
Quasiminimizing properties of solutions to Riccati

type equations

O. Martio
Department of Mathematics and Statistics

FI–00014 University of Helsinki, Finland

e-mail: olli.martio@acadsci.fi

January 19, 2011

Abstract

Solutions u of the Riccati equation −∇ ⋅A(x,∇u) = b(x)∣∇u∣q with A(x, ℎ) ⋅ ℎ ≈
∣ℎ∣p and b a bounded function are studied in an open set Ω ⊂ Rn. It is shown

that the solutions u are local quasiminimizers whenever p− 1 ≤ q ≤ p for p > n

and n − 1 ≤ q < n for p = n. This extends the results in the author’s earlier

paper [Ma] where the case p < n was studied. Continuous solutions in the range

p/n + p − 1 ≤ q ≤ p are also local quasiminimizers. Examples show that the

results are quite sharp.
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1 Introduction

We consider solutions u of the equation

−∇ ⋅A(x,∇u) = b(x)∣∇u∣q (1.1)

where A(x, ℎ) ⋅ ℎ ≈ ∣ℎ∣p, p > 1. For the precise assumptions on p, A, b and q see
(1.3)–(1.7) below. The solutions u are understood in the weak sense. Hence u is
a solution of (1.1) in an open set Ω ⊂ Rn if u belongs to the local Sobolev space
W 1,p

loc (Ω) and ∫

Ω

A(x,∇u) ⋅ ∇'dx =

∫

Ω

' b(x)∣∇u∣q dx (1.2)

for all ' ∈ C∞
0 (Ω). In Section 3 we consider solutions in the case q > p. Then we

assume that a solution u belongs to W 1,q
loc (Ω).
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We use the following assumptions in the sequel unless otherwise stated:

b is a bounded measurable function in Ω (1.3)

and A : Ω×Rn → Rn is a Caratheodory function such that for all ℎ ∈ Rn and a.e.
x ∈ Ω

A(x, ℎ) ⋅ ℎ ≥ ®∣ℎ∣p, (1.4)

∣A(x, ℎ)∣ ≤ ¯∣ℎ∣p−1 (1.5)

where 0 < ® ≤ ¯ < ∞. In Section 2 for the exponents p > 1 and q we use two sets
of assumptions:

p > n, p− 1 ≤ q ≤ p (1.6)

and
p = n, n− 1 ≤ q < n. (1.7)

In [Ma] the range
q < p < n, p− 1 ≤ q ≤ p/n+ p− 1, (1.8)

was studied and the purpose of this paper is to complete the picture of quasimini-
mizing properties of solutions to include the cases (1.6) and (1.7).

The prototype of (1.1) is the equation

−Δpu = −∇ ⋅ (∣∇u∣p−2∇u) = ∣∇u∣q (1.9)

and the examples in Section 4 concern this much studied equation, see [Ng] for
q > p and for other values [DP] and references therein.

We recall the concept of a quasiminimizer. Let Ω be an open subset of Rn,
n ≥ 1, p > 1 and K ≥ 1. A function u in the local Sobolev space W 1,p

loc (Ω) is called
a (p,K)–quasiminimizer in Ω if for all open sets Ω′ ⊂⊂ Ω

∫

Ω′
∣∇u∣p dx ≤ K

∫

Ω′
∣∇v∣p dx (1.10)

for all functions v such that v− u ∈ W 1,p
0 (Ω′). Note that if a function u belongs to

W 1,p(Ω), then u is a K–quasiminimizer if and only if (1.10) holds for all open sets

Ω′ ⊂ Ω, i.e. Ω
′
need not be a compact subset of Ω. In general we keep the number

p fixed and use the abbreviation a K–quasiminimizer. For K = 1 the function u
is minimizer and hence a p–harmonic function, i.e. u satisfies Δpu = 0. For the
properties of quasiminimizers see [Gia], [GG], [Ma] and references therein.

We say that a function u in Ω is a local K–quasiminimizer if every x ∈ Ω has a
neighborhood U such that u∣U is aK–quasiminimizer. The function u is called aK–
quasiminimizer in small sets in Ω if there is ± > 0 such that u is K–quasiminimizer
in every open set Ω′ ⊂ Ω whenever m(Ω′) < ±.

Our result in the next section says that all solutions u ∈ W 1,p(Ω) to (1.1) under
the assumptions (1.3) – (1.5) and either (1.6) or (1.7) are quasiminimizers in small
sets in Ω. We then use this property and its local counterpart to derive uniqueness
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results for solutions. In Section 3 we show that continuous solutions in the range
p/n+ p− 1 < q ≤ p are local quasiminimizers as well. The method here is similar
to that in [Ma]. The exponents p and q such that the equation (1.9) has solutions
which are not local quasiminimizers are considered in Section 4.

2 Main results

We first consider the case where a solution u of (1.1) belongs to W 1,p(Ω). Let

Dp(u) = Dp(u,Ω) =

∫

Ω

∣∇u∣p dx

denote the p–Dirichlet integral of u in Ω.

Theorem 2.1 Suppose that u ∈ W 1,p(Ω) is a solution of the equation (1.1) in an
open set Ω ⊂ Rn where A and b satisfy the assumptions (1.3) – (1.5) and p and q
the assumption (1.6), i.e. p > n, p−1 ≤ q ≤ p. Then u is a quasiminimizer in small
sets in Ω. More precisely, there is ± = ±(p, q, n, ®,M,Dp(u)) > 0 such that u is a
(2¯/®)p–quasiminimizer in Ω′ ⊂ Ω whenever m(Ω′) < ±. Here M = ess supΩ∣b∣.
In the case q = p− 1 the number ± does not depend on Dp(u).

Proof. Let Ω′ ⊂ Ω be an open set and let P = P (u,Ω′) be the function which
minimizes the p–Dirichlet integral with boundary values u in Ω′, i.e.

∫

Ω′
∣∇P ∣p dx = inf

v

∫

Ω′
∣∇v∣p dx

over all functions v − u ∈ W 1,p
0 (Ω′). Such a unique p–harmonic function always

exists, see e.g. [HKM, Chapter 5]. We use u−P as a test function for the equation
(1.2). This gives

∫

Ω′
A(x,∇u) ⋅ ∇(u− P ) dx =

∫

Ω′
(u− P )b(x)∣∇u∣q dx. (2.1)

We estimate the left and the right hand side of (2.1) separately.
For the left hand side we first use (1.4), (1.5) and the Hölder inequality to obtain

∫

Ω′
A(x,∇u) ⋅ ∇(u− P ) dx

≥ ®

∫

Ω′
∣∇u∣p dx− ¯

(∫

Ω′
∣∇u∣p dx

)(p−1)/p (∫

Ω′
∣∇P ∣p dx

)1/p

(2.2)

=

(∫

Ω′
∣∇u∣p dx

)(p−1)/p
Ã
®

(∫

Ω′
∣∇u∣p dx

)1/p

− ¯

(∫

Ω′
∣∇P ∣p dx

)1/p
)
.

To estimate the right hand side of (2.1) we use

ess supΩ∣w∣ ≤ cm(Ω′)(p−n)/(np) ∥ ∇w ∥p
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valid for a function w ∈ W 1,p
0 (Ω′) in the case p > n, see [GT, Theorem 7.10]. The

generic constant c depends only on p and n. Since

∫

Ω′
∣∇u∣p dx ≥

∫

Ω′
∣∇P ∣p dx (2.3)

by the minimizing property of P , we get, after an application of the Hölder inequal-
ity, that ∫

Ω′
(u− P )b(x)∣∇u∣q dx

≤ cMm(Ω′)(p−n)/np

(∫

Ω′
∣∇u∣p dx

)1/p (∫

Ω′
∣∇u∣p dx

)q/p

m(Ω′)(p−q)/p (2.4)

= cMm(Ω′)(p−n+n(p−q))/np

(∫

Ω′
∣∇u∣p dx

)(1+q)/p

.

Note that we have used the assumption q ≤ p here.
Combining (2.2) and (2.4) we obtain

®

(∫

Ω′
∣∇u∣p dx

)1/p

− ¯

(∫

Ω′
∣∇P ∣p dx

)1/p

≤ cMm(Ω′)(p−n+n(p−q))/np

(∫

Ω′
∣∇u∣p dx

)(2+q−p)/p

. (2.5)

Since 1 + q − p ≥ 0, we get

(∫

Ω′
∣∇u∣p dx

)(2+q−p)/p

≤ Dp(u)
(1+q−p)/p

(∫

Ω′
∣∇u∣p dx

)1/p

(2.6)

and choosing Ω′ so small that

cMDp(u)
(1+q−p)/pm(Ω′)(p−n+n(p−q))/np ≤ ®/2

we obtain from (2.5) and (2.6) that

∫

Ω′
∣∇u∣p dx ≤ (2¯/®)p

∫

Ω′
∣∇P ∣p dx.

This means that u satisfies (1.10) withK = (2¯/®)p. Hence u is aK–quasiminimizer
in small sets in Ω. More precisely, there is ± = ±(p, q, n, ®,M,Dp(u)) > 0 such that
u is a K–quasiminimizer in Ω′ ⊂ Ω whenever m(Ω′) < ±. In the case q = p− 1 the
number ± does not depend on Dp(u). The proof is complete.

Remark 2.2 A look at the proof of the previous theorem shows that for the p–
harmonic operator A(x, ℎ) = ∣ℎ∣p−2ℎ, where ® = ¯ = 1, the number K can be
chosen arbitrary close to 1 by choosing ± small.
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The proof of the above theorem immediately produces the following local version.

Theorem 2.3 Suppose that u ∈ W 1,p
loc (Ω) is a solution of the equation (1.1) in

an open set Ω ⊂ Rn where p, q and A satisfy the assumptions (1.4)–(1.6) and
b is a locally bounded measurable function in Ω. Then u is a local quasimini-
mizer in Ω. More precisely, for each x ∈ Ω there is r > 0, such that u is a
(2¯/®)p–quasiminimizer in B(x, r). The number r depends only on p, q, n, ®,
and Dp(u,B(x, r)), M ′ = ess supB(x,r)∣b∣. For q = p − 1, r is independent of
Dp(u,B(x, r)).

Next we consider the case p = n. The method is much the same as in Theorem
2.1 except a few twists.

Theorem 2.4 Suppose that u ∈ W 1,n(Ω) is a solution of the equation (1.1) in an
open set Ω ⊂ Rn where Let A and b satisfy the assumptions (1.3) – (1.5) and p and
q the assumption (1.7), i.e. p = n, n − 1 ≤ q < n. Then u is a quasiminimizer in
small sets in Ω. More precisely, there is ± = ±(p, q, n, ®,M,Dn(u) > 0 such that u is
a (2¯/®)n–quasiminimizer in Ω′ ⊂ Ω whenever m(Ω′) < ±. Here M = ess supΩ∣b∣.
In the case q = n− 1 the number ± is independent of Dn(u).

Proof. Fix an open set Ω′ ⊂ Ω and let P be the unique n–harmonic function
in Ω′ with u − P ∈ W 1,p

0 (Ω′). As in the proof of Theorem 2.1 we use the function
u − P as a test function in the equation (1.2). Since q < n the Hölder inequality
gives for the right hand side of (1.2) an estimate

∫

Ω′
(u− P )b(x)∣∇u∣q dx

≤ M

(∫

Ω′
∣u− P ∣n/(n−q) dx

)(n−q)/n (∫

Ω′
∣∇u∣n dx

)q/n

. (2.7)

Next we write the exponent n/(n− q) as ns/(n− s) where s = n/(n− q+1). Note
that s < n because n > q. Now we can use the Sobolev imbedding theorem, see
e.g. [GT, Theorem 7.10]. This yields

∫

Ω′
∣u− P ∣ns/(n−s) dx ≤ c

(∫

Ω′
∣∇(u− P )∣s dx

)n/(n−s)

where c is a generic constant depending only on q and n and we obtain from (2.7)

∫

Ω′
(u−P )b(x)∣∇u∣q dx ≤ cM

(∫

Ω′
∣∇u∣s dx

)(n−q)/(n−s) (∫

Ω′
∣∇u∣n dx

)q/n

. (2.8)

Using the Hölder inequality, then the the minimizing property (2.3) of P for p = n
and taking the value of s into account we get

∫

Ω′
(u− P )b(x)∣∇u∣q dx
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≤ cM m(Ω′)±
′
(∫

Ω′
∣∇u∣n dx

)s(n−q)/n(n−s) (∫

Ω′
∣∇u∣n dx

)q/n

(2.9)

= cM m(Ω′)±
′
(∫

Ω′
∣∇u∣n dx

)(1+q)/n

where ±′ = (n− q)/(n− q + 1) > 0.
We complete the proof as follows. Since ∇u ∈ Lp(Ω) and ±′ > 0 there is

± = ±(n, q, ®,M,Dn(u)) > 0 such that

cM m(Ω′)±
′
Dn(u)

(q−(n−1))/n ≤ ®/2

whenever m(Ω′) < ± and hence

cM m(Ω′)±
′
(∫

Ω′
∣∇u∣n dx

)(1+q)/n

≤ cM m(Ω′)±
′
(Dn(u))

(q−(n−1))/n

∫

Ω′
∣∇u∣n dx ≤ ®/2

∫

Ω′
∣∇u∣n dx.

Thus from (2.1) and (2.2) for p = n and from (2.9) we obtain

∫

Ω′
∣∇u∣n dx ≤ (2¯/®)p

∫

Ω′
∣∇P ∣n dx.

This is (1.10) for p = n and K = (2¯/®)p. Hence u is a K–quasiminimizer in small
sets in Ω as required. In the case q = n− 1 the exponent (q− (n− 1))/n = 0 and ±
is independent of Dn(u). The proof follows.

There is a local version of Theorem 2.4 corresponding to Theorem 2.3. It is
similar to Theorem 2.3 and the formulation is left to the reader.

Since quasiminimizers satisfy the minimum and maximum principles, see e.g.
[Gia], Theorem 2.3 and its counterpart for p = n give this principle for the solutions
of (1.1) which are local quasiminimizers. By the maximum principle we mean the
strong maximum principle: If a function u attains its maximum at the point xo ∈ Ω,
then u(x) = u(xo) for all x in the xo–component of Ω.

Corollary 2.5 Let u be as in Theorem 2.3 or in the corresponding theorem for
p = n. Then u satisfies the maximum and minimum principles in Ω.

If u ∈ W 1,p
0 (Ω) is a quasiminimizer in small sets in Ω, then u = 0 in Ω, see [Ma,

Lemma 3.8]. Hence we obtain

Corollary 2.6 Let u ∈ W 1,p
0 (Ω) be a solution of the equation (1.1) where p, q, A

and b satisfy the assumptions (1.3)–(1.5) and either (1.6) or (1.7) in an open set
Ω ⊂ Rn. Then u = 0.
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3 Continuous solutions

Solutions of (1.1) need not be continuous and then they are not local quasiminimiz-
ers since local quasiminimizers are locally Hölder continuous. However, we show
that in the range

p/n+ p− 1 ≤ q ≤ p (3.1)

all continuous solutions are local quasiminimizers. Note that for p − 1 ≤ q ≤
p/n+ p− 1, p < n, all solutions are local quasiminimizers, see [Ma].

Theorem 3.1 Suppose that u is a continuous solution of the equation (1.1) in
an open set Ω ⊂ Rn where b ∈ L∞

loc(Ω) and A satisfies the assumptions (1.4) –
(1.5) and p and q the assumption (3.1). Then u is a local quasiminimizer in Ω.
More precisely, for each point xo ∈ Ω there is r > 0 depending on the modulus of
continuity of u in B(xo, r), Dp(u,B(xo, r)), ess supB(x,r)∣b∣, n, p and q such that
u∣B(xo, r) is a (2¯/®)p–quasiminimizer in B(xo, r). For p = q the radius r does
not depend on Dp(u,B(xo, r)).

Proof. Let Ω′ ⊂⊂ Ω be open and M ′ = ess supΩ′ ∣b∣. As in the proof of Theorem
2.1 we obtain an estimate

®

∫

Ω′
∣∇u∣p dx− ¯

(∫

Ω′
∣∇u∣p dx

)(p−1)/p (∫

Ω′
∣∇P ∣p dx

)1/p

≤
∫

Ω′
A(x,∇u) ⋅ ∇(u− P ) dx =

∫

Ω′
(u− P )∣∇u∣q dx (3.2)

≤ M ′
∫

Ω′
∣u− P ∣∣∇u∣q dx.

Let first q < p. Then by (3.1), p < n and ° = n(p− q)/(n− p) ∈ (0, 1) and since
°p/(p − q) = np/(n − p), we obtain from the the Sobolev imbedding theorem, see
e.g. [GT, Theorem 7.10], and the Hölder inequality

M ′
∫

Ω′
∣u− P ∣∣∇u∣q dx ≤ M ′ sup

Ω′
∣u− P ∣1−°

∫

Ω′
∣u− P ∣° ∣∇u∣q dx

≤ M ′ sup
Ω′

∣u− P ∣1−°c

(∫

Ω′
∣∇(u− P )∣p dx

)n(p−q)/(n−p)p (∫

Ω′
∣∇u∣p dx

)q/p

(3.3)

≤ cM ′ sup
Ω′

∣u− P ∣1−°

(∫

Ω′
∣∇u∣p dx

)(n−q)/(n−p)

≤ cM ′Dp(u,Ω
′)(p−q)/(n−p) sup

Ω′
∣u− P ∣1−°

∫

Ω′
∣∇u∣p dx

where we have also used (2.3) and c is a generic constant depending only on n, p
and q.
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Write Mu = Mu(Ω
′) = supΩ′ u and mu = mu(Ω

′) = infΩ′ u. Now ∣u − P ∣ ≤
Mu −mu in Ω′. Indeed, supΩ′ P ≤ Mu and infΩ′ P ≥ mu because if P (x) > Mu,
say, for some x ∈ Ω′, then u−min(P,Mu) ∈ W 1,p

0 (Ω′) and
∫

Ω′
∣∇P ∣p dx >

∫

Ω′
∣∇min(P,Mu)∣p dx

which contradicts the minimality of P . Hence if u(x) ≥ P (x), then

∣u(x)− P (x)∣ = u(x)− P (x) ≤ Mu −mu

as required and similarly if u(x) < P (x). Since u is continuous, we can for each
xo ∈ Ω choose r > 0 so small that

cM(Mu(Ω
′)−mu(Ω

′))1−°Dp(u,B(xo, r))
(p−q)/(n−p) ≤ ®/2 (3.4)

whenever Ω′ ⊂ B(xo, r). Here M ′ = ess supB(x,r)∣b∣. Then from (3.2) and (3.3) we
obtain ∫

Ω′
∣∇u∣p dx ≤

(
2¯

®

)p ∫

Ω′
∣∇P ∣p dx (3.5)

and this shows that u∣B(xo, r) is a (2¯/®)p–quasiminimizer.
For p = q, ° = 0 and we immediately obtain (3.5) under the assumption

cM(Mu(Ω
′)−mu(Ω

′)) ≤ ®/2

and hence r does not depend on Dp(u,B(xo, r)). This completes the proof.

4 Examples

Theorems 2.1 and 2.4 together with Theorem 2.3 in [Ma] and their local versions
show that every solution u to equation (1.9) is a local quasiminimizer in Ω ⊂ Rn,
or a quasiminimizer in small sets in the case u ∈ W 1,p(Ω), whenever

p > n, p− 1 ≤ q ≤ p, (4.1)

p = n, n− 1 ≤ q < n, (4.2)

p < n, p− 1 ≤ q ≤ p/n+ p− 1. (4.3)

Next we consider the remaining ranges of the exponents p and q. Let first
0 ≤ q < p− 1. Write s = p− 1− q > 0. The function

u1(t) =

{ −ct(p−q)/s , t ≥ 0,
0 , t < 0,

where c = s(p−q)/s(p− q)−1(p−1)−1/s > 0 is a distributional solution of the one di-
mensional Riccati equation −(∣u′∣p−2u′)′ = ∣u′∣q in R. The distributional property
follows from the facts that u is continuously differentiable since (p − q)/s > 1 and
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that u′(0) = 0. The function u1 can be extended to Rn as u(x) = u1(x1), x =
(x1, x2, ..., xn), and u is a distributional solution of equation (1.9) in the class
W 1,p

loc (R
n). The function u is not a local quasiminimizer because it does not satisfy

the strong maximum principle.
For the rest of the cases it is convenient to consider solutions of (1.9) depending

only on ∣x∣. For a function u depending only on r = ∣x∣ the Riccati equation (1.9)
in the spherical coordinates of Rn, n ≥ 1, takes the form

∣u′∣p−2((p− 1)u′′ +
n− 1

r
u′) = −∣u′∣q. (4.4)

For p/n + p − 1 < q < p there are locally unbounded solutions. Indeed, the
function u(x) = c(∣x∣(p−q)/s − 1) is a solution of the class W 1,p

0 (B(0, 1)) where s is
as above and

c =
s(n+ sq)1/s

q − p
> 0.

Note that (p − q)/s < 0. The function u cannot be a local quasiminimizer since
local quasiminimizers are locally Hölder continuous. Note also that the condition
p/n+ p− 1 < q < p implies p < n.

Let q > p ≥ n. Now the function

u(x) = c(1− ∣x∣(p−q)/s) (4.5)

satisfies equation (1.9) in B(0, 1) ∖ {0} where s and c are as above. Note that
(p− q)/s > 0 and c > 0 whenever

p− 1 <
n− 1

n
q. (4.6)

Inequality (4.6) also yields∇u ∈ Lq(B(0, 1)). Moreover u is a distributional solution
in B(0, 1) and this can be checked writing a function ' ∈ C∞

0 (B(0, 1)) in the form
' = Ã'+ (1− Ã)' where the function Ã ∈ C∞

0 (B(0, t)) satisfies 0 ≤ Ã ≤ 1, Ã = 1
in a neighborhood of 0 and ∣∇Ã∣ ≤const./t. Then a computation shows that the
terms in the formula (1.2) involving the function Ã' approach 0 as t → 0 because
of (4.6). This fact also follows from Theorem 3.8 in [Ng]. Thus the function u is
a bounded W 1,q

0 (B(0, 1))–solution provided that q > n and (4.6) hold and it has a
maximum at 0. Hence u cannot be a local quasiminimizer in B(0, 1).

In the case p = q < n the function

u(x) = (p− 1) log ∣x∣(p−n)/(p−1)

is a discontinuous W 1,p
0 (B(0, 1))–solution of equation (1.9) and hence not a local

quasiminimizer. The borderline case p = q = n is an interesting case and equation
(1.9) is much studied in the plane, see [TK] and references therein. The two dimen-
sional results are extended to n ≥ 3 in the recent paper [KKTK]. In particular, the
existence result Theorem 2.4 in [KM] and Theorem 4.3 in [KKTK] show that for
all n ≥ 2 equation (1.9) admits locally non–bounded W 1,p

0 (B(0, 1))–solutions.

9



Collecting the information from the previous examples and from (4.1) – (4.3)
we see that the qualitative quasiminimizing properties of solutions to (1.9) for all
the exponents q ≥ 0 and p > 1 have been settled except in the wedge domain

{(p, q) ∈ (1,∞)× [0,∞) ⊂ R2 : p > n, p < q ≤ n

n− 1
(p− 1)}.
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