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Abstract

Solutions u of the equation −∇·A(x,∇u) = b(x)|∇u|q are studied in the subcriti-

cal case p−1 ≤ q ≤ p/n+p−1, q < p < n. Here A(x, h) satisfies A(x, h) ·h ≈ |h|p

and b a bounded function in an open set Ω ⊂ R
n. It is shown that the solutions

u are local quasiminimizers in Ω. From the quasiminimizing property several

conclusions on the behavior of the solutions u can be derived In particular, the

method provides an easy solution to the uniqueness problem in the class W 1,p

0
(Ω).
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1 Introduction

We consider solutions u of the equation

−∇ · A(x,∇u) = b(x)|∇u|q (1.1)

where A(x, h) ·h ≈ |h|p. For the precise assumptions on p, A, b and q see (1.3)–(1.6)
below. The solutions u are understood in the weak sense. Hence u is a solution of
(1.1) in an open set Ω ⊂ Rn if u belongs to the local Sobolev space W 1,p

loc (Ω) and

∫

Ω

A(x,∇u) · ∇ϕdx =

∫

Ω

ϕ(x)b(x)|∇u|q dx (1.2)

for all ϕ ∈ C∞
0 (Ω).
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We use the following assumptions in the sequel unless otherwise stated:

0 < p − 1 ≤ q < p/n + p − 1, q < p < n, (1.3)

b is a bounded measurable function in Ω (1.4)

and A : Ω×Rn → Rn is a Caratheodory function such that for all h ∈ Rn and a.e.
x ∈ Ω

A(x, h) · h ≥ α|h|p, (1.5)

|A(x, h)| ≤ β|h|p−1 (1.6)

where 0 < α ≤ β < ∞.
Note that there is no assumption on the sign of the function b. Since we are not

studying existence problems, we do not assume monotoneity of the operator A.
The prototype of (1.1) is the equation

−∆pu = −∇ · (|∇u|p−2∇u) = |∇u|q. (1.7)

This equation has been extensively studied. In particular existence and comparison
problems have got a lot of attention. For p− 1 < q ≤ p see [FMe] and [DP1–2], for
q = p− 1 [BMMP] and [Me], for q = p [ADP1–2], [FMu], [Me] and [TK] and finally
for q > p [Ng] and references therein.

Next we recall the concept of a quasiminimizer. Let Ω be an open subset of Rn,
n ≥ 1, p > 1 and K ≥ 1. A function u in the local Sobolev space W 1,p

loc (Ω) is called
a (p,K)–quasiminimizer in Ω if for all open sets Ω′ ⊂⊂ Ω

∫

Ω′

|∇u|p dx ≤ K

∫

Ω′

|∇v|p dx (1.8)

for all functions v such that v − u ∈ W 1,p
0 (Ω′). Note that if a function u belongs to

W 1,p(Ω), then u is a K–quasiminimizer if and only if (1.8) holds for all open sets

Ω′ ⊂ Ω, i.e. Ω
′
need not be a compact subset of Ω. In general we keep the number

p fixed and use the abbreviation a K–quasiminimizer. For K = 1 the function u
is minimizer and hence a p–harmonic function, i.e. u satisfies ∆pu = 0. For the
theory of quasiminimizers see [GG1–2] and [KiM]. Although little is known of the
structure of quasiminimizers, several properties like Hölder continuity, maximum
and minimum principles, boundary behavior and the Harnack inequality have been
investigated, see [GG1–2], [BA1], [KiM], [KiMaM], [BJ1], [Zie] and [DT]. For the
theory of quasiminimizers in metric measure spaces see [KiS].

We say that a function u in Ω is a local K–quasiminimizer if every x ∈ Ω has
a neighborhood U such that u|U is a K–quasiminimizer. For us there are three
important concepts that take into account the behavior of u on the boundary. We
say that u is a local K–quasiminimizer in Ω if every x ∈ Ω has a radius r > 0 such
that u|B(x, r)∩Ω is a K–quasiminimizer and u is called a local K–quasiminimizer
uniformly in Ω if there is r > 0 such that every x ∈ Ω, u|B(x, r) ∩ Ω is a K–
quasiminimizer. There is a somewhat stronger version of the last condition. The
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function u is called a K–quasiminimizer in small sets in Ω if there is δ > 0 such
that u is K–quasiminimizer in every open set U ⊂ Ω whenever m(U) < δ.

Our main result in the next section says that all solutions u ∈ W 1,p(Ω) to
(1.1) are quasiminimizers in small sets in Ω. We then use this property and its
local counterpart in Section 3 to derive uniqueness and Hölder continuity results
for solutions. The scope of our method is not restricted to the exponent range (1.3)
but the quasiminimizing property appears most naturally in this range.

2 Main results

We first consider the case where a solution of (1.1) belongs to W 1,p(Ω).

Theorem 2.1 Suppose that u ∈ W 1,p(Ω) is a solution of the equation (1.1) in
an open set Ω ⊂ Rn where p, q, A and b satisfy the assumptions (1.3) – (1.6).
Then u is a K–quasiminimizer in small sets in Ω. More precisely, there is δ =
δ(p, q, n, α, β,M, |∇u|) > 0 such that u is a K–quasiminimizer in Ω′ ⊂ Ω with
constant K = K(p, q, n, α, β,M, |∇u|) whenever m(Ω′) < δ. Here M = ess supΩ|b|.
In the case q = p − 1 the numbers δ and K are independent of |∇u|.

Proof. Let Ω′ ⊂ Ω be an open set and let P = P (u,Ω) be the function which
minimizes the p–Dirichlet integral with boundary values u in Ω′, i.e.

∫

Ω′

|∇P |p dx = inf
v

∫

Ω′

|∇v|p dx

over all functions v − u ∈ W 1,p
0 (Ω′). Such a unique function always exists, see e.g.

[HKM, Chapter 5]. If we set P = u in Ω \ Ω′, then in potential theoretic terms
P is the p–Poisson modification of the function u in Ω′, see [HKM, 7.13]. For the
quasiminimizing property (1.8) of u we need to show that

∫

Ω′

|∇u|p dx ≤ K

∫

Ω′

|∇P |p dx. (2.1)

Fix an open set Ω′ ⊂ Ω and let P = P (u,Ω′) be as above. Now u − P belongs
to W 1,p

0 (Ω′) and u − P can be used as a test function for the equation (1.2). This
gives

∫

Ω′

A(x,∇u) · ∇(u − P ) dx =

∫

Ω′

(u − P )b(x)|∇u|q dx. (2.2)

We estimate the left and the right hand side of (2.2) separately.
For the left hand side we first use (1.5), (1.6) and the Hölder inequality to obtain

∫

Ω′

A(x,∇u) · ∇(u − P ) dx

≥ α

∫

Ω′

|∇u|p dx − β

(
∫

Ω′

|∇u|p dx

)(p−1)/p (
∫

Ω′

|∇P |p dx

)1/p

(2.3)
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=

(
∫

Ω′

|∇u|p dx

)(p−1)/p
(

α

(
∫

Ω′

|∇u|p dx

)1/p

− β

(
∫

Ω′

|∇P |p dx

)1/p
)

.

Let M = esssupΩ|b|. To estimate the right hand side of (2.2) let γ = n(p −
q)/(n − p). Now γ > 1 because q < p and q < p/n + p − 1 by (1.3) and we can use
the Hölder inequality twice to obtain

∫

Ω′

(u − P )b(x)|∇u|q dx

≤ M

(
∫

Ω′

|u − P |p/(p−q) dx

)(p−q)/p (
∫

Ω′

|∇u|p dx

)q/p

(2.4)

≤ Mm(Ω′)(γ−1)(p−q)/(γp)

(
∫

Ω′

|u − P |np/(n−p) dx

)(p−q)/(γp) (
∫

Ω′

|∇u|p dx

)q/p

.

The Sobolev imbedding theorem, see e.g. [GT, Theorem 7.10], yields

∫

Ω′

|u − P |np/(n−p) dx ≤ c

(
∫

Ω′

|∇(u − P )|p dx

)n/(n−p)

≤ c

(
∫

Ω′

|∇u|p dx

)n/(n−p)

(2.5)

where we have used the minimizing property of P for

∫

Ω′

|∇u|p dx ≥

∫

Ω′

|∇P |p dx.

Here c is a generic constant depending only n and p. From (2.4) and (2.5) and
taking the value of γ into account we obtain

∫

Ω′

(u − P )b(x)|∇u|q dx ≤ cM m(Ω′)δ′

(
∫

Ω′

|∇u|p dx

)
1

p
+ q

p

(2.6)

where δ′ = n(p−q−1)+p
np > 0.

If now
∫

Ω′

|∇u|p dx ≤ 1, (2.7)

then writing
1

p
+

q

p
=

1

p
+

p − 1

p
+

q − (p − 1)

p

and noting that q ≥ p − 1 we obtain from (2.2), (2.3) and (2.6) that

(α − cMm(Ω′)δ)p

∫

Ω′

|∇u|p dx ≤ βp

∫

Ω′

|∇P |p dx. (2.8)
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Thus inequality (2.1) is satisfied with

K =

(

β

α − cMm(Ω′)δ′

)p

(2.9)

provided that

α − cMm(Ω′)δ′

> 0 (2.10)

and (2.7) hold.
We now complete the proof as follows. Since u ∈ W 1,p(Ω) there exists δ > 0

such that
∫

Ω′

|∇u|p dx ≤ 1

provided that m(Ω′) < δ. Choosing δ small enough we can also assume that

m(Ω′)δ′

<
α

cM

where M = ess supΩ|b|. If now Ω′ ⊂ Ω, then (2.1) holds for K as in (2.9). Hence u
is a K–quasiminimizer in small sets in Ω as required.

For q = p − 1 the exponent 1
p + q

p in (2.6) equals 1
p + (p−1)

p and the condition

(2.7) is not needed. Hence the numbers δ and K are independent of |∇u|. The
proof follows.

Remark 2.2 Note that for the p–harmonic operator A(x, h) = |h|p−2h, where
α = β = 1, the number K in (2.9) can be chosen arbitrary close to 1 by choosing r
small.

The proof of the above theorem immediately produces the following local version.

Theorem 2.3 Suppose that u ∈ W 1,p
loc (Ω) is a solution of the equation (1.2) in an

open set Ω ⊂ Rn where p, q and A satisfy the assumptions (1.3), (1.5), (1.6) and b
is a locally bounded measurable function in Ω. Then u is a local K–quasiminimizer
in Ω. More precisely, for each x ∈ Ω there is r = r(p, q, n, α, β,M ′, |∇u|) ∈
(0, dist(x, ∂Ω)/4) such that u is a K–quasiminimizer in B(x, r) with constant K =
K(p, q, n, α, β,M ′, |∇u|) with M ′ = ess supB(x,2r)|b|. For q = p − 1 the numbers r
and K are independent of |∇u|.

3 Consequences

Since K–quasiminimizers are locally Hölder continuous with exponent γ = γ(n, p,K)
> 0, see [GG1–2] or [KiS], we obtain from Theorem 2.3 the following result on the
Hölder continuity of solutions of (1.1). Most likely the result can be much im-
proved. In particular all solutions to (1.1) are continuous. The Hölder continuity
of the solutions up to the boundary is considered in Theorem 3.6.
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Corollary 3.1 Suppose that u ∈ W 1,p
loc (Ω) is a solution of the equation (1.2) in an

open set Ω ⊂ Rn where p, q and A satisfy the assumptions (1.3), (1.5), (1.6) and
b is a locally bounded measurable function in Ω. Then for for each x ∈ Ω and each
y sufficiently close to x

|u(y) − u(x)| ≤ c|y − x|γ

where c < ∞, γ = γ(p, q, n, α, β,M ′, x, |∇u|) > 0 and M ′ = ess supU |b| for some
neighborhood U of x. For q = p − 1 the exponent γ is independent of |∇u|.

We say that a function u in Ω satisfies the maximum principle, if u ≤ c in Ω
and u(xo) < c imply that u < c in the xo–component of Ω. The minimum principle
is defined similarly. Quasiminimizers satisfy the maximum and minimum principle,
see [GG1–2] and [KiS]. Now Theorem 2.3 implies:

Corollary 3.2 Let p, q, A and u be as in Theorem 2.3. Then u satisfies the
maximum and minimum principle in Ω.

Next we consider regularity up to the boundary. Sufficient conditions for bound-
ary regularity of quasiminimizers are known, see [Zie] and [BJ1]. Typically these
conditions employ a capacity thickness condition at a boundary point on a level
p1 where p1 is less than p. We formulate a sufficient geometric condition which is
adequate for our purposes and which holds for all p > 1. We give a similar condition
for the Hölder continuity on the boundary.

Let Ω be an open set in Rn and xo ∈ ∂Ω. We say that xo ∈ ∂Ω is a thick
boundary point if there are a number σ > 0, a sequence of points xi and a sequence
of radii ri, i = 1, 2, ..., such that B(xi, ri) ⊂ Rn \ Ω, ri ≥ σ|xi − xo| and ri → 0 as
i → ∞. Note that there is no condition how fast the radii ri approach zero and we
say that xo is a uniformly thick boundary point if, in addition, there is τ > 0 such
that ri+1 > τri for all i.

We say that a function u in Ω is γ–Hölder continuous, γ > 0, at xo ∈ Ω if there
is a neighborhood U of xo and a constant C < ∞ such that

|u(x) − u(xo)| ≤ C|x − xo|
γ (3.1)

for all x ∈ U ∩ Ω. Note that if xo ∈ ∂Ω, then this means that u has an extension
u(xo) to xo so that (3.1) holds.

Lemma 3.3 Let Ω be an open set in Rn and xo ∈ ∂Ω a thick boundary point.
Suppose that w ∈ W 1.p

loc (Rn) is continuous at xo and u is a K–quasiminimizer in Ω

with u − w ∈ W 1.p
0 (Ω). Then limx→xo,x∈Ω u(x) = w(xo). If xo is a uniformly thick

boundary point and w is Hölder continuous at xo, then u is Hölder continuous at
xo and u(xo) = w(xo).

Remark 3.4 The Hölder exponent γ > 0 for u in Lemma 3.3 depends on n, p, K
σ, τ and the Hölder exponent of f at xo, see the proof of Theorem 2.12 in [BJ1].
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Proof for Lemma 3.3. Let xo be a thick boundary point. and let 1 < p1 < p.
By a result of W. P. Ziemer [Zie] the result follows if

∫ 1

0

(

capp1
(B(xo, r) \ Ω, B(xo, 2r))

capp1
(B(xo, r), B(xo, 2r))

)δ
dr

r
= ∞ (3.2)

for all δ > 0. Here capp1
(C,B(xo, 2r)) refers to the ordinary p1– capacity of a

compact set C in the ball B(xo, 2r), see [HKM, Chapter 2].
To show (3.2) fix p1 < p and let xi, ri and σ > 0 be as in the definition of the

thick boundary point xo. Set Ri = |xi − xo|. We may assume that 13Ri ≤ 1 for all
i. Let r ∈ [2Ri, 6Ri]. Now

capp1
(B(xo, r) \ Ω, B(xo, 2r)) ≥ capp1

(B(xi, ri), B(xi, 13Ri))

≥ capp1
(B(xi, σRi), B(xi, 13Ri)) = cRn−p1

i

where c is a generic positive constant which depends only on n, p1 and σ. See [HKM,
2.11] for the properties of the variational p1–capacity. Hence for r ∈ [2Ri, 6Ri]

capp1
(B(xo, r) \ Ω, B(xo, 2r))

capp1
(B(xo, r), B(xo, 2r))

≥ c
Rn−p1

i

rn−p1

≥ c
Rn−p1

i

6Rn−p1

i

≥ c > 0. (3.3)

By deleting overlapping intervals we can assume that the intervals [2Ri, 6Ri],
i = 1, 2, ..., are disjoint. Then for δ > 0 we obtain from (3.3)

∫ 1

0

(

capp1
(B(xo, r) \ Ω, B(xo, 2r))

capp1
(B(xo, r), B(xo, 2r))

)δ
dr

r

≥
∑

i

∫ 6Ri

2Ri

(

capp1
(B(xo, r) \ Ω, B(xo, 2r))

capp1
(B(xo, r), B(xo, 2r))

)δ
dr

r
≥ cδ

∑

i

log
6Ri

2Ri
= ∞

as required.
Next we consider a uniformly thick boundary point xo. By [BJ1, Theorem 2.12]

it suffices to show that

lim inf
ρ→0

1

| log ρ|

∫ 1

ρ

exp(−Coγ(p1, r)
p/(p−p1))

dr

r
> 0 (3.4)

for all Co > 0 and for some 1 < p1 < p. Here

γ(p1, r) =
rn−p1

capp1
(B(xo, r) \ Ω, B(xo, 2r))

.

Fix Co > 0. Using the same notation as in the first part of the proof we obtain
γ(p1, r) ≥ c > 0 for r ∈ [2Ri, 6Ri]. This gives

∫ 6Ri

2Ri

exp(−Coγ(p1, r)
p/(p−p1))

dr

r
≥ c > 0. (3.5)
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Deleting some points xi and adjusting the constant τ we can assume that 6Ri+1 ≤
2Ri ≤ 1/3 for all i = 1, 2, ... . Now for ρ ∈ [Ri+1, Ri], (3.5) yields

1

| log ρ|

∫ 1

ρ

exp(−Coγ(p1, r)
p/(p−p1))

dr

r

≥
1

| log(Ri+1|

i
∑

j=1

∫ 6Rj

2Rj

exp(−Coγ(p1, r)
p/(p−p1))

dr

r
≥

ic

| log(Ri+1|
. (3.6)

On the other hand

Ri+1 ≥ σri+1 ≥ στri ≥ ... ≥ στ ir1

and hence

i ≥
| log Ri+1| − | log(σr1)|

| log τ |
.

This together with (3.6) yields (3.4) as required.

Remark 3.5 The conditions in Lemma 3.3 allow more regular boundary points
than the well–known cone and the curved cone conditions for the complement of
Ω, see [HKM, pp. 123–124]. However, a sufficient and necessary condition for
boundary regularity of quasiminimizers is not known.

If Ω is an open set in Rn such that each point xo ∈ ∂Ω is a thick or uniformly
thick boundary point, then for every r > 0 and every x the open set B(x, r) ∩ Ω
enjoys the same property. Hence from Theorem 2.1 and Lemma 3.3 we obtain the
following result.

Theorem 3.6 Suppose that Ω ⊂ Rn is an open set such that each point xo ∈ ∂Ω
is a thick boundary point and let w ∈ W 1,p(Rn) be continuous. Then, under the
assumptions (1.3) – (1.6), every solution u of (1.1) with u − w ∈ W 1,p

0 (Ω) has a
continuous extension as w to ∂Ω. If w is Hölder continuous at each point of ∂Ω
and each boundary point of Ω is uniformly thick, then u is Hölder continuous at
each point of Ω with u = w in ∂Ω.

Remark 3.7 From Remark 3.4 it follows that the Hölder exponent γ for u in
Theorem 3.6 depends on n, p, q, α, β, |∇u|, the Hölder exponent of w and the
constants σ and τ associated with the condition for uniform thickness. For q = p−1
the exponent γ does not depend on |∇u|.

The maximum principle and Theorem 3.6 now imply that the only solution of
(1.1) in the class u ∈ W 1.p

0 (Ω) is the zero solution provided that Ω is a bounded
open set whose every boundary point is a thick boundary point. We next show that
this holds in every open set of Rn.

Quasiminimizers or local quasiminimizers seldom provide a unique solution to
the Dirichlet problem except in the case of the next lemma.
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Lemma 3.8 Suppose that Ω is an open set in Rn and u is a K–quasiminimizer in
small sets in Ω. If u ∈ W 1.p

0 (Ω), then u = 0.

Proof. Suppose that u is not identically zero. We can assume that the open set
Uto

= {x ∈ Ω : u(x) > to} is not empty for some to > 0; the proof is similar in the
case to < 0. Write Mo = supΩ u.

There are two possibilities; either

lim
tրMo

m(Ut) = 0 (3.7)

or

lim
tրMo

m(Ut) = mo > 0. (3.8)

In the first case it follows from Theorem 2.1 that there is t < Mo such that u|Ut

is a K–quasiminimizer for some K < ∞. Now u − t is a K–quasiminimizer as well
and since u − t ∈ W 1.p

0 (Ut), we can use the function v = 0 in the quasiminimizing
property (1.8) to obtain ∇u = 0 in Ut. Thus u = t in Ut, a contradiction. In the
case (3.8)

m(∩t∈[to,Mo)Ut) = lim
tրMo

m(Ut) = mo > 0

because u ∈ W 1.p
0 (Ω) yields m(Uto

) < ∞, see e.g. [Fe, Theorem 2.1.3]. By the
continuity of u every point x ∈ ∩t∈[to,Mo)Ut satisfies u(x) = Mo. By the maximum
principle for quasiminimizers this is a contradiction. Hence u = 0 in Ω as required.

The above lemma together with Theorem 2.1 immediately implies

Corollary 3.9 Let Ω be an open set in Rn and let p, q, A and b satisfy the as-
sumptions (1.3) – (1.6). Then the only solution u ∈ W 1.p

0 (Ω) of (1.1) is the zero
solution.

Remark 3.10 It is well known that uniqueness does not hold for q = p = 2 in
the class W 1,2

0 (Ω), see for example [ADP1–2] and [Tu]. However, the zero function
is the only bounded solution. The same effect happens for q = p < n where the
function

u(x) = (p − 1) log

(

|x|−(n−p)/(p−1)

R−(n−p)/(p−1)

)

is a W 1,p
0 (B(0, R))–solution of the equation (1.7), see [FMu], and in the case 0 <

p
n + p − 1 < q < n the function

u(x) = c(|x|s − Rs)

with s = (q − p)/(1− p + q) and suitable c > 0 is a solution of equation (1.7) in the
class W 1,p

0 (B(0, R)), see [LL].
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