
TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND
CLASSES OF WEIGHTED SOBOLEV DISTRIBUTIONS

ANTTI PERÄLÄ

Abstract. We study Toeplitz operators between the analytic Bloch-
type spaces of the unit disk. We construct suitable classes of distribu-
tions that generate bounded Toeplitz operators between these spaces.
The classes are naturally connected to the corresponding results in the
reflexive Bergman space setting and previously known results on A1 and
the Bloch space. We also study distributional symbols satisfying loga-
rithmic BMO-condition. In addition, sufficient compactness criteria are
provided.

1. Introduction.

Toeplitz operators on the reflexive Bergman spaces have been extensively
studied for many years. Their theory is indeed largely understood. How-
ever, complete characterization of the symbol classes that generate bounded,
compact or finite rank Toeplitz operators has been a long-standing problem.
In fact, only the finite rank question has been satisfactorily settled quite
recently by D. Luecking in [4]. A generalization of this result is given in [2].
Even less is known in the setting of the Bloch spaces Bd. There are some
results in these directions, see for instance [9, 10, 12, 15].

In this paper we study questions related to these spaces by extending the
definition of Toeplitz operators to distributional symbols. We will look at
boundedness and compactness of Toeplitz operators by using the machinery
developed in [5, 6, 7, 10, 11].

Let d > 0 and D be the open unit disk centered at the origin. The analytic
Bloch space Bd of the unit disk consist of those analytic functions f for which
the following semi-norm:

‖f‖∗,d = sup
z∈D

(1− |z|2)d|f ′(z)|
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is finite. We then equip the space Bd with the norm

‖f‖Bd
= ‖f‖∗,d + |f(0)|,

which will make it a Banach space. The little Bloch space B0,d is the closed
subspace of Bd, whose elements satisfy

sup
z∈D

(1− |z|2)d|f ′(z)| → 0, when |z| → 1−.

For reference on the Bloch spaces we mention [12, 15, 16, 17]. When d = 1,
we write B and B0 to mean the spaces B1 and B0,1, respectively. Because we
always assume that d > 0, there is no ambiquity in the notation B0.

Note that if d > d′ > 0 and 1 ≤ p < ∞, then

Bd′ ⊂ B0,d ⊂ Bd ⊂ Ap
d−1,

where Ap
d−1 is a certain weighted Bergman space. Also, if 0 < d < 1,

the spaces Bd and B0,d are contained in the algebra of bounded analytic
functions.

The Bergman projection is defined for f ∈ L1 by

Pf(z) =

∫

D

f(w)dA(w)

(1− zw̄)2
,

where dA(z) = π−1dxdy is the normalized Lebesgue area measure. It is
known that P is bounded from Lp onto Ap for each p ∈ (1,∞). It is not
bounded in the end-point cases, p ∈ {1,∞}. However, P is known to map
L∞ (and even BMO∂) boundedly onto B. For this reason it is often more
convenient to study Toeplitz operators on B and use duality to obtain re-
sults in A1. For a reference on multipliers of these BMO-type spaces and
continuity of the relevant projections we mention [13, 14, 15]. The other
direction is also possible, see [9, 11].

Suppose f is analytic and a is a measurable function such that af ∈ L1.
Then is makes sense to define the Toeplitz operator with symbol a acting
on f by

Taf(z) =

∫

D

f(w)a(w)dA(w)

(1− zw̄)2
.

Since w 7→ f(w)(1 − zw̄)−2 is smooth, it makes sense to define Ta for
compactly supported distribution a by

Taf(z) = 〈f(w)(1− zw̄)−2, a〉w , z ∈ D.

However, it is not difficult to see that such operator is compact Ap → Ap

for all p ∈ [1,∞] and Bd → Bd′ for d, d′ > 0. Therefore, we will need to look
for larger classes of suitable distributions.

Together with J. Taskinen and J. Virtanen the author studied a weighted
Sobolev spaces of distributions, generating bounded Toeplitz operators on
the Bergman and Fock space settings. See [5, 6, 7] for reference. This work
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bears more similarity to the Bergman space approach, since all the functions
are defined on the unit disk. When dealing with Toeplitz operators B → Bd

for d > 0, we will need an additional logarithmic weight. We will actually
make use of several distributional classes to cover Toeplitz operators acting
between the spaces Bd and Bd′ with the possibility of d 6= d′. This kind of
setting has not been actively studied before, but it works nicely with the
families of distributions presented. This paper is in a sense a generalization
of the results in [11].

We will first review some theory of weighted Sobolev spaces. All the
results are more or less well-known and obtainable by using [1]. Similar
things were done in more detail in [5] and [6]. We will omit the proofs
here. In section 3 we will consider boundedness of Toeplitz operators with
distributional symbols between various Bloch spaces, and after that take
a look at the compactness in the section 4. In the fifth section we study
logarithmic BMO-type symbol classes in setting of B and, finally, in the
section 6 we obtain the results in the Bergman space A1.

The author wishes to thank Jari Taskinen and Jani Virtanen for the nu-
merous pieces of advice and helpful remarks and for carefully reading the
original manuscript. The author also expresses his gratitude to professor
Kehe Zhu for explaining the proof of lemma 5.3.

2. Preliminanies on Sobolev spaces.

In this paper we will refer to [8] for general theory of distributions, [1] for
Sobolev spaces, and [17] for operator theory and analytic function spaces. In
what follows we will encounter several spaces of functions and distributions,
but they all are defined on D. For the norm of an element f of a Banach
function space X we use the notation ‖f ; X‖; for the operator norm of a
bounded linear operator T : X → Y we write ‖T : X → Y ‖. This notation is
not the most standard one, but seems appropriate, as we deal with operators
between several spaces that already have somewhat complex notation. The
standard space of infinitely smooth compactly supported test functions of the
unit disk is denoted by C∞

0 = C∞
0 (D), and its dual, the space of distributions

on D, is D′ = D′(D). All our symbols will be assumed to be members of D′.
The order of a multi–index α ∈ N2, where N := {0, 1, 2, , . . .}, is denoted by
|α| := α1 + α2. The notation α ≥ β for the multi–indices α, β means that
αj ≥ βj for j = 1, 2. As for derivatives, the notation Dαf stands for

∂α1

∂xα1

∂α2

∂yα2
f,

if f is a function of z = x + iy, where x, y ∈ R, and α is a multi–index.
The same notation is used for both classical and distributional derivatives.
We also write Dα

wf , if it is necessary to indicate the differentiation of a
function f with respect to its variable w. For an analytic function f of
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the variable z ∈ D, we denote by f (l) the l:th derivative with respect to
z, for all l ∈ N. By C, C ′, C1, c etc. (respectively, Cn etc.) we mean
positive constants independent of functions, variables or indices occurring
in the given calculations (respectively, depending only on n). These may
vary from place to place, but not in the same group of inequalities.

We define ν : D→ R+ to be the standard weight on the unit disk;

ν(z) = 1− |z|2.
We will also need the logarithmic correction weight ` : D→ R+ on the unit
disk. It is defined by

`(z) = 1 + | log(ν(z))|.
Given m ∈ N and t > −1 denote by Wm,1

t,ν = Wm,1
t,ν (D) the weighted

Sobolev space consisting of measurable functions f on D such that

‖f ; Wm,1
t,ν ‖ :=

∑

|α|≤m

∫

D

|Dαf(z)|ν(z)−t+|α|dA(z) < ∞.(2.1)

Similarly, LWm,1
t,ν = LWm,1

t,ν (D) is the weighted logarithmic Sobolev space
consisting of measurable functions f on D such that

‖f ;LWm,1
t,ν ‖ :=

∑

|α|≤m

∫

D

|Dαf(z)|ν(z)−t+|α|`(z)−1dA(z) < ∞.(2.2)

We will use the following density result, which is similar to that proven
in [5]. Note that this result is not true in the standard, unweighted Sobolev
space Wm,1, unless m = 0.

Lemma 2.1. Let t > −1. The subspace C∞
0 of compactly supported infinitely

smooth functions on D is dense in Wm,1
t,ν and LWm,1

t,ν .

Proof. The proof is essentially the same as the one given in [5]; The norm
in Wm,1

t,ν (or LWm,1
t,ν ) just needs to add extra multiple of ν for higher order

derivatives, the weight in case α = 0 is irrelevant. ¤

Definition 2.2. Given m ∈ N and t > −1 we denote by

Ym
t := W−m,∞

t,ν = W−m,∞
t,ν (D)

(LYm
t := LW−m,∞

t,ν = LW−m,∞
t,ν (D))

the weighted Sobolev spaces consisting of distributions a on D which can be
written in the form

a =
∑

0≤|α|≤m

(−1)|α|Dαbα,(2.3)

where
‖bα; L∞t−|α|‖ := ‖bανt−|α|‖∞ < ∞
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(‖bα;LL∞t−|α|‖ := ‖bα`νt−|α|‖∞ < ∞).

Here every bα is considered as a distribution like a locally integrable func-
tion, and the identity (2.3) contains distributional derivatives. We refer to
representations like (2.3) by (bα) := (bα)|α|≤m.

The representation (2.3) is not unique in general. Hence, we define the
norm in Ym

t (LYm
t ) by

‖a‖ := ‖a;Ym
t ‖ := inf max

0≤|α|≤m
‖bα; L∞t−|α|‖,

(‖a‖ := ‖a;LYm
t ‖ := inf max

0≤|α|≤m
‖bα;LL∞t−|α|‖),

where the infimum is taken over all representations (2.3).
The following lemma was also essentially proven in [5]:

Lemma 2.3. Let t > −1. The dual of Wm,1
t,ν (dual of LWm,1

t,ν ) is isometrically
isomorphic to Ym

t (LYm
t ) with respect to the dual paring

〈f, a〉 :=
∑

0≤|α|≤m

∫

D

(Dαf)bαdA,(2.4)

where the functions bα are as in (2.3).

Remark 2.4. Let t > −1. If a ∈ Ym
t (a ∈ LYm

t ), the value of the expression
on the right hand side of (2.4) is unique, although the representation (2.3)
is not. Namely, for every ϕ ∈ C∞

0 , the value of

∑

0≤|α|≤m

∫

D

(Dαϕ)bαdA

coincides with 〈ϕ, a〉, by the standard definition of distributional derivative,
and the uniqueness of (2.4) follows from Lemma 2.1.

The space Ym
0 is the space W−m,∞

ν of [5, 7]. Note also that for each
t > −1 and a compactly supported distribution a, there exists m ∈ N such
that a ∈ LYm

t ⊂ Ym
t . Also, when t ≤ 0, the space Ym

t contains all bounded
functions; same is true about LYm

t , when t < 0. Also, if −1 < t < t′ < ∞,
then

LYm
t′ ⊂ Ym

t′ ⊂ LYm
t

for each m ∈ N and with bounded inclusions.

3. Bounded Toeplitz operators with distributional symbols.

In order to work effectively in the setting of Bloch spaces for different
values of d > 0, we need a result on operators generated by Bergman-type
kernels. The following lemmas can be found in [15, 17], for instance.
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Lemma 3.1. Let d > 0, s > −1 and t be real. Then the operator Js,t defined
by

Js,tf(z) =

∫

D

(1− |w|2)sf(w)dA(w)

(1− zw̄)1+s+t

is bounded L∞ → Bd whenever t ≤ d.

Lemma 3.2. Let d > 0, n ≥ 1 and suppose that f is analytic. Then

‖νd−1+nf (n)‖∞ ≤ Cn‖f‖Bd
,

for some Cn > 0. An analytic function f belongs to Bd if and only if
νd−1+kf (k) is bounded.

Lemma 3.3. The following three statements are true.

(1) If 0 < d < 1 and f ∈ Bd, then there exists a positive constant C > 0
so that |f(z)| ≤ C‖f‖Bd

for each z ∈ D.
(2) For f ∈ B and z ∈ D, there exists a positive constant C > 0 so that

|f(z)|/`(z) ≤ C‖f‖B for each z ∈ D.
(1) If 1 < d < ∞ and f ∈ Bd, then there exists a positive constant C > 0

so that ν(z)d−1|f(z)| ≤ C‖f‖Bd
for each z ∈ D.

Toeplitz operator with symbol a ∈ Ym
t (a ∈ LYm

t ) is defined like in [5, 7].
Note that Bd is contained in the predual of Ym

t if and only if t > d − 2. In
particular, one has to be careful when defining Toeplitz operators on Bd for
d > 1.

Definition 3.4. Let 0 < d < ∞, t > −1 and t > d − 2. Assume that the
distribution a ∈ D′ belongs to Ym

t (LYm
t ) for some m. Then the Toeplitz

operator Ta is defined by the formula

Taf(z) =
∑

0≤|α|≤m

∫

D

(
Dα

w

f(w)

(1− zw̄)2

)
bα(w)dA(w) , f ∈ Bd.(3.1)

Since the above definition makes sense for f ∈ A1
t (see [5]), the operator

is well-defined in the Bloch spaces as well.
The following theorems are the main results of this paper. The bounded-

ness of Ta : Bd → Bd′ depends on the various choices for d and d′. We remind
the reader that, in our considerations, there are essentially three types of
Bloch spaces Bd; when 0 < d < 1, the elements of Bd are bounded functions;
the elements of B can have at most logarithmic singularity near the bound-
ary; when d > 1, the functions in Bd can have at most singularity of order
d − 1 near the boundary. After one differentiation, further differentiations
of functions in any of the spaces will increase the order of the singularity by
at most one. We state our main theorem in three parts to emphasize the
behavior mentioned above.
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Theorem 3.5. Let 0 < d < 1, 0 < d′ < ∞ and a ∈ D′. The following
propositions are true:

(1) Suppose d′ < 2 and a ∈ Ym
1−d′ for some m ∈ N. Then Ta is

bounded Bd → Bd′ and ‖Ta;Bd → Bd′‖ ≤ C‖a;Ym
1−d′‖ for some

C := C(d, d′,m) > 0.
(2) Suppose d′ ≥ 2 and a ∈ Ym

t for some t > −1 and m ∈ N. Then
Ta is bounded Bd → Bd′ and ‖Ta;Bd → Bd′‖ ≤ C‖a;Ym

t ‖ for some
C := C(d, d′, t) > 0.

Theorem 3.6. Let a ∈ D′. Then the following propositions are true:

(1) Suppose d′ < 2 and a ∈ LYm
1−d′ for some m ∈ N. Then Ta is

bounded B → Bd′ and ‖Ta;B → Bd′‖ ≤ C‖a;LYm
d−d′‖ for some

C := C(d′,m) > 0.
(2) Suppose d′ ≥ 2 and a ∈ LYm

t for some t > −1 and m ∈ N. Then
Ta is bounded B → Bd′ and ‖Ta;B → Bd′‖ ≤ C‖a;LYm

t ‖ for some
C := C(d′, t) > 0.

When d > 1, the Toeplitz operator can no longer be defined on Bd for
all symbol classes Ym

t (t > −1); we need to restrict our attention to case
t > d− 2.

Theorem 3.7. Let d > 1 and a ∈ D′. Then the following propositions are
true:

(1) Suppose d′ < 2 and a ∈ Ym
d−d′ for some m ∈ N. Then Ta is

bounded Bd → Bd′ and ‖Ta;Bd → Bd′‖ ≤ C‖a;Ym
d−d′‖ for some

C := C(d, d′,m) > 0.
(2) Suppose d′ ≥ 2 and a ∈ Ym

t for some t > d − 2 and m ∈ N. Then
Ta is bounded Bd → Bd′ and ‖Ta;Bd → Bd′‖ ≤ C‖a;Ym

t ‖ for some
C := C(d, d′, t) > 0.

Proofs of theorems 3.5-3.7. The proof of theorem 3.6 is probably the most
difficult as it contains the logarithmic weight. We therefore prove it and
remark that the proofs for the other theorems are similar. Note that, for
instance the condition d′ < 2 means that for d = 1 we have d′ − d < 1, so
this part of the theorem is not different from the other theorems.

To prove (1) suppose a ∈ LYm
1−d′ with d′ < 2 and m ∈ N. Fix a represen-

tation (bα) for a such that

‖a;LYm
1−d′‖ ≥ (1/2) max

|α|≤m
‖bα; LL∞1−d′−|α|‖.

The operator Ta can now be represented as

Taf(z) =
∑

0≤|α|≤m

∫

D

(
Dα

w

f(w)

(1− zw̄)2

)
bα(w)dA(w) , f ∈ B.
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By using the Leibnitz formula, we get

Taf(z) =
∑

|α|≤m

∑

β≤α

Cα,β

∫

D

[
Dα−βf(w)

] [
Dβ(1− zw̄)−2)

]
bα(w)dA(w)

for some positive constants Cα,β. Differentiating we get
[
Dα−βf(w)

] [
Dβ(1− zw̄)−2)

]
= C ′

α,βz|β|f (|α|−|β|)(w)(1− zw̄)−2−|β|

for some complex constants C ′
α,β. We have thus shown that

Taf(z) =
∑

|α|≤m

∑

β≤α

Cα,βC ′
α,βz|β|

∫

D

f (|α|−|β|)(w)bα(w)dA(w)

(1− zw̄)2+|β| .

Since multiplication by polynomials is bounded on each Bd, it is sufficient
to prove that, under the assumptions of the theorem, the operators

(3.2) Rα,β
bα

f(z) =

∫

D

f (|α|−|β|)(w)bα(w)dA(w)

(1− zw̄)2+|β|

are bounded B → Bd′ and satisfy

‖Rα,β
bα

;B → Bd′‖ ≤ C‖bα; LL∞1−d′−|α|‖
when |α| ≤ m and β ≤ α.

First assume that β = α. Then

Rα,β
bα

f(z) = Rα,α
bα

f(z) =

∫

D

f(w)bα(w)dA(w)

(1− zw̄)2+|α| .

Now, by lemma 3.3 and the assumption on bα, we get

|f(w)bα(w)| ≤ C`(w)‖f ;B‖`(w)−1ν(w)1−d′+|α|‖bα; LL∞1−d′−|α|‖
for almost every w ∈ D and some C > 0 independent of f and bα. An
application of 3.1 now gives the desired estimate.

Now assume that β < α. Then

Rα,β
bα

f(z) =

∫

D

f (|α|−|β|)(w)bα(w)dA(w)

(1− zw̄)2+|β| .

By lemma 3.2 and the assumption on bα, we get

|f (|α|−|β|)(w)bα(w)| ≤ Cν(w)|β|−|α|‖f ;B‖`(w)−1ν(w)1−d′+|α|‖bα; LL∞1−d′−|α|‖
≤ Cν(w)1+d′+|β|‖f ;B‖‖bα; LL∞1−d′−|α|‖

for almost every w ∈ D and some C > 0 independent of f and bα. Again,
lemma 3.1 applies here and gives the desired estimate. The case (1) is now
proven.

For the case (2), note that everything is similar, but B is not a subset of
the predual of LYm

t if t ≤ −1 (indeed, even constats fail to be in this space),
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we therefore cannot have t ≤ −1.

We conclude that the Toeplitz operator is a finite sum of products of
bounded operators and hence bounded. ¤

The main theorems can be applied in the form of the following corollary,
which concerns the case when d = d′.

Corollary 3.8. Suppose 0 < d < ∞ and a ∈ D′. The following propositions
are true:

(1) Suppose d < 1 and a ∈ Ym
1−d for some m ∈ N. Then Ta is bounded

on Bd and ‖Ta;Bd → Bd‖ ≤ C‖a;Ym
1−d‖ for some C := C(d,m) > 0.

(2) Suppose a ∈ LYm
0 for some m ∈ N. Then Ta is bounded on B and

‖Ta;B → B‖ ≤ C‖a;LYm
0 ‖ for some C := C(m) > 0.

(3) Suppose 1 < d < 2 and a ∈ Ym
0 for some m ∈ N. Then Ta is bounded

on Bd and ‖Ta;Bd → Bd‖ ≤ C‖a;Ym
0 ‖ for some C := C(d,m) > 0.

(4) Suppose d ≥ 2 and a ∈ Ym
t for some t > d − 2 and m ∈ N. Then

Ta is bounded Bd → Bd and ‖Ta;Bd → Bd‖ ≤ C‖a;Ym
t ‖ for some

C := C(d, t) > 0.

4. Compact Toeplitz operators with distributional symbols.

In this section we prove compactness versions of the main theorems 3.5-
3.7. As it often is the case, the results follow from the boundedness results
by using approximation. It is known that compactly supported distributions
generate compact Toeplitz operators.

Lemma 4.1. Let a be a compactly supported distribution of D. Then Ta :
Bd → Bd′ is compact for each d, d′ ∈ (0,∞).

Proof. It was noted before that all the presented distributional classes
contain compactly supported distributions. Hence Ta : Bd → Bd′ makes
sense for all d, d′ ∈ (0,∞). Compactness follows by usual arguments by
using uniform boundedness on compact subsets of D and normal family
techniques, for instance. ¤

We now achieve the compactness versions of theorems 3.5-3.7 with little
effort. We will use the following auxiliary definition.

Definition 4.2. Let d > −1 and a ∈ Ym
d (a ∈ LYm

d ) for some m ∈ N.
Suppose also that a has a representation (bα) such that

ess lim
r→1−

sup
r<|z|<1

ν(z)−|α||bα(z)| = 0

(ess lim
r→1−

sup
r<|z|<1

`(z)ν(z)−|α||bα(z)| = 0)

for each multi-index α with |α| ≤ m. Then a is said to belong to Vm
d (LVm

d ).
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The symbol V indicates vanishing near the boundary. Note that not all
representations of a need to satisfy the above definition in order to have
a ∈ Vm

d or a ∈ LVm
d . In particular, there might be representations for a

not satisfying the definition but having norm smaller than a representation
satisfying it. Also, it possible that a ∈ Vm

d and a ∈ Ym′
d for m > m′ but

a /∈ Vm′
d . Same goes for the logarithmic spaces, as well.

Theorem 4.3. Let 0 < d < 1, 0 < d′ < ∞ and a ∈ D′. The following
propositions are true:

(1) Suppose d′ < 2 and a ∈ Vm
1−d′ for some m ∈ N. Then Ta is compact

Bd → Bd′.
(2) Suppose d′ ≥ 2 and a ∈ Vm

t for some t > −1 and m ∈ N. Then Ta

is compact Bd → Bd′.

Theorem 4.4. Let a ∈ D′. Then the following propositions are true:

(1) Suppose d′ < 2 and a ∈ LVm
1−d′ for some m ∈ N. Then Ta is compact

B → Bd′.
(2) Suppose d′ ≥ 2 and a ∈ LVm

t for some t > −1 and m ∈ N. Then Ta

is compact B → Bd′.

Theorem 4.5. Let d > 1 and a ∈ D′. Then the following propositions are
true:

(1) Suppose d′ < 2 and a ∈ Vm
d−d′ for some m ∈ N. Then Ta is compact

Bd → Bd′.
(2) Suppose d′ ≥ 2 and a ∈ Vm

t for some t > d− 2 and m ∈ N. Then Ta

is compact Bd → Bd′.

Proof of theorems 4.3-4.5. Suppose (bα) is a representation for a satisfying
definition 4.2. Then a can be approximated in norm by distributions ar,
0 < r < 1, with r → 1−. Indeed, define bα,r(z) = χB(0,r)(z)bα(z). The
distributions ar (having representations (bα,r)) are compactly supported and
so, by the respective theorem of boundedness and lemma 4.1, the operator
Ta must be compact, since it can be approximated in norm by compact
operators. ¤

Corollary 4.6. Suppose 0 < d < ∞ and a ∈ D′. The following propositions
are true:

(1) Suppose d < 1 and a ∈ Vm
1−d for some m ∈ N. Then Ta is compact

on Bd.
(2) Suppose a ∈ LVm

0 for some m ∈ N. Then Ta is compact on B.
(3) Suppose 1 < d < 2 and a ∈ Vm

0 for some m ∈ N. Then Ta is compact
on Bd.

(4) Suppose d ≥ 2 and a ∈ Vm
t for some t > d− 2 and m ∈ N. Then Ta

is compact on Bd.
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5. Weighted BMO and Toeplitz operators.

In this section we concentrate on Toeplitz operators acting on the most
common Bloch space B. So far we have shown that if a ∈ LYm

0 , then
Ta : B → B will be bounded. An obvious drawback for this approach is
that LYm

0 does not contain constant functions, even though they obviously
generate bounded Toeplitz operators on B. However, it has been known for
over two decades (see [13, 14]) that membership of the (function) symbol
a in the space BMOlog will imply boundedness of Ta on B. This was also
recently studied in [11]. This section is devoted to the study of the related
boundedness and compactness results in the case of distributional symbols.

Denote by D(z, r) = {w ∈ D : β(z, w) < r} (β is the Bergman metric, see
[17]) the Bergman disk.

Let f ∈ L∞. Denote by f̂ the averaging function:

f̂(z) = |D(z, r)|−1

∫

D(z,r)

f(w)dA(w).

In what follows, the choice of r ∈ (0, 1) is not important; Let us agree
that r = 1/2, for instance.

Definition 5.1. Let f ∈ L∞. We say that f belongs to the logarithmic
BMO∂ (f ∈ BMOlog) if

‖f ; BMOlog‖ := sup
z∈D

`(z)|D(z, r)|−1

∫

D(z,r)

|f(w)− f̂(z)|dA(w) < ∞.

The above definition is known to be equivalent to saying that

`(z)[B(|f |2)(z)− |B(f)(z)|2]1/2

is bounded on D. Here

B(f)(z) =

∫

D

(1− |z|2)2f(w)dA(w)

|1− zw̄|4
is the Berezin transform of f .

Lemma 5.2. Let f be a measurable function on the unit disk. Then fg ∈
BMO∂ for each g ∈ BMO∂ is and only iff ∈ BMOlog. That is, BMOlog is
the pointwise multiplier of BMO∂.

Since the standard Bergman projection maps BMO∂ boundedly to B, the
following lemma is intuitively clear. However, we present here a simple proof
for the convenience of the reader.

Lemma 5.3. Let t ≥ 0, then the general projection Pt:

Ptf(z) =

∫

D

(1− |w|2)tf(w)

(1− zw̄)2+t

is bounded BMO → B.
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Proof. For the proof of the case t = 0, see [13]. The general case follows
by similar arguments: If f ∈ BMO, then the Hankel operators Hf and Hf̄

are bounded on A2
t . Hence the little Hankel operator (See [13, 17] for more

details about the little Hankel operators. The notation here is that of [17].)
hf̄ is bounded A2

t → L2
t , but hf̄ = hPtf

. Since the little Hankel operator with
conjugate-analytic symbol g is bounded if and only if g ∈ B, we conclude
that Ptf ∈ B. ¤

Theorem 5.4. Let a ∈ D′ be a member of Ym
0 for some m ∈ N. Assume

moreover, that there exists m′ ∈ N such that a has a representation

a =
∑

|α|≤m′
Dαbα,

where bα/ν |α| ∈ BMOlog for each α. Then Ta is bounded on B.

Proof. Let (bα) be a representation for a given in the statement of the
theorem. We will look at the operators like 3.2 (see the proof of theorems
3.5-3.7). Recall that

Rα,β
bα

f(z) =

∫

D

f (|α|−|β|)(w)bα(w)dA(w)

(1− zw̄)2+|β| .

If α = β, then we have f (|α|−|β|) = f ∈ B and ν−|β|bα = ν−|α|bα ∈ BMOlog

and so Rα,β
bα

is just P|β| applied to the product fν−|β|bα, which maps f
boundedly to B.

If α > β, then f (|α|−|β|)ν |α|−|β| ∈ L∞ ⊂ BMO∂ and ν−|α|bα ∈ BMOlog,

so Rα,β
bα

is P|β| applied to the product f (|α|−|β|)ν |α|−|β|ν−|α|bα, which is again
bounded. ¤

Remark 5.5. Note that the above result gives an estimate

‖Ta : B → B‖ ≤ C max
|α|≤m′

‖ν−|α|bα; BMOlog‖

for each choice of (bα) satisfying the requirements of the previous theorem;
there is no easy way to compare a and the norm of Ta directly.

6. The Bergman space A1 and examples.

We will finally briefly discuss the case of the Bergman space A1. As it
often happens, the results can be fairly easily achieved by using duality and
studying operators of the type 3.2.

Corollary 6.1. Suppose a ∈ D′ belongs to LYm
0 for some m ∈ N. Then Ta

is bounded on A1 and there exists a constant C := C(m) > 0 such that

‖Ta : A1 → A1‖ ≤ C‖a;LYm
0 ‖.
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Corollary 6.2. Suppose a ∈ D′ belongs to LVm
0 for some m ∈ N. Then Ta

is compact on A1.

Corollary 6.3. Let a ∈ D′ be a member of Ym
0 for some m ∈ N. Assume

moreover, that there exists m′ ∈ N such that a has a representation

a =
∑

|α|≤m′
Dαbα,

where bα/ν |α| ∈ BMOlog for each α. Then Ta is bounded on A1.

We finish the paper by looking at examples:

Example 6.4. Suppose

b1(z) = `−1(z)ν(z) sin(exp100(ν(z)−1))

and
a := D(1,0)b1.

Then a ∈ LY1
0 and so Ta is bounded on A1 and B. However, a is a function

that is clearly not bounded (or even L1). Modifying this example one can
easily produce examples of bounded and compact Toeplitz operators Bd →
Bd′ for various choices of d and d′, as well.
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