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Abstract. We characterize the essential spectra of Toeplitz oper-
ators Ta on weighted Bergman spaces with matrix-valued symbols;
in particular we deal with two classes of symbols, the Douglas al-
gebra C + H∞ and the Zhu class Q := L∞ ∩ V MO∂ . In addition,
for symbols in C + H∞, we derive a formula for the index of Ta

in terms of its symbol a in the scalar-valued case, while in the
matrix-valued case we indicate that the standard reduction to the
scalar-valued case fails to work analogously to the Hardy space
case.

1. Introduction

Fredholm theory of Toeplitz operators Ta on the Bergman space A2

with continuous matrix-valued symbols and scalar-valued C+H∞ sym-
bols was developed by Coburn [4], McDonald [9], and Venugopalkr-
ishna [14] in the 1970s. Part of the theory has been generalized to
the reflexive Bergman spaces Ap for symbols in C + H∞ of the unit
ball—see [3] and [15], of which the former characterizes the essential
spectrum of Ta : Ap → Ap when a ∈ C + H∞. However, a formula for
the Fredholm index appears in the literature only in the Hilbert space
case and only for continuous symbols.

In this note we consider similar questions in a more general setting
when the underlying space is a weighted reflexive Bergman space Ap

α

and a is a matrix-valued symbol in C + H∞. In particular, we charac-
terize the essential spectrum of Ta, and in the scalar-valued case we also
derive the usual index formula (analogous to the Hardy space case). Re-
garding the index of Ta on the Hardy space Hp with a ∈ (C+H∞)N×N ,
recall that Tf and Tg commute modulo finite rank operators when act-
ing on Hardy spaces Hp provided that f, g are trigonometric polyno-
mials, from which the matrix-valued case can be easily obtained (see,
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e.g., [2]); however, when considering Toeplitz operators on Bergman
spaces, we cannot proceed in a similar fashion since there are no non-
constant trace class Hankel operators. The other way of dealing with
matrix-valued symbols in Hardy spaces is known as factorization (see,
e.g., [8]), which seems unsuitable here as functions in Bergman spaces
need not have boundary values in Lp. We finish the note by listing
some open problems, which could stimulate further research into ques-
tions involving matrix symbols in Bergman spaces (indeed, there is a
huge amount of literature on the Hardy space counterpart, but very
few results dealing with Toeplitz operators on Bergman spaces with
matrix symbols).

We would like to thank Kehe Zhu for useful discussions.

2. Preliminaries

Let Bn denote the open unit ball in Cn with normalized volume
measure dA(z). For 1 < p < ∞ and α > −1, the weighted Bergman
space Ap

α consists of all analytic functions in Lp(Bn, dAα), where

dAα(w) = cα(1− |w|2)αdA(w)

with a positive normalizing constant cα. The Bergman projection Pα

of Lp onto Ap
α is the integral operator

Pαf(z) =

∫

Bn

K(α)
z (w)f(w)dAα(w) =

∫

Bn

f(w)

(1− 〈w, z〉)n+1+α
dAα(w) .

Recall [19, Theorem 2.11] that, for p ≥ 1 and α, t > −1, the operator Pα

is a bounded projection of Lp(Bn, dAt) onto Ap
t if and only if p(α+1) >

t + 1. Let a ∈ Lp(Bn, dAt) and define the Toeplitz operator Ta and the
Hankel operator Ha by setting

Ta = PαMa and Ha = QαMa = (I − Pα)Ma,

where Ma stands for the multiplication operator; the function a is re-
ferred to as the symbol of the given operator. It is clear that, for
1 < p < ∞, Ta : Ap

α → Ap
α and Ha : Ap

α → Lp(Bn, dAα) are both
bounded whenever a ∈ L∞(Bn, dAα).

Spaces of bounded mean (and vanishing) oscillation play an impor-
tant role in connection with the general theory of Toeplitz and Hankel
operators on Bergman spaces. However, when symbols are restricted
to be continuous, one can develop Fredholm theory without reference
to these spaces. Despite this, we include a brief look at them in the
following as this allows us to easily refer to results on compactness of
Hankel operators. The Bergman ball D(z, r) with center z and radius
r is defined by D(z, r) = {w ∈ Bn : β(z, w) < r}, where β(z, w) is the
Bergman metric. For a locally integrable function f : Bn → C, the



TOEPLITZ OPERATORS ON BERGMAN SPACES 3

averaging function f̂r is defined by

f̂r(z) =
1

|D(z, r)|
∫

D(z,r)

f(w)dA(w) (z ∈ Bn),

where |D(z, r)| is the volume of D(z, r). The space of bounded mean
oscillation BMOp

r in the Bergman metric consists of all locally Lp in-
tegrable functions for which

‖f‖p
r,p := sup

z∈Bn

1

|D(z, r)|
∫

D(z,r)

|f(w)− f̂r(z)|pdA(w) < ∞

If, in addition,

1

|D(z, r)|
∫

D(z,r)

|f(w)− f̂r(z)|pdA(w) → 0

as |z| → 1, we say that f is in V MOp
r , which is a closed subspace

of BMOp
r . As pointed out by K. Zhu [17], the definition of BMOp

r

depends on p (unlike in the case of the classical BMO for the unit
circle) and BMOp

r ⊂ BMOq
r properly for q < p ; note also that the

definition above is independent of r and we write BMOp
∂ for BMOp

r

and V MOp
∂ for V MOp

r .
Suppose that p ≥ 1 and p(α + 1) > λ + 1 > 0. According to K. Zhu

[17], a ∈ BMOp
∂ if and only if the Hankel operators Ha = (I − Pα)Ma

and Ha are both bounded from Ap
α into Lp(Bn, dAλ); and in addition,

a ∈ V MOp
∂ if and if the Hankel operators Ha = (I − Pα)Ma and

Ha acting from Ap
α into Lp(Bn, dAλ) are both compact. Note, however,

that when α = λ = 0 (that is, we have the standard Bergman projection
P and the standard Bergman space Ap), the two theorems above require
that p > 1; the case p = 1 with bounded scalar-valued symbols in
BMO2

∂(D) was recently considered in [11].

3. Compact Toeplitz operators

Let 1 < p < ∞ and α > −1. Denote by τ(Ap
α) the closed subalgebra

of L(Ap
α) generated by Toeplitz operators Ta with a ∈ L∞(Bn, dAα).

We define the Berezin transform B(T ) of T ∈ L(Ap
α) by

B(T )(z) = (1− |z|2)1+n+α〈TK(α)
z , K(α)

z 〉,
where 〈·, ·〉 is the integral pairing and K

(α)
z is the reproducing kernel of

A2
α given by

K
(α)
ζ (w) =

1

(1− 〈w, ζ〉)n+1+α

for ζ, w ∈ Bn.
Let T ∈ L(Ap). In [10], it was recently observed that T is compact

on Ap if and only if T ∈ τ(Ap) and B(T )(z) = 0 for all z ∈ ∂Bn. There
seems to be no reason why this result would fail in the more general
case of weighted Bergman spaces Ap

α. However, we only need such a
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characterization for Toeplitz operators with continuous symbols, which
can be easily obtained by following Coburn’s original approach valid
for p = 2 and α = 0 (see [4]).

Theorem 1. Let 1 < p < ∞, α > −1, and a ∈ C(Bn). Then Ta is
compact on Ap

α if and only if a(z) = 0 for all z ∈ ∂Bn.

We finish this section with a remark on commutator ideals. Denote
by τ the Toeplitz algebra generated by Ta with a ∈ C(D). As in the
Hilbert space case, the commutator ideal I of τ coincides with the space
of all compact operators on Ap

α. Indeed, we have I ⊂ K according to
the formula

TaTb = Tab − PMaHb = I − T1−ab − PMaHb , (3.1)

which holds even for symbols in L∞(Bn, dAt); note that the Hankel
operator Hb is compact—see Section 1. It remains to note that all
rank one operators are contained in I.

4. Fredholm properties

A bounded linear operator A on a Banach space X is said to be
Fredholm if both its kernel and cokernel are finite-dimensional; the
index of a Fredholm operator is defined to be

Ind A = dim ker A− dim coker A.

The winding number of a nonvanishing continuous function a is denoted
by ind a. The essential spectrum σess(A) of A consists of all λ ∈ C for
which Ta − λI is not Fredholm, that is,

σess(A) = σL(X)/K(X)(π(A)),

where π is the natural map.
It is well known that, for an n × n matrix-valued symbol a with

entries in C(B̄n), the Toeplitz operator Ta : A2
n → A2

n is Fredholm if
and only if det a(z) 6= 0 for any z ∈ ∂Bn (see [4]). This can also be
easily generalized to the weighted Hilbert space case. In what follows
we deal with weighted Bergman spaces that are reflexive, that is, we
consider the case 1 < p < ∞. The next theorem follows from a more
general result on symbols in C(D) + H∞(D) (see Theorem 3 below);
however, we still indicate how one can prove it.

Theorem 2. Let 1 < p < ∞, α > −1, and a ∈ C(Bn). Then Ta is
Fredholm on Ap

α if and only if a(z) 6= 0 for any z ∈ ∂Bn; in which case
Ind Ta = − Ind a¹∂B1 when n = 1 and Ind Ta = 0 when n > 1.

Proof. Sufficiency can be proved by constructing a regularizer (as in the
Hardy space case; see, e.g., [2, Theorem 2.42]) and using Theorem 1
and Zhu’s characterization of compact Hankel operators.
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For n = 1, the index formula can be proved similarly to the corre-
sponding result in [11]. When n > 1, we can proceed as in the proof
of [14, Theorem 1.4].

When n = 1, necessity can be proved as in the Hardy space case using
the index formula. In the general case, we can apply the approach used
in [4, 15]. ¤

Let f ∈ H∞(D) be nonzero. Then there are a Blaschke product B
and a function g ∈ GH∞(D) such that f = Bg. Suppose that there
are ε > 0 and δ > 0 such that |f(z)| ≥ ε for δ < |z| ≤ 1. Proceeding as
in the proof of [2, Theorem 2.64], we get

Ind Tf = − ind fr, (4.1)

where fr(t) = f(rt) (t ∈ T) with δ < r < 1. Note that Ind Tf is
independent of the choice of r since the index is constant on connected
components.

Theorem 3. Let a ∈ C(Bn) + H∞(Bn) and α > −1. Then Ta is
Fredholm on Ap

α(Bn) if and only if a is bounded away from zero near
the boundary of Bn, that is, if there are δ > 0 and ε > 0 such that

|a(z)| > ε for δ < |z| < 1; (4.2)

if in addition n = 1, we have the following index formula

Ind Ta = − ind ar, (4.3)

where ar(t) = a(rt) with δ < r < 1.

Proof. For α = 0, the proof of the Fredholm criterion can be found
in [3]; the general case can be dealt with similarly.

Let us consider the index formula when n = 1. Since polynomials
(in z and z̄) are dense in C(D), it suffices to prove the formula when
a = p+g for some polynomial p and g ∈ H∞(D). Write p+g = z̄mf +h
for some f ∈ H∞(D) and h ∈ C(D) with h = 0 on T (see the proof of [9,
Theorem 3.2]). Since f is bounded away from zero, we can apply (4.1)
to conclude

Ind Tp+g = Ind(Tz̄mf + Th) = Ind Tz̄m + Ind Tf

= − ind z̄m − ind fr = − ind(z̄mf)r

= − ind(z̄mf + h)r = − Ind(p + g)r

provided that r is sufficiently close to 1. ¤

Next we consider the symbol class Q := L∞ ∩ V MO∂, introduced
by K. Zhu, who studied the properties of Toeplitz operators with these
symbols in the Hilbert space context—see [16]. In what follows we
study the Fredholm properties of Toeplitz operators Ta acting on the
weighted Bergman spaces Ap

α when a ∈ Q.
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Remark 4. We have

L∞ ∩BMO∂ = L∞ ∩BMOp
∂

and

Q = L∞ ∩ V MO∂ = L∞ ∩ V MO2
∂ = L∞ ∩ V MOp

∂

for 1 ≤ p < ∞.

Proof. For f ∈ L∞ we clearly have f̂ ∈ L∞ and hence it is easily seen
that L∞ ⊂ BMOp

∂ for each 1 ≤ p < ∞. For the second claim assume
that f ∈ L∞ ∩ V MO∂. Then for a fixed r > 0 and 1 ≤ p < ∞ we have

1

|D(z, r)|
∫

D(z,r)

|f(w)− f̂(z)|pdAα(w)

=
1

|D(z, r)|
∫

D(z,r)

|f(w)− f̂(z)|p−1|f(w)− f̂(z)|dAα(w)

≤C
1

|D(z, r)|
∫

D(z,r)

|f(w)− f̂(z)|dAα(w),

by the above remark about f̂ . Conversely, if f ∈ L∞ ∩ V MOp
∂, then

by similar reasoning as above and by using Hölder’s inequality we see
that f ∈ L∞ ∩ V MO∂. ¤

As we are only concerned with bounded symbols, we need not deal
with the general BMOp

∂ and V MOp
∂ spaces according to the preceding

remark; compare this with the situation in [12].
It is also worth noting that there are symbols both in (L∞∩V MO∂)\

(C(D) + H∞(D)) and in (C(D) + H∞(D)) \ (L∞ ∩ V MO∂). Indeed,
suppose H∞ ⊂ V MO∂ ∩ L∞. Then, given a ∈ H∞, we have a ⊂
V MO∂ ∩ L∞ (since this set is a C∗-algebra). But then the Hankel
operator Ha is compact, which implies that a ⊂ B0. So H∞ ⊂ B0,
which is a contradiction.

Theorem 5. Let a ∈ Q := L∞ ∩ V MO∂, 1 < p < ∞, and α > −1.
Then Ta is Fredholm on Ap

α if and only if B(a) is bounded away from
zero near the boundary ∂D, in which case Ind Ta = − ind B(a)¹rT for r
sufficiently close to 1.

Proof. The index formula and sufficiency both follow from [12, Theo-
rem 2.8] when α = 0. For the weighted case, results in [17] and [16,
Theorem 7] imply that a− ã is in Q and has vanishing Berezin symbol.
Now [10, Theorem 9.5] implies that Ta−ã = Ta − Tã is compact. But
this means that Ta is Fredholm if and only if Tã is Fredholm. Moreover,
if they are Fredholm, they have the same index. Finally, the index of
Tã can be computed using [16, Remark on p. 640]. ¤
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5. Matrix-valued symbols

In this section we generalize Theorem 2 and part of Theorems 3 and 5
to the case of matrix-valued symbols using standard Banach algebra
techniques. Let X be a Banach space and set XN = {(f1, . . . , fN) :
fk ∈ X}, which is also a Banach space when equipped with the norm

‖(f1, . . . , fN)‖XN
:= ‖f1‖X + . . . + ‖fN‖X

(or with any equivalent norm). Note that each operator A ∈ L(XN)
can be expressed as an operator matrix (Aij)

N
i,j=1 in L(XN×N).

Recall the following results from matrix analysis; see, e.g., [7].

Theorem 6. (a) Let A be a bounded linear operator on a Banach space
X. Suppose that the entries Aij of A pairwise commute modulo compact
operators. Then A is Fredholm on XN if and only if det A is Fredholm
on X.

(b) Suppose that A is a subalgebra of L(X) and Aij ∈ A. If A
contains all compact operators on X, if the commutator AB − BA
is compact for all A,B ∈ A, and if Φ(X) ∩ A is dense in A, then
Ind(Aij) = Ind det(Aij) whenever (Aij) is Fredholm.

(c) Let X be a Banach space and let A be Fredholm on XN . If
the entries of A commute pairwise modulo finite-rank operators, then
Ind A = Ind det A.

We can now give a necessary and sufficient condition for Fredholm-
ness of Toeplitz operators with matrix-valued symbols.

Theorem 7. Let 1 < p < ∞, let N ≥ 2 be an integer, and suppose
that α > −1.

(a) For a ∈ C(Bn)N×N , Ta is Fredholm on (Ap
α)N if and only if

det a(z) 6= 0 for any z ∈ ∂Bn; if in addition n = 1, we have

Ind Ta = Ind Tdet a = − ind det a¹∂Bn ;

(b) For a ∈ (C(Bn)+H∞(Bn))N×N , Ta is Fredholm on (Ap
α)N if and

only if det a(z) 6= 0 is bounded away from zero near the boundary ∂Bn.
(c) For a ∈ Q = L∞∩V MO∂, Ta is Fredholm if and only if B(det a)

is bounded away from zero near the boundary.

Proof. We reduce the proof to the scalar case via the preceding theorem
using the representation Ta = (Taij

)N
i,j=1. To verify the criterion, note

that the Hankel operator Hf is compact for f in any of the classes
above, and so, according to (3.1), we have TaTb = TbTa modulo compact
operators. Using (3.1) again, we get

det Ta =
∑
σ∈Sn

sgn(σ)Ta1σ(1)···aN σ(N)
+ K ′

for some compact operator K ′, where Sn is the group of N -permutations
and sgn(σ) stands for the sign of σ. Consequently, Ta is Fredholm if
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and only if det Ta = Tdet a + K ′ is Fredholm, that is, det a 6= 0 on the
boundary of Bn by the corresponding result in the scalar-valued case
and Atkinson’s theorem.

The index formula for continous symbols follows from the usual per-
turbation argument used in the scalar case and Theorem 6.

The other two statements can also be reduced to the scalar-valued
case via Theorem 6. ¤

We would also like to say something about the index formula for the
cases (b) and (c) in the previous theorem.

Theorem 8. Let 1 < p < ∞, let N ≥ 2 be an integer, and suppose
that α > −1 and n = 1. Let a ∈ (C(Bn) + H∞(Bn))N×N or a ∈
Q = L∞ ∩ V MO∂. Suppose that Ta is Fredholm and at least one of the
following conditions hold

(i) The scalar Toeplitz operators Taij
and Takl

commute modulo trace
class operators, where a = (aij);

(ii) Tak
is Fredholm on (Ap

α)k for each k = 1, .., N , where ak =
(aij)i,j≤k;

then

Ind Ta = Ind Tdet a.

Proof. This is a direct consequence of the above theorem and theorems
7.4 and 7.6 in [6]. ¤

Let us consider the index of Ta on the Hilbert space A2 with a ∈
(C(D) + H∞)N×N in some more detail. It is well known that if H
is a Hilbert space, if T is Fredholm on HN , and if the entries of T
commute modulo trace class operators, then Ind T = Ind det T (note
that [5] contains a slightly more general result, which, however, seems
to offer no real advantages to the index computation here). Let a, b ∈
C(D)+H∞, which can be approximated by functions of the form p+f ,
where p is a polynomial in z and z̄ and f is in H∞. Note that it
suffices to prove the index formula for a class of symbols that is dense
in (C(D) + H∞)N×N . Now if a = p1 + f1 and b = p2 + f2 for some
polynomials pk and fk ∈ H∞, then

TaTb = Tab − PMaHp2 .

Here Hp2 is trace class only if p2 is constant (see [1]), and so we cannot
make use of the properties of Hankel operators the same way as in the
Hardy space case where Hankel operators are finite rank (and hence
trace class) for polynomial symbols. Also, if we could show that PMa ∈
Sq for any q, then we could conclude that Ta and Tb commute modulo
trace class operators since Hp2 ∈ Sp for p > 1.

On the other hand, note that we can write

Tab − TaTb = H∗
āHb, Tab − TbTa = H ∗̄

b Ha.
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Therefore,

TaTb − TbTa = H ∗̄
b Ha −H∗

āHb.

It is known that Ha and Hb are in the Schatten class Sp for any p > 1
and that neither of the operators H ∗̄

b
and Hb̄ is compact. It seems that

the Hankel products need not be in the trace class. While the differ-
ence could still be of trace class, we conjecture that there are Toeplitz
operators with polynomial symbols that do not commute modulo trace
class operators.

We can give an example of symbols in a, b ∈ C(D) + H∞ for which
Ta and Tb do not commute modulo trace class operators. Recall that
the disk algebra A is the set of all analytic functions continuous on
D, and that the Dirichlet space D is the space of analytic functions
with derivatives in L2. Note first that neither of the spaces A and
D is contained in the other. Indeed, the Riemann mapping theorem
implies that there is an analytic function f that takes the unit disk
to a simply connected, unbounded domain with finite area. Since the
Dirichlet integral of an analytic function is the area of the image of the
function (see, e.g., [20, Exercise 12 of Section 5.5]), it follows that f is
in the Dirichlet space; however, since f is unbounded, it is not in the
disk algebra. Consider now a function g defined by g(z) =

∑∞
n=0 anzn,

where an = n−1/2 when n = k4 (k = 1, 2, 3..) and an = 0 otherwise.
Then the partial sums of g converge uniformly in D and hence g ∈ A.
On the other hand,

(n + 1)2|an+1|2 = n + 1

whenever n+1 = k4, which, by Parseval’s identity, implies that g′ does
not belong to A2. So g ∈ A \D.

Let a ∈ A\D. Then Ta = Ma and Ta = T ∗
a = M∗

a . By the main result
of [18], the trace of the commutator [Ta, Ta] = [Ma,M

∗
a ] is infinite.

While it seems to be widely assumed (or even considered well known!)
that the index of Ta on Ap

N has a similar formula as in the Hp
N case,

it is quite surprising that this has not been verified even in the Hilbert
space case as far as we are aware. Because of Theorem 3, we still con-
jecture that the formulas for the index in Bergman and Hardy spaces
are analogous.
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