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Abstract

We study the insurance ruin problem in a model where in addition to the basic
insurance business, the company operates in the general financial market. The devel-
opment of the capital is described as the solution to a stochastic difference equation.
Basic estimates for ruin probabilities are recalled from the literature and qualitative
descriptions of the range and the limit of the capital are given.
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1 Introduction

A basic financial operation of an insurance company is to pay claim amounts on occurences
of fires, storms, car accidents, etc. The payments are based on the contracts between the
company and the insureds. As the price of the contract, each insured pays a premium to
the company. Typically, the premium exceeds the mean of the associated claim amounts. If
the company has a number of contracts with similar and independent insureds then by the
law of large numbers, the total premium of the company suffices for the total claim amount
with a high probability. This result is central even for the existence of the industry. In ad-
dition to the basic insurance business, the company usually operates in the general financial
market. As a consequence, it receives (possibly negative) returns on the investments. The
importance of this additional operation has been under an extensive study during the last
few decades. A recent survey on the area is given by Paulsen (2008). For a wide description
of insurance processes and their properties, we refer the reader to Daykin et al. (1994).

Suppose now that the company starts the business at the beginning of year one. To do
this, it needs an initial capital Uy = u. Denote by U,, the capital at the end of year n for
n=1,2,.... Let B, be the net loss of the company in the basic insurance business, that is,
B, equals the total claim amount less the total premium in year n. As an approximation,
we assume that this payment takes place at the beginning of year n. After the payment, the
company invests the rest of its capital. Let r, be the rate of return on the investments. The
development of the capital can now be described as the solution to a stochastic difference
equation, namely,

Up=(1+7ry)(Un1—Bn), n=12,.... (1.1)
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In order to carry on, the company has to show a reasonable capital to meet its obligations.
Define the time of ruin T' = T'(u) by

- {inf{n e N;U, < 0}

| (1.2)
oo ifU,>0forn=1,2,....

A typical requirement is that the ruin probability within an appropriate time horizon must
be below a predescribed low level.

The focus of the present paper is on the infinite time ruin probability P(7" < co). We
recall some basic estimates for the probability from the literature. As extensions of earlier
results, we describe rather exceptional phenomena associated with the range and the limit
of the solution to (1.1).

2 Descriptions of the development of the capital

Let the processes {r,}, {Bn} and {U,} be as described in Section 1. We begin by specifying
the model in our interest in detail and by recalling some general observations concerning
the time of ruin.

We will consider a basic model where

(r,B), (r1,B1), (r2, B2), (r3, B3), . ..

are independent and identically distributed random vectors. The first vector (r, B) is generic
and is introduced for notational simplicity. We will assume that P(r > —1) = 1. Without
the assumption, ruin typically occurs with probability one. This can be expected from
(1.1), and has been observed in a related model by Paulsen (1993), Remark 2.2. We also
assume that P(r < 0) > 0. From the applied point of view, this means that there is a risk
associated with the investments.

Consider now representations for the time of ruin and for the probability P(T < o).
By iterating (1.1), it is seen that

n

Up=(1+r) - (I4r)u—Y (1+7r)--(1+7,)B (2.1)
i=1
Let ] 1
A=—— and A, = ,
1+7r 1+7,
and write
Y,=B1+A1By+A1A3Bs+---+A1---A,_1B,. (22)
Then
Uy=04r)) - (14+mr)(u—Yy). (2.3)

Thus the time of ruin can be expressed as

- {inf{n eENY, > u} (2.4

o if Y, <uforn=1,2,....

This representation is especially useful in models where Y,, converges to a finit limit with
probability one. Observe that

(Aa B)v (Ah Bl), (Az, Bz), e



are independent and identically distributed random vectors. Our assumptions concerning
the rate of return r» mean that

P(A>0)=1 and P(A>1)>0. (2.5)

A further expression for the ruin probability can be given by means of the variable

Y =sup{Y1,Ys,...} € (—o0,00]. (2.6)

Namely, we obviously have -
P(T < 00) =P(Y > u). (2.7)

An advantage of this representation is that Y satisfies a random equation. Namely,

Y = max (B, By + Aysup{Bs + AsB3 + -+ + Ay -+ A1 Bpsn =2,3,...}),

and hence,
Y =1 B+ Amax(0,Y) (2.8)

where =, means equality of probability laws. The variables A and B are independent of Y
on the right hand side of (2.8).
2.1 Estimates for ruin probabilities

We recall in this section some basic results on ruin theory associated with model (2.2).
Denote by A the cumulant generating function of log A, that is,

A(a) =log E(A%) (2.9)

for a € R. Let
r = sup{a; A(a) < 0}. (2.10)

Clearly, P(A > 1) > 0 implies that A(«) tends to infinity as « tends to infinity. Thus
r € [0,00). Theorem 6.2 of Goldie (1991) shows that under suitable assumptions,

P(T <o0)=(1+0(1)Cu™", u— oo, (2.11)

where C' is a constant. The main requirements for (2.11) are that r > 0, A(r) = 0 and
E(|B|*) < oco. An interesting feature from the applied point of view is that for large w,
the magnitude of the ruin probability is determined by the investment side, namely, by the
parameter r. The basic insurance processes only affect the constant C'. The situation may
be different if E(|B|") = co. To explain this, write

s = sup{a; E((B1(B > 0))%) < o0} € [0, 00]. (2.12)
Consider the special case where B > 0 and
P(B >t)= L)t ™", t>0, (2.13)

where § € (0,r) is a constant and L is a slowly varying function at infinity. Then s = /.
We refer to Feller (1971), Section VIIL.8. By Grey (1994),

P(T'<o0)=(1+0(1))DL(w)u®, u— oo, (2.14)



where D is a positive constant. In this case, the magnitude of the ruin probability is
determined by the insurance side, mainly by the parameter s. We also refer the reader to
Tang and Tsitsiashvili (2003) where investment and insurance risks are compared.

It is interesting to compare (2.11) and (2.14) with related results of de Haan et al.
(1989). Assume in addition to (2.5) that P(B > 0) = 1. Let Zy = 0 and

Zp = AnZn-1 + By, (2.15)

for n > 1, and let Tz = inf{n € N; Z,, > u} be the associated time of ruin. Obviously, Z,
has the same distribution as Y,,. However, the dependence structures of {Y,,} and {Z,,} are
different. Also the ruin probabilities differ drastically since in contrast to (2.11) and (2.14),

P(Ty < 00) = 1 (2.16)
for every uw > 0. This is clear if P(B > t) > 0 for every ¢ > 0 since then
P(Tz < o0) > P(B,, > u for some n € N) = 1. (2.17)

It is not difficult to extend this to concern with the general case. The result is also in
the scope of de Haan et al. (1989) although the focus of the paper is on finite time ruin
probabilities.

2.2 On the range and the limit of the capital

There exist non-trivial cases where the solution to (1.1) stays positive or tends to infinity
with probability one. These models are not natural in the insurance application but it is
useful to identify them. We state the results in terms of the process {Y,,}. Denote

y=sup{y € R; P(Y > ) > 0}. (2.18)

Obviously, § < oo implies that P(T < co) = 0 for u > .
The following result is a simplification and in part a generalization of Theorem 3 of
Nyrhinen (2001).

Theorem 2.1 Assume (2.5). Then § = oo if and only if there exists k € N such that
P(Yy >0,A;--- A > 1) > 0. (2.19)

A closely related problem is to give a similar description for the limit of the process {Y,,}.
We will assume in the following theorem that

P(B=0)<1 and P ( lim A A, 1B, = 0) =1 (2.20)

n—oo

Under this assumption, we may write
o
Yoo = ZAl s Apy_1Bn (2.21)
n=1

and
Yoo = sup{y € R; P(Y, > y) > 0}. (2.22)

Namely, the series in (2.21) converges to a real number with probability one. We refer to
Goldie and Maller (2000), Theorem 2.1.



Theorem 2.2 Assume (2.5) and (2.20). Then ys = oo if and only if (2.19) holds for
some k € N and
P(Yy > 0, Ay Ay <1) >0 (2.23)

for some m € N.

Recall that w is the initial value of equation (1.1). Thus § < co implies that the solution
to (1.1) satisfies
P (inf{Upin =1,2,...} > 0) =1 (2.24)

for u > y. If (2.20) holds and y is finite then
P ( lim U, = oo> =1 (2.25)
for u > yoo. This follows from (2.3) and Goldie and Maller (2000), Theorem 2.1.

Remark 2.1 There are simple but useful connections between Y and Y,,. Namely, for a
given u > 0, we have

P(Y > u) > P(Yao > 1) > P(Y > u)P(Yao > 0). (2.26)

The first inequality in (2.26) is trivial. The second one is given in a continuous time model
by Paulsen (1993), Corollary 3.1. The proof in our case is similar but easier. Estimate
(2.11) together with (2.26) can be used to sharpen an asymptotic estimate for the right tail
of Y. In fact, Theorem 4.1 of Goldie (1991) shows that under suitable conditions,

P(Yoo >u) = (14 0(1))Coou™ ", u— o0,

where Cy, is a constant. The representation of C', is complicated and it is difficult to see
directly whether or not it is strictly positive. Suppose now that (2.11) holds with C' > 0
and that (2.5) and (2.20) hold. Then § = oo so that (2.19) is satisfied for some k € N.
It follows from (2.26) that the constant Cw is strictly positive if and only if (2.23) holds
for some m € N. Sufficient conditions for C' > 0 are known from Nyrhinen (2001). We
also refer the reader to Kliippelberg and Kostadinova (2008) where the positivity of C is
studied in a specific model.

We end the section by illustrating the results by means of examples. First observe that if
A and B are independent then conditions (2.19) and (2.23) can be studied easily. Namely, it
is sufficient to consider the positivity of the probabilities P(B > 0), P(A > 1) and P(A < 1).
In general, the situation is more complicated. The first example below shows that y., can
be finite even if § = co. Write

Yoo = sup{y € R;P(Yo < —y) > 0}. (2.27)

Kesten (1973) gives general conditions under which either yo, or y, equals co. However, it
is also of interest to understand the tails of Y, separately. The second example provides a
pair (A, B) such that both P(B > 0) and P(B < 0) are positive but y, < oo and y5, = oc.

Example 2.1 Let A be such that (2.5) holds and E(log A) € (—00,0). Take B = —1 + A.
Then
Y= -1+ A Ay (2.28)

It is seen that § = oco. By the strong law of large numbers, the product in (2.28) tends to
zero with probability one. Thus y., = —1.



Example 2.2 Let A be as in Example 2.1. Assume further that P(A € (0,1/2)) > 0 and
P(A € (1/2,1)) > 0. Let B =1 — 2A. Then

Y,=1—-A —A1Ay—---—Ay---Ap1 — 24, --- A, (2.29)

It is seen that yo < 00. Apply Theorem 2.2 to the sequence {—Y,,} to see that y = oc.

3 Proofs

Proof of Theorem 2.1 Consider first a related result from Nyrhinen (2001). Let the A-
and B-sequences be as in Section 2, and let L, L1, Lo, ... be such that

(A,B,L),(A1,B1,L1),(As, Ba, L), ... (3.1)
are independent and identically distributed random vectors. Assume that
r >0 and that A(«) and E(|B|%) are finite for some a > r. (3.2)

Assume further that E((AL1(L > 0))®) is finite for some o > r. Consider the process {Y,"}
defined by
YnLZBl—|—AlBQ+-~~—|—A1--~An_1Bn+A1-~-AnLn (33)

for n € N. Corresponding to (2.6) and (2.18), write
YE=sup{V,l;n e N} and 7L =sup{y e R; P(YL > y) > 0}.
By Theorem 3 of Nyrhinen (2001), § = oo if and only if there exists h € N such that
P(B + AL+ Yy /(I — 1) >0, I, > 1) > 0 (3.4)

where Y}, is as in (2.2) and
), = Ay - Ap. (3.5)

Consider now Theorem 2.1. We work for a while under additional condition (3.2).
Assume that (2.19) is satisfied. Then P(B > 0) > 0. Take L = 0 in (3.1). It is seen that
requirement (3.4) is satisfied with h = k. Thus § = g% = oco. Assume now that § = oco.
Take L = —B/A in (3.1). Then Y{* =0 and Y,/ =V,,_; for n > 2. Thus Y =Y1(Y > 0).
It follows that y° = oo so that (3.4) holds for some h € N. But then (2.19) holds with
k = h since B+ AL = 0.

We have proven that the claim of the theorem holds true under (3.2). Consider now the
general case, but assume still that P(A < 1) > 0. We make use of the method similar to
the proof of Theorem 3 in Nyrhinen (2001). Let P be the distribution of (A, B). Define the
distribution () by

@( — —y1—[y2|

7p (W1 y2) = Klal(yr 1) +1(y > 1))e . YLY2, ER,
where a > 0 is a constant and k = k(a) has been chosen such that Q(R?) = 1. Consider
a process which has the same structure as {Y,,} in (2.2), but let @ be the distribution of
(A, B). It is easy to see that for large a, requirement (3.2) is satisfied under ). By the
first part of the proof, the claim of the theorem is true under Q. But P an @) are mutually
absolutely continuous so that the same is true under P. Consider finally the case where



P(A > 1) = 1. The above method does not apply since we have r = 0 both under P and
Q. However, it is seen directly that § = oo if and only if P(B > 0) > 0, and the claim of
the theorem easily follows. O

Proof of Theorem 2.2 Assume first that (2.19) and (2.23) are satisfied. By Theorem
2.1, g = 0o . By (2.26), it is sufficient to prove that P(Y,, > 0) > 0. Let II; be as in (3.5).
By (2.23), we may find § > 0 such that

P(Y,, >4, II,, <1)>0. (3.6)
Let M > 0 be such that P(Y, > —M) > 0. Obviously, Y, satisfies the random equation
Yoo =1 Yo + 11 Yoo (3.7)
where on the right hand side, Y, is independent of Y,,, and II,,. By this observation,

P(Yao > —M + 0) P(Yy > 6, I Yeo > —M) (3.8)

>
Z P(Ym Z 57 Hm S 17Yoo > _M)
P(Yy, > 6, Iy, < 1)P(Yoo > —M) > 0.

Hence, P(Yoo > —M) > 0 for a given M > 0 implies that P(Yo, > —M + ) > 0. It follows
that P(Yo > 0) > 0.

Assume now that y, = co. Clearly, § = 0o so that by the first part of the proof, (2.19)
holds for some k > 1. By Theorem 2.1 of Goldie and Maller (2000), A; --- A,, tends to zero
almost surely. Thus

lim P(Y, >0, A1+ A, < 1) = P(Yao > 0) > 0. (3.9)
This implies (2.23) for m large enough. O
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