ω-dp-stability implies λ-dp-stability for all infinite λ. It

is, however, worth noting, that we do not assume metric homogeneity, which

considers the orbits of Galois types over fixed parameter sets.

Theorem 7.9. If K is ω-dp-stable and has complete type-spaces or good models

(i.e. (A,A) is good for all A ∈ K) then it is λ-dp-stable for all infinite λ.

Proof. Assume towards a contradiction that K is not λ-stable. Then there is

B ⊂ M with |B| = λ such that the density of S(B) with respect to d
p is at least

λ+ and by Lemma 6.2 we may assume B is an ω-dp-saturated model. Now there

are ai, i < λ+ and some ε > 0 such that

d
p(tg(ai/B), tg(aj/B)) ≥ ε

for all i < j < λ+.

Let ε′ = ∆ε(ε/6). For each i < λ+, by either Theorem 7.3 or 7.4, choose a

finite Ai ⊂ B and a rational δi > 0 such that tg(ai/B) does not ε′-split over Ai
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and δi witnesses this. λ+ many of the pairs (Ai, δi) are the same, denote these

by A and δ. Next, by Lemma 6.2 let A 4 B be separable, ω-dp-saturated and

contain A.

Now for i 6= j, since

d
p(tg(ai/B), tg(aj/B)) = sup{dp(tg(aic/∅), tg(ajc/∅)) : c ∈ B finite},

there is some finite cij ∈ B such that

d
p(tg(aicij/∅), tg(ajcij/∅)) > ε/2.

For all i 6= j such that (Ai, δi) = (Aj , δj) = (A, δ), let c′ ∈ A be such that

d
p(tg(cij/A), t

g(c′/A)) ≤ δ. Then we must have

(7.5) d
p(tg(ai/c

′A), tg(aj/c
′A)) > ε′

since by non-splitting d
p(tg(aicij/A), t

g(aic
′/A)) ≤ ε′ (and similarly for aj) and

if (7.5) does not hold this would give

d
p(tg(aicij/A), t

g(ajcij/A)) ≤ 3ε/6,

a contradiction. But then we have d
p(tg(ai/A), tg(aj/A)) > ε′ for λ+ many

i 6= j, contradicting ω-dp-stability. �

Next we will tie our notion of independence to the usual one in homogeneous

model theory. In [11] it is shown how to put the abstract setting of homogeneous

metric abstract elementary classes into a homogeneous first order context hence

gaining access to results from [12] (as long as we work in a stable class).

We recall some definitions from [12], as stated in a formula-free fashion in

[11].

Definition 7.10. (1) Let A ⊂ B and a ∈ M. We say that tg(a/B) splits

over A if there are b, c ∈ B such that tg(b/A) = tg(c/A) but tg(b/A∪a) 6=
tg(c/A ∪ a).

(2) A type tg(a/B) is said to split strongly over A ⊂ B if there are b, c ∈ B

and an infinite sequence I, indiscernible over A, with b, c ∈ I such that

tg(b/A ∪ a) 6= tg(c/A ∪ a).

(3) κ(K) denotes the least cardinal such that there are no a, bi and ci for

i < κ(K) such that tg(a/
⋃

j≤i(bj ∪ cj)) splits strongly over
⋃

j<i(bj ∪ cj)

for each i < κ(K).

(4) a ↓A B if there is C ⊆ A of cardinality < κ(M) such that for all D ⊇ A∪B
there is b with tg(b/A ∪ B) = tg(a/A ∪ B) such that tg(b/D) does not

split strongly over C.

(5) λ(M) is the least cardinality in which M is stable.
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Remark 7.11. Note that if a ↓sA B then by perturbation tg(a/A∪B) does not

split over A and hence it does not split strongly over A.

Now the equivalence of ↓ and ↓s over saturated enough models can be proved

just as in [11].

Theorem 7.12. Assume K is ω-dp-stable and has complete type-spaces. Then

if A ⊆ B, a ∈ M and A is 2ℵ0-saturated (i.e. realizes all Galois types over

parameter sets of size < 2ℵ0) then

a ↓sA B if and only if a ↓A B,

i.e. our notion of independence agrees with that in classical homogeneous model

theory over 2ℵ0-saturated models.

Proof. First assume a ↓A B. By local character (Theorem 7.6) a ↓sA A. Let

B ⊇ B be 2ℵ0-saturated and by extension (Theorem 7.6) find some b realizing

tg(a/A) and satisfying b ↓sA B. Then tg(b/B) does not split strongly over A so by

[12, Lemma 3.2.(iii)] b ↓A B and by monotonicity b ↓A B. Then by stationarity

of ↓ ([12, Lemma 3.4]), tg(b/B) = tg(a/B) so a ↓sA B.

For the other direction assume a ↓sA B. Again by [12, Lemma 3.2(iii)], a ↓A A.

Since ↓ has built in extensions this implies the existence of some b realizing

tg(a/A) and satisfying b ↓A B. Then by the previous direction b ↓sA B so by

stationarity of ↓s we are done. �

Then using symmetry of ↓ over so-called a-saturated (strongly κ(M)-

saturated) models ([12, Lemma 3.6]) we can prove symmetry for ↓s. We use

the fact ([12, Lemma 1.9(iv)]) that λ(M)-saturated models are a-saturated and

recall that by Lemma 7.8 λ(M) is at most 2ℵ0, when K is ω-dp-stable and has

complete type-spaces.

Lemma 7.13. If K is ω-dp-stable and has complete type-spaces, A is ω-dp-

saturated and a ↓sA b then b ↓sA a.

Proof. Assume towards a contradiction that a ↓sA b but b 6 ↓sA a. Let B ⊃ A be

2ℵ0-saturated. Now b ↓sA A so by the extension property (Theorem 7.6) there is

some b′ realizing tg(b/A) and satisfying b′ ↓sA B. We may assume b′ = b (since

moving B by a 0-automorphism does not affect its degree of saturation). Using

the extension property and stationarity, we can find some a′ realizing tg(a/Ab)

and satisfying a′ ↓sA Bb. Now by monotonicity we have a′ ↓sB b. But we cannot

have b ↓sB a′ since then by transitivity we would have b ↓sA Ba′, by monotonicity

b ↓sA a′ and hence by invariance b ↓sA a. Hence a′ ↓sB b and b 6 ↓sB a′, but since

B is 2ℵ0-saturated, by Lemma 7.12 this contradicts symmetry of ↓ ([12, Lemma

3.6]) over a-saturated models. �
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8. Isolation

In this section we develop a notion of isolation and build constructible sets.

With our notion of isolation dominance works, but whether our constructible

sets are prime in the class of ω-dp-saturated models in any reasonable sense is

an open question. We will discuss this matter at the end of the section.

Definition 8.1. We say that tg(a/A) is ε-isolated if there are some δ > 0 and

finite A′ ⊂ A such that d
p(tg(b/A′), tg(a/A′)) ≤ δ implies

d
p(tg(b/A), tg(a/A)) ≤ ε.

We say that tg(a/A) is isolated if it is ε-isolated for all ε > 0.

The next lemma follows also from [2, Proposition 3.7].

Lemma 8.2. If K is ω-dp-stable and has complete type-spaces then for all A, a,

ε > 0, δ > 0 and finite B ⊂ A there is some a′ with

d
p(tg(a′/B), tg(a/B)) ≤ δ

such that tg(a′/A) is ε-isolated.

Proof. Assume towards a contradiction that the claim is false. Then for every

a′ with d
p(tg(a′/B), tg(a/B)) ≤ δ and for all δ′ > 0 and finite A′ ⊂ A there is

some b such that d
p(tg(b/A′), tg(a′/A′)) ≤ δ′ but

d
p(tg(b/A), tg(a′/A)) > ε.

Let 0 < δ′ ≤ min{δ/4,∆δ(ε/5)}. Then define, for n < ω and ξ ∈ 2<ω,

An ⊂ A, δn > 0, Aξ ⊂ A and aξ such that

• A0 = B, An ⊆ An+1, An is finite,

• δn+1 ≤ δn and
∑

n<ω δn < ∆δ′(δ′),

• a∅ = a and aξa(0) = aξ,

• d
p(tg(aξ/B), tg(a/B)) ≤ ∑

i<length(ξ) δi < δ′,

• d
p(tg(aξa(0)/Alength(ξ)), t

g(aξa(1)/Alength(ξ))) ≤ ∆δ′(δlength(ξ)) but

d
p(tg(aξa(0)/Aξ), t

g(aξa(1)/Aξ)) > ε,

• An+1 =
⋃

length(ξ)=n Aξ.

When length(ξ) = n and An and aξ have been defined such that

d
p(tg(aξ/B), tg(a/B)) ≤

∑

i<n

δi

then by our counter-assumption we may find some aξa(1) satisfying

(8.1) d
p(tg(aξ/An), t

g(aξa(1)/An)) ≤ ∆δ′(δn)
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and

(8.2) d
p(tg(aξ/A), t

g(aξa(1)/A)) > ε.

Then we let Aξ ⊂ A be finite and witness (8.2) and note that (8.1) implies

d
p(tg(aξa(1)/B), tg(a/B)) ≤

∑

i<n+1

δi ≤ δ′

keeping the induction going.

Next note that for each η ∈ ω2, {tg(aη↾n/An) : n < ω} forms a d
p-coherent

system in the sense of Lemma 5.6. Hence there is for each η ∈ ω2 a limit element

aη. But now for η 6= ν, η, ν ∈ ω2,

(8.3) d
p(tg(aη/

⋃

n<ω

An), t
g(aν/

⋃

n<ω

An)) > δ′

since otherwise, when n = min{n : η(n) 6= ν(n)} and N large enough,

• d
p(tg(aη↾n+1/An+1), t

g(aη↾N/An+1)) ≤ δ′ (and similarly for ν) by con-

struction,

• d
p(tg(aη↾N/An+1), t

g(aη/An+1)) ≤ δ′ (and similarly for ν) by choice of N

and

• d
p(tg(aη/An+1), t

g(aν/An+1)) ≤ δ′

and combining gives

d
p(tg(aη↾n+1/An+1), t

g(aν↾n+1/An+1)) ≤ ε,

contradicting the way we chose the aξs.

But (8.3) contradicts ω-dp-stability since
⋃

n<ω An is countable. �

Theorem 8.3. If K is ω-dp-stable and has complete type-spaces then for all A,

a, δ > 0 and finite B ⊂ A there is some a′ with d
p(tg(a′/B), tg(a/B)) ≤ δ such

that tg(a′/A) is isolated.

Proof. By the previous lemma we can, for each positive n < ω and δ′n find finite

sets An ⊂ A, δn > 0 and elements an such that An and δn
1
n
-isolate tg(an/A)

and d
p(tg(an+1/An), t

g(an/An)) ≤ δ′n+1. We just need to make sure that all ai

for i > n are within distance δn of an.

So we define

• A0 = B, a0 = a, δ′0 = δ0 = δ/2,

• An ⊂ An+1 ⊂ A, An is finite and for n > 0, δn and An
1
n
-isolate tg(an/A),

• δ′n+1 ≤ 1
2
min{∆δ(δn/2), δ

′
n},

• d
p(tg(an+1/An), t

g(an/An)) ≤ ∆δ(δ′n+1).

Then {tg(an/An : n < ω} forms a d
p-coherent system in the sense of Lemma 5.6

and hence there is a limit element a′ such that

d
p(tg(a′/An), t

g(an/An)) ≤ ∆δ(δn/2)
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for each n < ω. Hence especially d
p(tg(a′/B), tg(a/B)) ≤ δ and it is fairly

straightforward to see that if 1
n

≤ ∆ε(ε/2) for a given ε > 0 then An and

∆δ(δn/2) ε-isolate tg(a′/A). �

Definition 8.4. We say that A∗ is constructible over A if A∗ = A∪ {ai : i < α}
and for each i < α, tg(ai/A ∪ {aj : j < i} is isolated.

Remark 8.5. Note that if B is constructible over A then B is also constructible

over A, since any element from B close enough to b ∈ B isolates the type of b

over any set.

Theorem 8.6. If K is ω-dp-stable and has complete type-spaces then for each

A there is a complete ω-dp-saturated constructible set over A.

Proof. This is done more or less in the standard way. If we have constructed

Aα = A∪{ai : i < α} and Aα is not ω-dp-saturated then there is some finite A′ ⊂
Aα, some a and δ > 0 such that no a′ ∈ Aα satisfies d

p(tg(a′/A′), tg(a/A′)) ≤
δ. But by Theorem 8.3 we can find some a′ such that tg(a′/Aα) is isolated

and d
p(tg(a′/A′), tg(a/A′)) ≤ δ and then let aα = a′. The construction will

eventually terminate at some α (essentially as in [14, Theorem IV.3.1]) giving

a constructible ω-dp-saturated set Aα. However, Aα need not be complete, but

by Remark 8.5 we may continue the construction until some α′ ≥ α such that

Aα′ = Aα, and by Remark 6.3 Aα′ is still ω-dp-saturated. �

Definition 8.7. B ⊃ A is atomic over A if for each b ∈ B, tg(b/A) is isolated.

Theorem 8.8. If B is constructible over A then B is atomic over A.

Proof. This is done by a fairly straightforward induction on i < α, where B =

A ∪ {ai : i < α} and each tg(ai/A ∪ {aj : j < i}) is isolated. �

Theorem 8.9. Assume K is ω-dp-stable and has complete type-spaces. If A

is ω-dp-saturated, B ⊇ A and B∗ is constructible over B then a ↓sA B implies

a ↓sA B∗.

Proof. Assume towards a contradiction that a ↓sA B but a 6 ↓sA B∗. By countable

character (Theorem 7.6) there is a finite b ∈ B∗ such that a 6 ↓sA b. Further by

symmetry b 6 ↓sA a, so there is some ε > 0 such that b 6 ↓εA a, i.e. tg(b/Aa) ε-splits

over every finite A′ ⊂ A.

Let ε′ < ∆ε(ε/2) and ε′′ < ∆ε′(ε′/2).

By Theorem 8.8 B∗ is atomic over B so we can find some finite B′ ⊂ B and

δ′ > 0, with δ′ ≤ ε′′ such that B′ and δ′ witness the ε′′-isolation of tg(b/B).

Then let δ′′ < ∆ε(δ′/2). Since a ↓sA B, we have a ↓sA B′ and again by symmetry

B′ ↓sA a. Hence there is some finite A′ ⊂ A such that tg(B′/Aa) does not δ′′-split
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over A′ and there is some δ′′′ > 0 witnessing this. Now since b 6 ↓εA a there are

c, c′ ∈ A ∪ a such that d
p(tg(c/A′), tg(c′/A′)) ≤ δ′′′ but

d
p(tg(bc/A′), tg(bc′/A′)) > ε.

Since δ′′′ witnesses the fact that tg(B′/Aa) does not δ′′-split over A′, we must

have d
p(tg(B′c/A′), tg(B′c′/A′)) ≤ δ′′. So there is f ∈ Autδ′′ such that

d(f(B′cA′), B′c′A′) ≤ δ′′.

Case 1: c′ ∈ A (or c ∈ A, but that case is treated symmetrically). Now

d
p(tg(b/B′), tg(f(b)/B′)) ≤ δ′′ so by the ε′′-isolation of tg(b/B)

d
p(tg(b/B), tg(f(b)/B)) ≤ ε′′.

So (since A ⊆ B) there is g ∈ Autε′′ satisfying d(g(f(b)c′A′), bc′A′) ≤ ε′′ and as

d(g ◦ f(bcA′), bc′A′) ≤ d(g ◦ f(bcA′), g(f(b)c′A′)) + d(g(f(b)c′A′), bc′A′)

we have

d
p(tg(bc/A′), tg(bc′/A′)) ≤ 2ε′′ < ε,

contradicting the choice of c and c′.

Case 2: c, c′ /∈ A. Since A is ω-dp-saturated, there is d′ ∈ A such that

d
p(tg(c′/A′), tg(d′/A′)) ≤ δ′′′, and again by non-δ′′-splitting of tg(B′/Aa) we

may choose some g ∈ Autδ′′ with d(g(B′c′A′), B′d′A′) ≤ δ′′. Then d
p(tg(g ◦

f(b)/B′), tg(b/B′)) ≤ δ′. So by ε′′-isolation, dp(tg(g ◦ f(b)/B), tg(b/B)) ≤ ε′′.

Also d
p(tg(b/B), tg(g(b)/B)) ≤ ε′′ (since d

p(tg(b/B′), tg(g(b)/B′)) ≤ δ′). Hence

d
p(tg(g ◦ f(b)/B), tg(g(b)/B)) ≤ ε′ so letting h ∈ Autε′ witness this we have

g−1 ◦ h ◦ g ◦ f ∈ Aut2ε′) and

d(g−1 ◦ h ◦ g ◦ f(bcA′), bc′A′)

≤ d(g−1 ◦ h ◦ g ◦ f(bcA′), g−1 ◦ h ◦ g(f(b)c′A′))

+d(g−1 ◦ h ◦ g(f(b)c′A′), g−1 ◦ h(g ◦ f(b)d′A′))

+d(g−1 ◦ h(g ◦ f(b)d′A′), g−1(g(b)d′A′))

+d(g−1(g(b)d′A′), bc′A′)

≤ ε

and thus d
p(tg(bc/A′), tg(bc′/A′)) ≤ ε again contradicting the choice of c and

c′. �

We now return to the question about the difficulties in proving the existence

of prime models for the class of ω-dp-saturated models.

In classical model theory results like this are proved in the following way:

Suppose ∗-saturation is some notion of saturation and F is some reasonable
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isolation notion. To find prime models for the class of ∗-saturated models one

needs to prove the following two properties:

(1) Every F -isolated type over A can be extended to an F -isolated type over

B ⊃ A.

(2) A is ∗-saturated if and only if A is F -saturated, i.e. every F -isolated

type over A is realized in A.

In our context we can prove d
p-versions of 1 and 2 (see remark below) but we

do not seem to be able to show that the properties imply the existence of prime

models in any reasonable sense for the class of ω-dp-saturated models. Note that

if dp is replaced by d, the standard metric on types defined as the infimum of

distances of realizations, this still works, as seen in [11].

Remark 8.10. Assume K is ω-dp-stable and has complete type-spaces.

(1) If tg(a/A) is isolated and B ⊇ A then for all ε > 0 there is b such that

tg(b/B) is isolated and d
p(tg(b/A), tg(a/A)) ≤ ε.

(2) If A is ω-dp-saturated and complete and tg(a/A) is isolated then a ∈ A.

(3) If A realizes every isolated type over A then A is ω-dp-saturated and

complete.

Proof. 1 and 3 are immediate consequences of Theorem 8.3. For 2 prove that

the distance of a to the set A is less than any given ε, by using ω-dp-saturation

over a suitably isolating set. �

The problem here lies in the first item which forces us to “switch type” as we

want to extend the isolation. Note that without this type-switching the item

does not hold: otherwise ω-dp-saturated models would be ω-saturated. But

considering the class of Lp-spaces with Fε = F0 for all ε, this would contradict

Ben Yaacov’s and Usvyatsov’s observation in [6] that Lp[0, 1] is not ω-saturated.

We finish this paper by a result exemplifying the kind of constructions made

available by the theory developed in this paper. The proof is similar to the first

order proof that non-unidimensional theories are not categorical. It is worth

noting that the class K in Lemma 8.12 may be unsuperstable in the ordinary

metric sense and stability alone does not allow one to make constructions like

the one in the lemma.

As an application of the lemma, one can prove that the class KH from section

3 has the maximal number of models in density character ω1 - a result that,

however, has been known to functional analysts for almost a century. For this

choose A to be any existentially closed model and ai for i < ω1 to be any non-

zero element such that ai is orthogonal to A in the sense of Hilbert spaces and

τai = qiai, where qi, i < ω1, are distinct complex numbers with norm 1.
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Definition 8.11. We say that tg(a/∅) is orthogonal to tg(b/∅) if for all ω-dp-

saturated A, a′ and b′ if tg(a′/∅) = tg(a/∅), tg(b′/∅) = tg(b/∅), a′ ↓s∅ A and

b′ ↓s∅ A, then a′ ↓sA b′.

Lemma 8.12. Suppose K is ω-dp-stable, has complete type spaces and every

complete ω-dp-saturated set is a model. Assume that there are ω-dp-saturated A
and ai 6∈ A, i < ω1, such that ai ↓s∅ A and for i < j, tg(ai/∅) is orthogonal to

tg(aj/∅). Then the number of models in density character ω1 is 2ω1.

Proof. Clearly we may assume that A is separable. Let Xi, i < 2ω1 be distinct

non-empty subsets of ω1. For all i < 2ω we construct Ai =
⋃

j<ω1
Aj

i so that

(1) A0
i = A,

(2) for limits j, Aj
i is the completion of

⋃

k<j Ak
i ,

(3) Aj+1
i is a separable, constructible, complete, ω-dp-saturated set over

ajiAj
i , where aji is such that tg(aji/A) = tg(ak/A) for some k ∈ Xi and

aji ↓sA Aj
i ,

(4) for all k ∈ Xi, |{j < ω1 : tg(aji/A) = tg(ak/A)}| = ω1.

By the proof of 8.6, it is easy to see that these models exist.

So we are left to prove that if i < i′, then Ai is not isomorphic to Ai′. For

a contradiction suppose f is an isomorphism from Ai to Ai′. Without loss of

generality we may assume that there is k ∈ Xi − Xi′ . Clearly there is j < ω1

such that f(Aj
i) = Aj

i′. Now choose j′ ≥ j so that tg(aj
′

i /A) = tg(ak/A). An

easy induction on j′ ≤ j′′ < ω1 using the dominance shows that f(aj
′

i ) ↓s∅ Aj′′

i′

for all j′′ < ω1. This contradicts the fact that f(aj
′

i ) ∈ Ai′. �
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